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We investigated the effects of violations of the sphericity assumption on Type I error

rates for different methodical approaches of repeated measures analysis using a

simulation approach. In contrast to previous simulation studies on this topic, up to

nine measurement occasions were considered. Effects of the level of inter-correlations

between measurement occasions on Type I error rates were considered for the

first time. Two populations with non-violation of the sphericity assumption, one with

uncorrelated measurement occasions and one with moderately correlated measurement

occasions, were generated. One population with violation of the sphericity assumption

combines uncorrelated with highly correlated measurement occasions. A second

population with violation of the sphericity assumption combines moderately correlated

and highly correlated measurement occasions. From these four populations without

any between-group effect or within-subject effect 5,000 random samples were drawn.

Finally, the mean Type I error rates for Multilevel linear models (MLM) with an

unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS)

and for repeated measures analysis of variance (rANOVA) models (without correction,

with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To

examine the effect of both the sample size and the number of measurement occasions,

sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement

occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use

of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is

violated, the sample size is rather small and the number of measurement occasions is

large. For MLM-UN, the results illustrate a massive progressive bias for small sample

sizes (n = 20) and m = 6 or more measurement occasions. This effect could not be

found in previous simulation studies with a smaller number of measurement occasions.

The proportionality of bias and number of measurement occasions should be considered

when MLM-UN is used. The good news is that this proportionality can be compensated

by means of large sample sizes. Accordingly, MLM-UN can be recommended even for

small sample sizes for about three measurement occasions and for large sample sizes

for about nine measurement occasions.
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INTRODUCTION

Multilevel linear models (MLM) have been discussed as an
alternative to repeated measures analysis of variance (rANOVA;
Gueorguieva and Krystal, 2004; Arnau et al., 2010; Goedert
et al., 2013) and, sometimes, researchers have even been urged
to use MLM instead of rANOVA (Boisgontier and Cheval, 2016).
Although MLM are increasingly used instead of rANOVA, the
terminology is heterogeneous in this area. Different labels are
used to denote models encompassing fixed and random effects,
covariance pattern models, and regression models that are based
onmore than one data level, where the levels are typically defined
by the measurement occasions nested within individuals. These
models are referred to as hierarchical linear models (Bryk and
Raudenbush, 1992; Raudenbush and Bryk, 2002), as (general)
mixed linear models (McLean et al., 1991; Arnau et al., 2010),
mixed effects models (Gueorguieva and Krystal, 2004), multilevel
linear models (Hox, 2002), or as multilevel models (Maas and
Hox, 2005; Lucas, 2014). We will follow Tabachnick and Fidell
(2013) in using MLM to denote these models in the following.

Here, we highlight three advantages of MLM over rANOVA:
First, MLM allows to model data that correspond to a multi-
level structure. Whenever researchers assume at least one level
of data being nested within another level, MLM is appropriate.
If there is only one level of measurement occasions and one
level of individuals, rANOVA is also an appropriate model, but
for any more complex structure comprising several levels, MLM
will be more appropriate than rANOVA (Baayen et al., 2008).
Second, MLM is robust even when there are several randomly
distributed missing values. Especially in research designs with
several measurement occasions, a large number of missing
values can occur. Since parameters (e.g., slope parameters)
are estimated for each individual, there is no requirement
for complete data over occasions. A third advantage is the
possibility to compare MLM with different assumptions on the
covariance structure of the data. For example, models with
auto-regressive covariance structure, with uncorrelated structure,
or with compound-symmetry (CS) are possible. When there
are no specific assumptions on the covariances, MLM with
an unstructured covariance (UN) matrix can be specified. To
summarize, MLM has substantial advantages when compared to
rANOVA.

Given the important advantages of MLM over rANOVA,
MLM will be the method of choice for several repeated
measures designs. Of course, the appropriateness of MLM
results also depends on data characteristics, modeling options,
and estimation procedures (Tabachnick and Fidell, 2013; Lucas,
2014), so that simulation studies are necessary to ascertain the
quality of MLM results. Since several aspects can be varied in
MLM, a single simulation study cannot cover all relevant aspects,
so that different studies with a focus on different aspects have
been performed. With respect to the estimation method (e.g.,
maximum likelihood vs. restricted maximum likelihood), some
simulation studies indicate that restricted maximum likelihood is
more accurate (Maas and Hox, 2005), but it seems that restricted
maximum likelihood is superior for random effects and not
necessarily for fixed effects (West et al., 2007). Further results

and recommendations are available with regard to sample size,
group size, and number of groups. However, Maas and Hox
(2005) noted that some inconsistencies of their results on sample
size with the results of other simulation studies were probably
related to the use of different simulation designs and different
simulated conditions. The multiple options that are possible
with MLM, the flexibility of the method, may have enhanced
the specificity of results. For example, the statistical power and
Type I error rate of MLM based on autoregressive covariances
and based on unstructured covariances has been investigated by
Gueorguieva and Krystal (2004). They found the lowest Type
I error rate for the MLM based on autoregressive covariances.
It should, however, be noted that their simulated data had an
autoregressive structure. This indicates that an optimal Type
I error control results when the covariance structure specified
in MLM corresponds to the empirical covariance structure. In
contrast, Kowalchuk et al. (2004) found that MLM based on UN
performed similarly to fitting the true covariance structure and,
under certain conditions, showed better Type I error control.
Thus, the results of simulation studies on the specification of
MLM for obtaining optimal Type I error rates are not conclusive.

Goedert et al. (2013) performed a simulation study with
another type of data containing violations of the sphericity
assumption and found a superior statistical power of MLM
with unstructured covariances (MLM-UN) when compared to
rANOVA. In their simulation study, the MLM based on the
F-distribution with between-within degrees-of-freedom (West
et al., 2007) showed no bias in Type I error rates, whereas MLM-
UN based on Wald’s z had led to large Type I error rates. On
this basis, Goedert et al. (2013) recommended the use of MLM-
UN based on the F-statistic instead of MLM-UN based on z
or rANOVA, especially for small samples. We followed their
recommendation in performing MLM-UN based on F in the
following. In Goedert et al. (2013), the Type I error rates ofMLM-
UN based on F and rANOVA with Greenhouse-Geisser (GG)
correction (Greenhouse and Geisser, 1959) were rather similar
with six measurement occasions and a sample size of at least 30
cases.

Gueorguieva and Krystal (2004) also found widely acceptable
and similar Type I error rates for MLM-UN and rANOVA with
Greenhouse-Geisser correction (rANOVA-GG) in a simulation
study based on four measurement occasions. However, in their
simulation study the Type I error rates were slightly more
correct for MLM based on compound-symmetry (MLM-CS).
It should be noted that the CS assumption is related to the
sphericity assumption of rANOVA. The CS assumption is more
restrictive than the sphericity assumption (Field, 1998) so that
MLM with CS will also satisfy the sphericity assumption. It
would therefore be of interest to compare MLM based on CS
with rANOVA results. Since rANOVA is always based on the
sphericity assumption, it will also be important to compare MLM
based on CS, which is more restrictive than rANOVA, with MLM
based on UN, which is less restrictive than rANOVA. In order to
provide a comprehensive description of the effects, a comparison
of MLM and rANOVA should be based on data sets that satisfy
the CS assumption as well as the sphericity assumption and it
should furthermore be based on data-sets that violate both the
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CS assumption and the sphericity assumption. Data that are
conform to the sphericity assumption and that simultaneously
violate the CS assumption are very specific (Field, 1998) and will
therefore occur very rarely so that they are not interesting for
a comparison of MLM with rANOVA. Since violations of the
sphericity assumption are known to result in progressive Type
I error rates of rANOVA, the rANOVA-GG has been proposed in
order to compensate for the progressive bias. The probably less
conservative correction of the progressive bias of Type I error
rates of rANOVA proposed by Huynh and Feldt (1976) should
also be considered.

Since the focus of Goedert et al. (2013) was laid on data
relevant for research on spatial neglect, they only investigated
data in which the sphericity assumption and the CS assumption
were violated. The aim of the present simulation study was to
extend their results on Type I error rates beyond the specific
data characteristics that are relevant for research on spatial
neglect. Gueorguieva and Krystal (2004) also simulated data
with a mild violation of the sphericity assumption data because
they investigated an autoregressive covariance structure. We will
therefore investigate whether the results provided by Goedert
et al. (2013) as well as Gueorguieva and Krystal (2004) can also
be found for data that are conform to the sphericity assumption.
Accordingly, we will compare MLM and rANOVA for data sets
with and without violation of the sphericity assumption and for
MLM based on UN and CS.

Simulation studies that are based on rather specific models,
options, and data yield rather specific results, which might, of
course, be relevant for the respective field of research when
the MLM used in the simulation corresponds to the MLM
that is typically used in the respective research. However, these
simulation studies might be complemented with simulation
studies with a focus on rather simple models and data, which
do not depend so much on a large number of specific modeling
options and data characteristics. Even when the focus of
simulation studies will always be limited, studies that are based
on very simple models and data characteristics may provide a
baseline for the evaluation of more complex models. For this
reason, the present simulation study will only investigate the
abovementioned effects of violation vs. non-violation of the
sphericity assumption on Type I error rates in MLM (based
on an unstructured covariance matrix and on compound-
symmetry) and rANOVA-models (without correction, with
Greenhouse-Geisser-correction, and Huynh-Feldt-correction)
without any between-group effect. Because rANOVA cannot
be used for the simultaneous analysis of several data levels, a
comparison of MLM and rANOVA does not make sense for
such complex data. The current simulation study is therefore
only based on a subset of repeated measures data that can be
analyzed by means of rANOVA and MLM. Since the data and
models analyzed in this study do not contain fixed between
group effects, restricted maximum likelihood estimation will
be used, since this estimation method has been shown to be
most exact for random effects models (West et al., 2007). The
restriction to the class of simple within-subjects models allows
for an analysis of up to nine measurement occasions, which
has not been done before. Kowalchuk et al. (2004) concluded

MLM-UN performs at least as well for Type I error control
as MLM with known covariance matrices, which would be
MLM-CS for the present data. However, their simulation study
was only based on four measurement occasions. Accordingly,
a central aim of the present simulation study is to investigate
whether the results of Kowalchuk et al. (2004) can be generalized
to more than four measurement occasions. Moreover, the
abovementioned restrictions allow for 5,000 samples to be
drawn from the population in each condition in order to reach
substantial robustness of results. An empirical example illustrates
the relevance of rANOVA and MLM for the identification of
repeated measures effects.

MATERIALS AND METHODS

The simulations were performed with IBM SPSS Statistics
Version 23.0.0.3. Three factors were varied systematically in
the simulation study to investigate their effect on the results
of repeated measures analyses: Violations of the sphericity
assumption, sample sizes and number ofmeasurement occasions.
The effect of the overall inter-correlation of dependent variables
was also explored. To investigate the “pure” effect of the
respective analysis method on the resulting Type I error rate,
neither a between-subject effect nor a within-subject effect were
fixed. Thus, there was no between-group effect and the slope
across measurement occasions was zero.

Concerning the sphericity assumption, two conditions
were established: Under the first condition (sphericity), the
sphericity assumption was not violated in the population. For
each individual i there were t = 1 tom = 3, 6, or 9 measurement
occasions. A population of normally distributed, z-standardized
and uncorrelated variables zti (E[zti] = 0; Var[zti] = 1) was
generated by means of the SPSS Mersenne Twister random
number generator for this condition. Each variable represented
the dependent variable measured at one measurement occasion.
In the second condition (non-sphericity), the sphericity
assumption was violated in the population. For this condition,
a population of normally distributed, z-standardized dependent
variables was generated. Again, each variable represented the
dependent variable measured at one measurement occasion. In
order to realize the violation of the sphericity assumption, the
correlation between the dependent variables at oddmeasurement
occasions was 0.80 and the correlation between the dependent
variables at even measurement occasions was zero. Knuth
(1981) described the weighting procedure for the generation
of correlated variables. Accordingly, the correlated dependent
variables yti were generated by means of

yti =
√
0.80 ci +

√
0.20 zti, for t = 1, 3, 5, 7, and 9, (1)

where ci and zti are the scores of individual i on the respective
z-standardized, normal distributed random variables. For t =
2, 4, 6, and 8, the equation for generation of the uncorrelated
dependent variables was simply yti = zti. A syntax example
showing the generation of data corresponding to the sphericity
assumption and for data with a violation of the sphericity
assumption according to Equation (1) is given in the Appendix
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(Supplementary Material). A similar procedure was used for
the generation of dependent variables with a population inter-
correlation of 0.50 without violation of the sphericity assumption.
Finally, a population with violation of the sphericity assumption
based on dependent variables with a population correlation of
0.50 for t = 2, 4, 6, and 8 and with a population correlation of
0.80 for t = 1, 3, 5, 7, and 9 was generated. The violation of
the sphericity assumption was less pronounced in the population
based on dependent variables with a correlation of 0.50 and
0.80 than in the population based on dependent variables with
a correlation of 0.00 and 0.80.

The MLM for the prediction of the dependent variables is

yti = γ00 + U0i + (γ10 + U1i)timet + eti, (2)

where γ00 is the grand mean intercept, U0i is the individual
intercept deviation, γ10 is the grand mean slope, U1i is the
individual slope deviation, timet is the level of the measurement
occasion with time1 = 0 to time9 = 8, and eti is the deviation of
individual i atmeasurement occasion t. The grandmean intercept
γ00 and the grand mean slope γ10 were zero in the population.
Although γ10 was zero in the population, the corresponding
parameter estimate might differ significantly from zero in the
sample. The corresponding parameter estimate of rANOVA
might also differ significantly from zero in the sample. This is the
Type I error in the present study.

The p-values of a significance test follow a continuous uniform
distribution between 0 and 1 when no population effect is
simulated in the data (Murdoch et al., 2008). The corresponding
standard deviation is σ̂ = √

1/12 = 0.29 (Krishnamoorthy,
2006) and the corresponding estimate of the standard error is
SE = 0.29/

√
500 = 0.013 for n= 500 and SE = 0.29/

√
1, 000 =

0.009 for n = 1,000. Although the expectancy of p-values is 0.50
for this condition, the mean p-values will be 0.491 or below and
0.509 or greater in about one third of the simulation studies with
n = 1,000. Accordingly, the sampling error affects the number
of p-values below and above a given threshold. Since the present
simulation study is based on the 0.05 alpha level, the second digit
of the mean p-values should precisely be estimated so that an SE
close to 0.01 might be critical. It was therefore decided to base the
simulation on n = 5,000 per condition with a corresponding SE
of 0.004 so that the second digit of the p-values is estimated with
rather high precision.

Accordingly, 5,000 samples were drawn from the populations
of generated variables, submitted to all of the different analysis
methods and the average Type I error rate was computed
for every sample under the two conditions (sphericity vs.
non-sphericity) for each of the following analysis methods:
Repeated measures ANOVA without correction = rANOVA,
rANOVA with Greenhouse-Geisser-correction = rANOVA-
GG, rANOVA with Huynh-Feldt-correction = rANOVA-HF,
MLM with compound-symmetry = MLM-CS and MLM with
Unstructured Covariance Matrix=MLM-UN.

Two additional factors that were considered here were the
sample size and the number of measurement occasions. Sample
sizes were n = 20, 40, 60, 80, and 100 and measurement
occasions were m = 3, 6, and 9. Accordingly, the simulation

study comprised 150 conditions (= sphericity[2] × analysis
methods[5] × n[5] × m[3]) with 5,000 samples for each
condition. For each condition, the Type I error rate was reported
for the 0.05 alpha-level.

To evaluate whether this simulation is able to deliver stable
results, the standard deviation was computed for every average
Type I error rate and included in the following graphics which
illustrate the simulation findings.

RESULTS

Simulation Study
The Type I error rates for three measurement occasions and
sphericity were close to what was expected at an alpha level
of 0.05 and they were not substantially affected by sample size
and method of data analysis (see Figure 1A). For the non-
sphericity condition and three measurement occasions, the Type
I error rates were close to the expectation for all methods except
rANOVA and MLM-CS. For rANOVA and MLM-CS, a slight
progressive bias was found (see Figure 1B). Note that here and
in the following the results for rANOVA and MLM-CS were
so similar that the respective lines completely overlap. Again,
the effect of sample size was not substantial. As a measure of
uncertainty, the standard deviations of the Type I error rates were
marked as error bars in the figures. They were smaller than 0.5
percent indicating a considerable robustness of the results of the
different runs of the simulation.

The Type I error rates for three measurement occasions
and sphericity were similar when the dependent variables
in the population were correlated: Only minimal differences
occurred in terms of slightly lower Type I error rates across all
methods for n = 20 and n = 40 (see Figure 1C). Under the
condition of non-sphericity and three correlated measurement
occasions, the progressive bias for rANOVA and MLM-CS was
considerably smaller than for the non-correlated population
(see Figure 1D). This was expected because the violation of the
sphericity assumption was less pronounced in the population
with dependent variables correlated for 0.50 and 0.80 than
in the population with dependent variables correlated for
0.00 and 0.80.

Type I error rates were as expected for all methods except
MLM-UN and rANOVA-GG for the sphericity condition and six
measurement occasions. For MLM-UN, a strong progressive bias
occurred for n= 20, a small progressive bias was found for n= 40
and a small conservative bias was found for rANOVA-GG with
n = 20 (see Figure 2A). In the case of non-sphericity and six
measurement occasions, there was again a small progressive bias
of the Type I error rates with MLM-CS and rANOVA. Moreover,
a strong progressive bias occurred for MLM-UN and n= 20 and
a small progressive bias occurred for MLM-UN with n = 40 and
n= 60 (see Figure 2B).

When the sphericity assumption was not violated, the Type I
error rates for the population with correlated dependent variables
did practically not differ from the results of the uncorrelated
condition for sixmeasurement occasions (see Figure 2C). Similar
to the results for three measurement occasions, the progressive
bias for rANOVA and MLM-CS for the correlated population
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turned out to be a bit smaller under the non-sphericity
condition for intercorrelations of 0.50 and 0.80 between the
dependent variables than for the non-sphericity condition for
intercorrelations of 0.00 and 0.80 (see Figure 2D). This was
expected because the violation of the sphericity assumption was
less pronounced in the population with dependent variables that
were correlated for at least 0.50.

For the sphericity condition and ninemeasurement occasions,
the mean Type I error rates were again as expected for all
methods except MLM-UN and rANOVA-GG: A massive
progressive bias was found for MLM-UN with n = 20 as well

as n = 40, while there was still substantial progressive bias for
n = 60; small conservative biases occurred with rANOVA-GG
for n = 20 as well as n = 40 (see Figure 3A). For the condition
of non-sphericity and nine measurement occasions, there was
a substantial progressive bias of the Type I error rates with
MLM-CS and rANOVA. Moreover, a very strong progressive
bias occurred for MLM-UN and n = 20 as well as for n = 40
and a small progressive bias occurred for MLM-UN with n = 60
(see Figure 3B). The differences between the methods that are
reported here were all considerably larger than the corresponding
standard deviations.

FIGURE 1 |
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FIGURE 1 | (A) Average Type I error rates for 5,000 tests: no sphericity violation, three measurement occasions, uncorrelated dependent variables. (B) Average Type I

error rates for 5,000 tests: sphericity violation, three measurement occasions, uncorrelated and highly correlated dependent variables. (C) Average Type I error rates

for 5,000 tests: no sphericity violation, three measurement occasions, moderately correlated dependent variables. (D) Average Type I error rates for 5,000 tests:

sphericity violation, three measurement occasions, moderately correlated and highly correlated dependent variables.

For nine measurement occasions, the results for the correlated
population under the condition of sphericity showed no
differences in the Type I error rates for all methods when
compared to the rates for uncorrelated dependent variables (see
Figure 3C). When the sphericity assumption was violated, the
progressive bias of MLM-CS and rANOVA was smaller for
the correlated dependent variables (see Figure 3D). This was
expected because the violation of the sphericity assumption was
less pronounced for this population. The remaining results for
this population were similar to the results for nine measurement
occasions based on populations containing a combination
uncorrelated and highly correlated dependent variables.

Empirical Example
Ninety Germanmale participants filled out nine newly developed
items for the measurement of reward sensitivity (age:M = 20.34,
SD = 3.21). The items were likert scaled ranging between total
disagreement and complete agreement. The item means ranged
between 4.08 (SD = 1.27) and 4.52 (SD = 1.09). The overall
differences between itemmeans were not significant for rANOVA
[F(8, 712 = 1.61, p = 0.120] and MLM-CS [F(8, 712) = 1.61, p =
0.120], as well as for rANOVA-GG [F(6.00, 533.68) = 1.61, p =
0.144], rANOVA-HF [F(6.48, 576.52) = 1.61, p= 0.137], andMLM-
UN [F(8, 89) = 1.76, p = 0.095]. The Mauchley-Test [W(35) =
0.248, p< 0.01] and theχ

2-difference forMLM-CS vs. MLM-UN
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model fit (1χ2 = 141.43, 1df = 43, p < 0.01) indicated
that the sphericity assumption was violated in these data.
However, rANOVA-GG, rANOVA-HF, and MLM-UN indicate
that the overall mean differences between the items were not
significant.

DISCUSSION

A simulation study for the investigation of the mean Type I
error rates of different analysis methods (MLM-UN, MLM-CS,

rANOVA without correction, rANOVA-GG and r-ANOVA-HF)
was performed under the conditions of violation vs. non-
violation of the sphericity assumption and for sample sizes
of n = 20, 40, 60, 80, and 100 as well as for m = 3, 6,
and 9 measurement occasions. The simulations were based on
two populations without violation of the sphericity assumption:
One population with uncorrelated dependent variables and
one population with correlated dependent variables. Moreover,
there were two populations with violation of the sphericity
assumption: One population with a combination of uncorrelated

FIGURE 2 |
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FIGURE 2 | (A) Average Type I error rates for 5,000 tests: no sphericity violation, six measurement occasions, uncorrelated dependent variables. (B) Average Type I

error rates for 5,000 tests: sphericity violation, six measurement occasions, uncorrelated and highly correlated dependent variables. (C) Average Type I error rates for

5,000 tests: no sphericity violation, six measurement occasions, moderately correlated dependent variables. (D) Average Type I error rates for 5,000 tests: sphericity

violation, six measurement occasions, moderately correlated and highly correlated dependent variables.

and highly correlated dependent variables and one population
with moderately correlated and highly correlated dependent
variables.

The simulation showed the following results: A slight
progressive bias for rANOVA and MLM-CS was found in case
of a violation of the sphericity assumption. This effect could
be demonstrated regardless of the sample size as well as the
number of measurement occasions. For MLM-UN, a massive

progressive bias for small sample sizes (n = 20) and m = 6
or more measurement occasions occurred. The progressive bias
of MLM-UN was substantial for nine measurement occasions
and up to medium sample sizes (n = 60). The mean Type
I error rates for rANOVA-GG showed a small conservative
bias for m = 6 or more measurement occasions and small
sample sizes (n = 20) when the sphericity assumption was
not violated.
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The most general result of the present simulation study is
that there was a substantial progressive bias of Type I error
rates for MLM-UN for nine measurement occasions with sample
sizes of n = 60 and below. This progressive bias for MLM-UN
occurred when the population data was conform to the sphericity
assumption but it also occurred when the sphericity assumption
was violated in the population data. The progressive bias of
MLM-UN for nine measurement occasions with sample sizes
of n = 60 and below was even greater than 0.075, the upper

level of Bradley’s (1978) liberal criterion for the evaluation of an
empirical estimate α̂ of the Type I error rate (0.5α ≥ α̂ ≤ 1.5α).
It should be noted that MLM was based on the F-statistic as
recommended by Goedert et al. (2013) because MLM based on
Wald’s z already showed a progressive bias of Type I error rates in
their simulation study. Thus, the present study extends Goedert
et al.’s (2013) finding of a progressive bias for MLM to MLM-
UN based on a large number of measurement occasions and
small sample sizes, even when based on the F-statistic. Thus,

FIGURE 3 |
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FIGURE 3 | (A) Average Type I error rates for 5,000 tests: no sphericity violation, nine measurement occasions, uncorrelated dependent variables (average rate for

MLM-UN and n = 20: 22.72). (B) Average Type I error rates for 5,000 tests: sphericity violation, nine measurement occasions, uncorrelated and highly correlated

dependent variables (average rate for MLM-UN and n = 20: 23.18). (C) Average Type I error rates for 5,000 tests: no sphericity violation, nine measurement

occasions, moderately correlated dependent variables (average rate for MLM-UN and n = 20: 22.72). (D) Average Type I error rates for 5,000 tests: sphericity

violation, nine measurement occasions, moderately correlated and highly correlated dependent variables (average rate for MLM-UN and n = 20: 23.38).

when there are nine or more measurement occasions and when
MLM-UN is used because the sphericity assumption is violated
in the data, sample sizes of at least 80 participants should be
investigated.

The simulated data of Goedert et al. (2013) and Gueorguieva
and Krystal (2004) were based on a violation of the sphericity
assumption and on a substantially smaller number of
measurement occasions. Therefore, the substantial Type I

error rates of MLM-UN in the condition without a violation
of the sphericity assumption, nine measurement occasions and
sample sizes of n = 60 and below could not be found in these
simulation studies. Since the Type I error rates of MLM-CS were
correct under this condition, this result indicates that MLM-UN
should not be used as a form of standard procedure and that a
specification of a known covariance structure in MLM might
help to avoid progressive bias.
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The results for MLM-CS and (uncorrected) rANOVA were so
similar across all conditions of the simulation study that there was
a total overlap of the respective lines in the figures. Accordingly,
when the sphericity assumption was violated in the population
data, MLM-CS had the same progressive bias as rANOVA. The
progressive bias of MLM-CS and rANOVA increased slightly
with the number of measurement occasions so that it was
even larger than 0.075 (=1.5α) for nine measurement occasions.
Nevertheless, the progressive bias of MLM-CS and rANOVA
was already substantial for three measurement occasions.
Accordingly, MLM-CS and rANOVA cannot be recommended
when the sphericity assumption is violated. It should be noted
that MLM-UN resulted in more correct Type I error rates than
MLM-CS and rANOVA when the sphericity assumption was
violated and when sample size was n= 80 or larger. However, our
results differ from Kowalchuk et al.’s (2004) finding that MLM-
UN performs similarly to fitting the true covariance structure
and, under certain conditions, shows even better Type I error
control because MLM-CS had a more correct Type I error rate
thanMLM-UNwhen the sphericity assumption was not violated.

There was a conservative bias of rANOVA-GG, especially
when the population data was conform to the sphericity
assumption, when the number of measurement occasions was
large, and when the sample size was small. Therefore, the use
of rANOVA-GG cannot be recommended with n = 20 and nine
measurement occasions when the sphericity assumption is not
violated. rANOVA-HF had equal or more correct Type I error
rates across all conditions of the simulation study than rANOVA-
GG. Thus, the present simulation study supports the use of
rANOVA-HF instead of rANOVA-GG.

An empirical example referred to the test of overall mean
differences between items for the measurement of reward
sensitivity. The sphericity assumption was violated in these
data. rANOVA-GG, rANOVA-HF, and MLM-UN yielded similar
results. The example illustrates method convergence with nine
measurement occasions and more than 80 participants.

The present study was limited to the analysis of Type I error
rates of within-group effects in data and models that do not
contain any between-group effect. The aim of this restriction
was to eliminate any interaction of between-group effects with
within-group effects that might affect the Type I error rates of
the within-group effects. Although this might be regarded as a
limitation of the present study, the effects reported here have the
merit of being independent from any between-group effect in the

data and in the models for data analysis. Further research may
consider the investigation of between-group effects and especially
the investigation of between-group × within-group interaction
effects for up to nine measurement occasions.

Moreover, the statistical power of MLM and rANOVA
should also be investigated for a large number of measurement
occasions. There are, of course, several other issues, as, for
example, the combined effect of the number of data levels and
measurement occasions on Type I error rates and statistical
power. The high flexibility of MLM as a method of multivariate
analysis results in a specific responsibility of researchers in the
application of this method. However, given a responsible use of

MLM, the considerable flexibility is an important advantage of
this method.

Two general recommendations follow from the results of the
present simulation study with respect to the violation of the
sphericity assumption: (1) Use rANOVA-HF, especially when
sample sizes are small and when the number of measurement
occasions is large. (2) Use MLM-UN when the sample size
is at least n = 80 when there are six or more measurement
occasions. Accordingly, when there are six or more measurement
occasions and when there are reasons for performing MLM-
UN instead of rANOVA-HF as, for example, when there is a
substantial number of missing values or a more complex multi-
level structure of the data, sample sizes of at least n = 80
should be investigated. Whether the sphericity assumption is
violated or not, MLM-UN should not be used in combination
with sample sizes of about n = 60 or smaller with nine or more
measurement occasions unless a correction of the substantial
progressive bias of this method is available. However, the
proportionality of progressive bias of MLM-UNwith the number
of measurement occasions can be compensated by means of large
sample sizes.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2017.01841/full#supplementary-material

REFERENCES

Arnau, J., Balluerka, N., Bono, R., and Gorostiaga, A. (2010). General linear mixed

model for analysing longitudinal data in developmental research. Percept. Mot.

Skills 110, 547–566. doi: 10.2466/pms.110.2.547-566

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling

with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412.

doi: 10.1016/j.jml.2007.12.005

Boisgontier, M. P., and Cheval, B. (2016). The anova to mixed model transition.

Neurosci. Biobehav. Rev. 68, 1004–1005. doi: 10.1016/j.neubiorev.2016.

05.034

Bradley, J. V. (1978). Robustness? Br. J. Math. Stat. Psychol. 31, 144–152.

Bryk, A. S., and Raudenbush, S. (1992). Hierarchical Linear Models: Applications

and Data Analysis Methods. Thousand Oaks, CA: Sage Publications.

Field, A. (1998). A bluffer’s guide to sphericity. Brit. Psychol. Soc. Math. Stat.

Comput. Section Newsl. 6, 13–22.

Goedert, K. M., Boston, R. C., and Barrett, A. M. (2013). Advancing the

science of spatial neglect rehabilitation: an improved statistical approach with

mixed linear modeling. Front. Hum. Neurosci. 7:211. doi: 10.3389/fnhum.2013.

00211

Greenhouse, S. W., and Geisser, S. (1959). On methods in the analysis of profile

data. Psychometrika 24, 95–112. doi: 10.1007/BF02289823

Gueorguieva, R., and Krystal, J. H. (2004). Move over ANOVA. Progress in

analyzing repeated-measures data and its reflection on papers published

Frontiers in Psychology | www.frontiersin.org 11 October 2017 | Volume 8 | Article 1841

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01841/full#supplementary-material
https://doi.org/10.2466/pms.110.2.547-566
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.1016/j.neubiorev.2016.05.034
https://doi.org/10.3389/fnhum.2013.00211
https://doi.org/10.1007/BF02289823
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Haverkamp and Beauducel Sphericity Violation and Type-I Errors

in the Archives of General Psychiatry. Arch. Gen. Psychiatry 61, 310–317.

doi: 10.1001/archpsyc.61.3.310

Hox, J. J. (2002). Multilevel Analysis: Techniques and Applications. Mahwah, NJ:

Erlbaum.

Huynh, H., and Feldt, L. S. (1976). Estimation of the Box for degrees of freedom

from sample data in randomised block and split-plot designs. J. Educ. Stat. 1,

69–82. doi: 10.2307/1164736

Knuth, D. E. (1981). The Art of Computer Programming, 2nd Edn., Vol. 2. Reading,

MA: Addison-Wesley.

Kowalchuk, R. A., Keselman, H. J., Algina, J., and Wolfinger, R. D. (2004). The

analysis of repeated measurements with mixed-model adjusted F tests. Educ.

Psychol. Meas. 64, 224–242. doi: 10.1177/0013164403260196

Krishnamoorthy, K. (2006).Handbook of Statistical Distributions with Applications.

New York, NY: Chapman & Hall/CRC. doi: 10.1201/9781420011371

Lucas, S. R. (2014). An inconvenient dataset: bias and inappropriate

inference with the multilevel model. Qual. Quant. 48, 1619–1649.

doi: 10.1007/s11135-013-9865-x

Maas, C. J. M., andHox, J. J. (2005). Sufficient sample sizes for multilevel modeling.

Methodology 1, 86–92. doi: 10.1027/1614-2241.1.3.86

McLean, R. A., Sanders, W. L., and Stroup, W. W. (1991). A unified approach to

mixed linear models. Am. Stat. 45, 54–64.

Murdoch, D. J., Tsai, Y.-L., and Adcock, J. (2008). P-values are random variables.

Am. Stat. 62, 242–245. doi: 10.1198/000313008X332421

Raudenbush, S. W., and Bryk, A. S. (2002). Hierarchical Linear Models:

Applications and Data Analysis Methods, 2nd Edn. Thousand Oaks, CA: Sage

Publications.

Tabachnick, B. G., and Fidell, L. S. (2013). Using Multivariate Statistics, 6th Edn.

Edinburgh Gate: Pearson Education.

West, B. T., Welch, K. B., and Galecki, A. T. (2007). Linear Mixed Models:

A Practical Guide Using Statistical Software. Boca Raton, FL: Chapman &

Hall/CRC.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Haverkamp and Beauducel. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 12 October 2017 | Volume 8 | Article 1841

https://doi.org/10.1001/archpsyc.61.3.310
https://doi.org/10.2307/1164736
https://doi.org/10.1177/0013164403260196
https://doi.org/10.1201/9781420011371
https://doi.org/10.1007/s11135-013-9865-x
https://doi.org/10.1027/1614-2241.1.3.86
https://doi.org/10.1198/000313008X332421
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM)
	Introduction
	Materials and Methods
	Results
	Simulation Study
	Empirical Example

	Discussion
	Author Contributions
	Supplementary Material
	References


