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A stimulus class can be composed of perceptually different but functionally equivalent

stimuli. The relations between the stimuli that are grouped in a class can be learned or

derived from other stimulus relations. If stimulus A is equivalent to B, and B is equivalent to

C, then the equivalence between A and C can be derived without explicit training. In this

work we propose, with a neurocomputational model, a basic learning mechanism for the

formation of equivalence. We also describe how the relatedness between the members

of an equivalence class is developed for both trained and derived stimulus relations.

Three classic studies on stimulus equivalence are simulated covering typical and atypical

populations as well as nodal distance effects. This model shows a mechanism by

which certain stimulus associations are selectively strengthened even when they are

not co-presented in the environment. This model links the field of equivalence classes

to accounts of Hebbian learning and categorization, and points to the pertinence of

modeling stimulus equivalence to explore the effect of variations in training protocols.

Keywords: equivalence classes, transitive relations, neurocomputational model, Hebbian learning, categorization

INTRODUCTION

Humans (and some animals) can learn to group stimuli that share no physical similarity into
arbitrary categories. For example, the utterance “Do not pass!,” a red light, and a road sign with
a red rim and a person drawn in the center all indicate that I should not walk in a certain direction.
The formation and processing of such arbitrary categories, also called equivalence classes, has been
studied in detail in both humans and animals (Sidman et al., 1982; Sidman, 1994; Horne and Lowe,
1996; Zentall et al., 2002; O’Donnell and Saunders, 2003; Urcuioli and Swisher, 2015). This research
has revealed two important characteristics of equivalence classes. First, it is not necessary to directly
learn that all members in a category are equivalent to each other, but this knowledge can be derived
from a number of directly learned relations. Second, the functional properties learned for one
stimulus in a category can be transferred to the other stimuli without explicit training. For example,
if a naïve human learns the meaning of “Do not pass!” and then learns the equivalence between this
utterance and the red light, and the equivalence between the red light and the road sign, she will
be able to derive the equivalence between the utterance and the road sign (if A equals B, and B
equals C, then A equals C) which is called a transitive relation. She will also display the behavior
learned for the utterance in the presence of the red light and the road sign. The question of how
transitive relations are established between non-perceptually related stimuli has been long debated.
In this paper, we show how transitive relations and equivalence classes are learned in an abstract
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neurocomputational model. The model provides a means to
quantitatively approach the analysis of equivalence phenomena
from the general principles of associative learning.

Equivalence classes have been systematically studied in
behavioral psychology under the names of stimulus equivalence
(SE), equivalence relations, or equivalence class formation. Most
of the interest in SE is based on its relevance to analyze learned
and derived stimulus-stimulus relations, which are fundamental
for our understanding of symbolic behavior (Dugdale and Lowe,
1990; Sidman, 1994; Dickins and Dickins, 2001; Wilkinson and
McIlvane, 2001). For example, the SE approach has been used
to analyze correspondences between words, sounds and the
objects they represent (Sidman, 1971); arbitrary visual symbols
and meaningful stimuli (Nartey et al., 2015); and mathematical
concepts and their graphical representations (Lynch and Cuvo,
1995; Fields et al., 2009).

A set of stimuli can be considered as equivalent if their
relations exhibit the three definitional properties of mathematical
equivalence: reflexivity, symmetry, and transitivity (Sidman and
Tailby, 1982). These properties are commonly assessed via
matching to sample tasks (MTS). In a regular MTS procedure,
a participant learns to pick from several comparison stimuli (B1,
B2. . . Bn) the one that correctly matches a sample stimulus (A1).
For example, comparisons can be pictures of different animals
and the sample can be the spoken name of a particular animal.
The match between A1 and B1 (i.e., A1B1) can be learned if the
selection of “B1” in the presence of the sample stimulus “A1” is
followed by reinforcement.

If a participant has learned the matches A1B1 and B1C1
(nomenclature considers the first stimulus as the sample and the
second as the correct comparison), equivalence is documented if,
without any instruction or feedback, the participant selects A1
as comparison in the presence of A1 (reflexivity, A1RA1, with
R denoting an equivalence relation); selects A1 in the presence
of B1, and B1 in the presence of C1 (symmetry, e.g., if ARB,
then BRA); and selects C1 in the presence of A1 (transitivity,
if ARB, and BRC, then ARC). Symmetry and transitivity can be
combined in what is called an equivalence test (Sidman, 1992): for
the current example the equivalence test corresponds to selecting
A1 as comparison when C1 is the sample.

A typical SE study is divided into two phases, training and
testing. During training, participants learn the baseline relations
fromwhich emergent relations can be derived and assessed during
the testing phase. Figure 1 shows an example of trained and
tested stimulus relations in a MTS format.

Transitive relations in SE are of particular interest: they
challenge traditional approaches in behavior analysis to explain
how two stimuli become functionally equivalent even when
they have never been experienced together. Remarkably, the
mechanisms underlying their establishment could inform our
understanding of the properties of functional untrained behavior
and the inclusion of members in categories that share no
perceptual similarity. However, these mechanisms are not yet
fully understood.

Empirical evidence has characterized some general properties
of transitive relations. For example, response latencies increase
and accuracy decreases in responses to transitive relations

compared with responses to baseline relations (Bentall et al.,
1993; Fields et al., 1995; Spencer and Chase, 1996). This pattern
of responses is well captured under the hypothesis of different
relatedness between the members of a class (Fields, 2016).
This hypothesis argues that each pair of stimuli in a class is
characterized by a particular relational strength; some pairs are
more closely related than others, and these degrees of relation
underlie the observed differences in response latencies, accuracy
and preference for comparison stimuli. Further, studies on nodal
distance effects show that relatedness varies as a function of the
number of nodes (i.e., distance) between the members of a class.
A node is defined as any stimulus that is related to at least two
other stimuli during training (Fields and Verhave, 1987). For
example, there could be many training structures to teach a 5-
member stimulus class ABCDE. Cluster training (also called one-
to-many training (e.g., Arntzen and Nikolaisen, 2011) consists in
teaching of AB, AC, AD, and AE, whereas linear series training
consists in teaching of AB, BC, CD, and DE. Nodal distance
effects are reported when, after linear series training, relatedness
appears as an inverse function of nodal distance. For example,
stimulus A should be more closely related to C than to D, and
so on (Fields et al., 1990, 1995; Kennedy, 1991; Spencer and
Chase, 1996; Bentall et al., 1999; Bortoloti and de Rose, 2009;
Moss-Lourenco and Fields, 2011; Bortoloti et al., 2013).

To date, there is no consensus about the mechanisms
underlying the ability to form equivalence classes, particularly,
about how transitive relations are derived, and there are no
quantitative approaches to analyze and describe differences
in relatedness between the members of an equivalence class.
Our objective in this paper is to put forward a mechanistic
explanation for the establishment of transitive relations and
equivalence classes through an abstract neurocomputational
model that incorporates general principles of associative
learning. Before we present our model, we will briefly
review the main theoretical perspectives and computational
models of SE. We will also discuss why they have been
insufficient in explaining the establishment of transitive
relations.

Theoretical Perspectives on Stimulus
Equivalence
Three main theories have been proposed to account for
equivalence class formation. Sidman (1994, 2000) suggested that
equivalence relations are a direct outcome of reinforcement. On
this view, all positive elements that take part in a reinforcement
contingency can become part of an equivalence class. Sidman sees
equivalence as a primitive function from which other behaviors,
such as naming, derive.

In contrast to the reinforcement approach, Lowe and
colleagues (Dugdale and Lowe, 1990; Horne and Lowe, 1996)
proposed that naming is what enables participants to respond
correctly to SE tasks. Under this view, equivalence responding
is mediated by naming skills either because stimuli in a class
become equivalent by acquiring the same name, or because,
having different names, they can be linked through a verbal
description. Evidence for this theory comes from failed attempts
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FIGURE 1 | Examples of trained and derived stimulus relations in a matching to sample format. The sample stimulus, comparison stimuli, and trained and expected

responses are shown for the training and testing phases. The stimuli A, B, and C correspond to different representations of the same quantity, only AB and BC are

directly trained, AC, AA, and BA are examples of derived relations.

to observe derived relations in nonhuman animals (Sidman et al.,
1982; D’Amato et al., 1985; Campos et al., 2011).

A third perspective is based on the Relational Frame Theory
(RFT) by Hayes and colleagues (Hayes, 1991; Hayes et al., 2001).
This view argues that derived equivalence is a generalized form
of relational responding, and thus appeals to prior experience
with learning stimulus relations. Learning different stimuli as
interchangeable (e.g., bidirectional relations of the kind if A then
B, and if B then A) is then generalized to new stimulus sets like
those presented during SE experiments.

These theories are not completely differentiable through
experimental tasks. For example, in a study relating language
and SE, Devany et al. (1986) analyzed the performance on
transitivity probes in three groups of children. The first group
consisted of four typically developing children, the second of four
children with learning disability with some language skills, and
the third of four children with learning disability who lacked
any language skill. The results showed that all children with
language skills (groups 1 and 2) responded correctly to transitive
relations, whereas children without language skills did not. Even
though these results seem to support the naming theory, they
leave open the question if it was the absence of language that
caused poor performance on SE or whether problems with
language and SE had a common underlying cause. In another
study, Luciano and colleagues (Luciano et al., 2007) observed
equivalence responding in a typically developing 19-month-old
toddler with a small verbal repertoire. The toddler participated
in a multiple exemplar training study, consisting of learning

bidirectional relations (e.g., object 1 to sound 1, and sound 1 to
object 1) for a variety of objects before being trained and tested
on equivalences. Her success in equivalence responding suggests
that prior exposure to bidirectional relations led to equivalence
formation, and therefore seems to support RFT. Nevertheless, the
absence of control conditions weakens this conclusion, due to the
fact that equivalence could emerge without themultiple exemplar
training, fitting also into Sidman’s reinforcement theory.

Computational Approaches
Substantial contributions to our knowledge about categorization
have come from computational modeling. However, most
computational models of categorization have focused on
categories that are based, at least in part, on perceptual
similarities (Kruschke, 1992; Love et al., 2004), and therefore
they are not suitable for modeling the processing of equivalence
classes. On the other hand, abstract formal models of learning
that adequately describe relations between perceptually different
stimuli have focused on the correspondence between only two
stimuli (or events) as a result of stimulus co-occurrence, cue
competition, and prediction, mainly in the context of Pavlovian
conditioning (Rescorla and Wagner, 1972; Ramscar et al., 2010).

Only a small number of computational models have addressed
some specific aspects of the learning of equivalence classes.
Barnes and Hampson (1993) presented a model that aimed
to assess whether derived equivalence relations could be
demonstrated in connectionist networks. Their model was
designed to perform matching to sample tasks in a feed forward
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neural network with back propagation learning. The results from
their simulations seemed to demonstrate the establishment of
trained and derived equivalence relations. Nonetheless, after
further analyses it was argued (Tovar and Torres-Chávez, 2012)
that the way the stimuli were coded in the simulations of
Barnes and Hampson hindered a full demonstration of transitive
responding since these relations were partially trained, thus not
derived, in the neural network.

Tovar and Torres-Chávez (2012) presented a second
connectionist network that demonstrated learning of trained
and transitive relations. This network was designed to learn
mappings between inputs representing stimulus pairings (e.g.,
A1B1, A1B2) and outputs representing yes/no responses. This
model served to make explicit how in experimental procedures
that use stimulus pairings and two response options, previous
learning of input-output mappings from all the possible relations
of one equivalence class (i.e., class XYZ) was required to correctly
derive transitive relations of novel equivalence classes (e.g., class
A1B1C1) that were only partially trained.

The reviewed connectionist networks (Barnes and Hampson,
1993; Tovar and Torres-Chávez, 2012) were limited by their
inability to describe relatedness between the elements of a
stimulus class. They can tell little about how relatedness increases,
how it characterizes trained and derived relations, or whether
and how relatedness and class formation are affected by different
training procedures. The components and functioning of these
models were not linked to biologically viable modules or
processes; further, back propagation has been criticized as being
an implausible learningmechanism in biological neurons as there
is no clear evidence that an error signal can be back propagated
in the brain to modify activation flowing in subsequent forward
propagation (O’Reilly and Munakata, 2000).

Lew and Zanutto (2011) developed a neurocomputational
model proposing some biological mechanisms that allow the
establishment of trained and derived equivalence relations. In
this model prefrontal and motor areas interact with visual
areas through top-down processing that modulate short term
memory of stimuli, then Hebbian learning and lateral inhibition
are responsible for synaptic changes that consolidate learning
of stimulus relations. An important drawback of this model
is that it is not directly compared with empirical data. It
also does not provide precise descriptions or predictions about
relatedness between elements of an equivalence class; therefore,
whether and how these biological mechanisms account for
empirical observations of trained and transitive relations remains
unknown.

Since the described theories and models appear to address
only partially the SE phenomena, or without recourse to
empirical data, an integrated account is still missing. Our
objective in this paper is to provide such an integrated account
for the formation and processing of equivalence classes through
a neurocomputational model. This model seeks to incorporate
equivalence phenomena into traditional accounts of associative
learning; particularly, the model is based on Hebbian learning
principles, and it uses the concept of spreading activation to
account for emergent transitive relations and the processing of
this type of categories in which exemplars have no perceptual

FIGURE 2 | The layer of fully interconnected neurons that compose the model

is showed. The sample stimulus unit, comparison units and the response unit

are presented on the right side of the figure in correspondence to what

happens in a matching to sample trial used with human participants and

represented on the left side of the figure.

overlap. We discuss that the learning process in our model,
although abstract, is biologically motivated, and its performance
is empirically valid; it is informed by current notions of synaptic
plasticity and its performance is directly compared with empirical
studies. In the following sections we first describe the model and
then show how it accounts for a wide range of empirical results
in research on SE.

NEUROCOMPUTATIONAL MODEL

Our neurocomputational model relies on the following simple
assumptions: (1) Stimuli are represented in a localist fashion
through the activation of units in a neural network. (2) Weighted
connections exist between the representations for different
stimuli and allow spreading activation through the network.
(3) Based on Hebbian learning principles the coactivation of
units results in long term changes in the connection weights. In
some cases, coactivation occurs because two stimuli are present
in the environment, for example, when stimulus relations are
directly experienced. In other cases, coactivation results from
spreading activation in the neural network through the learned
connections. We hypothesize that this latter mechanism can
account for relatedness of derived transitive relations.

Architecture
The model consists of one layer of fully interconnected neurons
or units (see Figure 2). Each unit (X1, X2 . . . ,Xn) represents one
stimulus. Given that stimuli in SE studies are chosen to minimize
perceptual overlap, in the model distributed representations (that
are useful for representing perceptual overlap) are not necessary.
Activation values of the units range from 0 to 1.
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Activation flows through connections that link the units
(Wij,. . . ,Wmn). The connection weights are interpreted as the
level of relatedness, or associative strength, between the stimuli
represented in the corresponding units. Connections between
units are bidirectional. All connection values in the model start
at 0 to simulate no previous experience. Through training the
connections are able to acquire any value between −1 and 1. We
will now explain how this model is used to simulate learning in
MTS tasks.

Activation of Units
Units are activated either through exposure to an external
stimulus or through activation flowing through the connections
from other units (i.e., spreading activation).

Stimuli are presented to the network as binary patterns. When
a sample stimulus is presented, for example stimulus A1, the unit
that represents A1 in the network is set to an activation value of
1; we will refer to this unit as the sample stimulus unit. Then
comparison stimuli are presented, for example B1, B2, and B3,
and the units that represent them compute the input that they
receive through the connections from the sample stimulus unit
(e.g., A1). The most active of these comparison units transforms
its activation value to 1, becoming the response unit. The
comparison stimulus represented by this unit is considered as the
one selected to match the sample stimulus; the other comparison
units are set to 0. This procedure simulates competition through
lateral inhibition between comparison units.

Activation then propagates to the layer of units through the
connections. All remaining units perform a weighted sum of
all the inputs they receive from the already active units and
transform this net-input into an activation/output value through
a sigmoid function (see Equation 1). The activation of units is
then followed by connection weight updates, and these processes
form one iteration of the model.

For net_input > 0.85, Xj = 1/1+ exp−net_inputj

Else Xj = 0 (1)

Learning
Learning is captured in our model through the modification
of connection weights. Once the response unit becomes
active the model receives a feedback or reinforcement signal
that indicates the direction for connection weight changes.
We used a supervised version of Hebbian learning: in our
model connection strengthening occurs after correct responses
(coactivation of sample and correct comparison units), and
connection weakening occurs after incorrect responses. The
formalization of Hebbian learning is commonly expressed as

Wij (t+ 1) = Wij(t)+ β(X∗

i Xj) (2)

whereWij (t+1) is the value that the connection between neurons
i and j acquires after adding to its previous valueWij(t), the result
of coactivation between i and j (X∗

i Xj) weighted by β. In our
model β is a learning rate with positive sign for correct responses
and negative sign for wrong responses.

Note that if Equation (2) is implemented as a continuous
process, the result is an endless strengthening of Wij, because any
coactivation strengthens the connection weight which leads to
more activation in a reiterative loop. To control this overgrowth
we specify that strengthening of connections takes place only
for a range θ. . . 1 of coactivation values. The lower limit of this
range (θ) is a coactivation threshold that is biologically motivated
(see below). Coactivation values below this limit lead to decays
in connection weights. We also include a self-adapting value (λ)
to modulate the amount and direction of weight changes. For
over-threshold coactivation values, λ is computed by subtracting
Wij from coactivation. For below-threshold coactivation values,
lambda acquires a negative value proportional to the current Wij

(see Equation 3).

For (Xi∗Xj) > θ, λ = (Xi∗Xj)−Wij

Else λ = −Wij (3)

Through this process we ensure that the extent and direction of
changes inWij depend on whether there is a big or small, positive
or negative difference between the relatedness already learned
Wij(t), and the current coactivation of units (X∗

i Xj). This allows
us to implement a form of metaplasticity (see (Abraham, 2008)
in the model, which entails modifying the current properties of
weight strengthening in response to its previous history.

In the model there are two possible sources for the weakening
of connections: incorrect responses, and negative values in λ. As
mentioned previously a negative β is used for weight updates
after incorrect responses, and a value of −β∗0.25 is used for
weight updates after negative values in λ. Equation (4) shows the
Hebbian learning algorithm that includes λ and β.

Wij(t+ 1) = Wij(t)+ [λβ(X∗

i Xj≥θ)] (4)

During the simulation of testing phases the model does not
receive any feedback signal. Nevertheless, minimal changes in the
connection weights still occur; this was modeled by reducing β

during tests to one fourth of its value during training.

Biological Plausibility of the Learning
Algorithm
The way in which our model computes weight changes is
consistent with evidence of synaptic adjustments in biological
neural networks. There is strong support from studies on long-
term potentiation (LTP) demonstrating that synapses display
Hebbian adjustments (Bliss et al., 2007). In these studies, synaptic
efficacy is observable to depend on the firing dynamics of the
connected neurons. LTP describes synaptic strengthening that
appears after a period of high frequency activations in pre-
and post-synaptic neurons. This is captured in our model by
positive changes in connection weights. When the frequency
of activations in pre- and post-synaptic neurons is lower than
a threshold, a reduction of synaptic efficacy is observed and
described as long-term depression (LTD) (Malenka and Bear,
2004; Lüscher and Malenka, 2012) which is captured by our
model by negative changes in connection weights. In our
model the described lower limit (θ) that must be surpassed in
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order for strengthening to take place ensures that increases in
the connections occur only after high coactivation values, as
described by LTP after high frequency stimulation.

The self-adapting λ in our model leads to stabilizing the value
of connections by switching between big or small, positive or
negative changes in connection weights. This is in accordance
with neurophysiological evidence of activity dependent
mechanisms that regulate synaptic changes maintaining the
stability of neuronal connections. These mechanisms are usually
studied as part of homeostatic plasticity (Turrigiano and Nelson,
2000) and metaplasticity processes (Bliss et al., 2007; Abraham,
2008) and include, among others, regulation of synapse number,
changes in neuronal excitability, and activity-dependent
LTP/LTD-threshold changes.

MODELING STIMULUS EQUIVALENCE

We ran four simulations. These where analyzed by observing
the connection values (weight matrix) between all the units
representing the stimulus class members. In the equivalence
literature, the performance of participants is usually analyzed
through completion of criteria during training (e.g., 90% of
correct trials in a block) and speed and accuracy during
equivalence tests. We followed this approach for our simulations,
and provided training to the model until it matched the same
criteria as in the original studies. For evaluating the performance
of the model during test, the connection values were interpreted
as relatedness or associative strength between stimuli. Based
on the empirical evidence reviewed above that shows positive
correlations between relatedness and response accuracy and
speed, relatedness in our model was compared to accuracy and
response speed reported from the human experiments. The first
simulation did not model any actual empirical study. Instead, it
was designed to observe adjustments of connection values during
a regular training procedure that establishes a 3-member stimulus
class. It also served to fix values for parameters β and θ.

For simulations 2–4 we modeled the studies of Sidman and
Tailby (1982), Devany et al. (1986), and Spencer and Chase
(1996), respectively, for the following reasons: first, these studies
provide clear descriptions about the procedures used for training
and tests. Second, the results they show can be directly compared
to the connection values in the model. And third, these studies
have had a high impact on the SE literature.

We had three specific objectives. The first was to evaluate
the viability of the model to account for trained and derived
stimulus relations. The second was to simulate the performance
of participants with disabilities to replicate failures in transitive
responding, and thus to offer an explanation for both successful
and failed transitivity, addressed in Simulation 3. The third
objective, addressed in Simulation 4, was to evaluate if the
model accounts for nodal distance effects, and hence to
provide a mechanistic approach for processes than rely on the
establishment of transitive relations.

Simulation 1: AB, BC Training
This simulation was designed to observe the adjustment of
connection values during a simple training of two stimulus

FIGURE 3 | Development of connection values interpreted as the relatedness

between the trained A1B1, B1C1, and derived A1C1 relations.

relations, and to determine the values for β and θ. Two stimulus
relations were directly trained in the model: A1B1 and B1C1.
Training of A1B1 began with the presentation of sample stimulus
A1 along with the comparison stimuli B1, B2, and B3. After the
activation of the response unit the model received a feedback
signal and weights were updated. Then the next trial was
presented with sample stimulus B1 along with C1, C2, and
C3 as comparisons. Training continued until 30 epochs were
completed. Epochs consisted of presenting each trained trial
once, such that the network was trained for a total of 60 trials.

Results
The model showed learning of trained relations through
increases in the connection values between the units A1 and B1,
and B1 and C1 (Figure 3). At some point in the training (near
epoch 11), repetitions of A1B1 led the network to evoke either
stimulus when the other was presented, so that e.g., A1 now also
became active when B1C1 was trained. This resulted in activation
of A1, B1, and C1 whenever B1 was presented and thus, in an
increase of the connection strength between the coactive A1 and
C1 units despite these two stimuli never being presented together.

As shown in Figure 3, relatedness between transitive A1C1
remained lower than relatedness between trained A1B1 and
B1C1. Based on the assumption that relatedness manifests in
accuracy and response speed, this result converges with empirical
evidence showing higher accuracy, speed and preference for
trained relations vs. derived transitivity relations (Bentall et al.,
1993; Spencer and Chase, 1996; Moss-Lourenco and Fields,
2011).

In this simulation we set the learning parameters as follows:
coactivation threshold (θ) = 0.7, and learning rate (β) = 0.2.
These values were used for the remaining simulations.

Simulation 2: Sidman and Tailby (1982)
Initial studies on SE analyzed stimulus classes containing only
three members. A major purpose of Sidman and Tailby’s (1982)
study was to analyze the inclusion of a fourth member in a
stimulus class to test the power of equivalence relations to
generate a larger network of interchangeable stimuli. Participants
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were eight typically developing children. Stimuli were a set A of
spoken Greek letter names; sets B, C, and D were sets of different
printed Greek letters.

All children were trained on a total of three 4-member
stimulus classes. For each class, children first went through
auditory-visual MTS tasks to learn AB and AC relations. They
were reinforced for choosing the printed letters from sets B
or C that corresponded to the heard letter names from set A.
Following this stage, they proceeded to visual-visual MTS to
master the DC relations.

Training comprised several stages. The nine trained relations
(AB, AC, DC, in classes 1, 2, and 3, respectively) were
progressively introduced as summarized in Table 1. For example,
training of AB relations was divided in four stages: (1) A1B1 and
A2B2 trials; (2) A1B1 and A3B3 trials; (3) A2B2 and A3B3 trials;
and (4) A1B1, A2B2, andA3B3 trials. Aminimumof correct trials
achieved by the children allowed them to proceed to the next
stages, otherwise the stage was repeated (specific criteria for all
stages are depicted in Table 1).

Once AB, BC, and DC were mastered, reinforcement
probability was gradually lowered and thenMTS tests for derived
DB, BD, AD, BC, CB, and CD relations were presented in blocks
of trials which contained also the corresponding prerequisite
baseline relations; for example, since derived AD required the
establishment of AC and DC, the block of trials corresponding
with assessing AD contained AD tests mixed with AC and
DC baseline trials. Naming probes were performed at the end;
however, these were not considered for Simulation 1. During
training, MTS tasks included one sample and two or three
comparison stimuli; during tests all trials included one sample
and three comparisons.

Six out of eight children demonstrated equivalence relations
between class members by responding with high accuracy levels
in the test phase. Sidman and Tailby (1982) argued that the
conditional-discrimination procedure used to train stimulus
relations of the kind if A then B, generated equivalence relations.
Figure 4A is taken from Sidman and Tailby (1982) and shows the
percentage of correct responses for trained and tested relations
for participant A.D; the other six participants who formed
equivalence classes showed similar results.

To match the training of our model with the training from the
original study we designed input patterns that corresponded to
the nine trained relations (AB, AC, and AD for classes 1, 2, and
3). Each of these input patterns was presented in accordance with
the same sequence and number of repetitions as in the original
study. For example, to simulate the first stage of AB training, a
block of 20 trials was presented to the model with 10 A1B1 trials
mixed with 10 A2B2 trials. If the response unit activated by the
model corresponded with the correct comparison stimulus in at
least 19 trials, as was the criterion in the original study, then we
moved on the next stage with a block of 20 trials containing 10
A1B1 mixed with 10 A3B3 trials, and so on. Table 1 shows the
sequence and number of trials presented to the model.

We skipped the gradual lowering of reinforcement in the
simulation; this procedure is used with human participants to
maintain their performance during tests even when they do
not receive any feedback. In the model, there is no need to

motivate response unit activations in extinction conditions. The
model only captures the impact of reinforcement on associative
learning, but not on motivating performance.

To assess derived relations, we presented one block of trials
with the nine trained relations and the 18 tested relations without
reinforcement (Tested relations: DB, BD, AD, BC, CB, and CD for
classes 1, 2, and 3). Since there is only minimal weight adaptation
in the network during tests, there are no significant differences
for presenting one vs. many test blocks. In the original study the
authors used different sequences for presenting stimulus relations
across participants during tests. We simulated the sequence used
for Participant A.D. and the results of our simulation are directly
compared with the results from this participant.

Results
The model strengthened connection values corresponding with
trained and derived stimulus relations as depicted in Figure 4B.
The connection values, achieved by themodel, are comparedwith
the percent of correct responses shown by Participant A.D. In the
model, all stimulus relations show values above 0.85. The trained
relations (AB, AC, and AD) are stronger than the transitive
relations (BD, DB, AD, BC, and CB). There are slight increases
from AB to AC to DC in both the connection values of the model
and the percent of correct responses by Participant A.D. In the
model, these differences result from the simulated sequence (see
Table 1).

By replicating the results from the original study, our model
captures the establishment of 4-member stimulus classes. This
simulation shows the linkage between connection values in
our model and accuracy levels from human participants, thus
provides evidence in favor of our mechanistic approach to
equivalence class formation.

Simulation 3: Devany et al. (1986)
Devany and colleagues evaluated 12 children divided in three
groups: (1) typically developing children, (2) children with a
learning disability with some language skills, and (3) children
with a learning disability without language skills. The children
learned AB and AC relations from two classes, and then BC and
CB were assessed during tests (the nomenclature was changed
from the original study). Training and tests were conducted
with MTS trials with two response options. Stimuli were animal-
like figures. Reinforcement for correct responses included praise,
access to soap bubbles and balloons.

Training was divided into 7 stages. Stimulus relations were
gradually introduced in blocks of 10 trials per stage. After 9
out of 10 consecutive correct responses children moved on the
next stage. Then, children received blocks of mixed trials where
reinforcement probability was gradually lowered.

During tests the B1C1, C1B1, B2C2, and C2B2 relations were
assessed in a block of 40 trials. Reinforcement contingent with
equivalence responding was not used during tests. The stimulus
relations in each training stage and tests are depicted in Table 2.

One highlight result in this study was that children from
group 3 (learning disabilities without language skills) did not
show establishment of transitive relations. They also took longer
to complete the training phase. Meanwhile, the children from
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TABLE 1 | Sequence of training and testing phases used in Sidman and Tailby (1982) and in Simulation 2.

Sidman and Tailby, 1982 Simulation 2 Criterion

Training Training Correct/Total trials

1. Training of AB 1. Training of AB

A1B1, A2B2 A1B1, A2B2 19/20

A1B1, A3B3 A1B1, A3B3 19/20

A2B2, A3B3 A2B2, A3B3 19/20

A1B1, A2B2, A3B3 A1B1, A2B2, A3B3 29/30

2. Training of AC 2. Training of AC

A1C1, A2C2 A1C1, A2C2 19/20

A1C1, A3C3 A1C1, A3C3 19/20

A2C2, A3C3 A2C2, A3C3 19/20

A1C1, A2C2, A3C3 A1C1, A2C2, A3C3 29/30

3. Training of AB and AC 3. Training of AB and AC

A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3

A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3

29/30

4. Training of DC 4. Training of DC

D1C1, D2C2 D1C1, D2C2 19/20

D1C1, D3C3 D1C1, D3C3 19/20

D2C2, D3C3 D2C2, D3C3 19/20

D1C1, D2C2, D3C3 D1C1, D2C2, D3C3 29/30

5. Training of AB, AC, and DC 5. Training of AB, AC, and DC

A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3,

D1C1, D2C2, D3C3

A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3,

D1C1, D2C2, D3C3

44/45

6. Gradual lowering of reinforcement probability

Tests* Tests Total trials in Sidman and Tailby (1982)

1. DB mixed with baseline AB, AC, and DC One block of trials containing all baseline relations and DB, BD, AD,

BC, CB, and CD test relations

120

2. BD mixed with baseline AB, AC, and DC 120

3. AD mixed with baseline AC, and DC 90

4. BC mixed with baseline AB, and AC 60

5. CB mixed with baseline AB, and AC 60

6. CD mixed with baseline DC 60

7. Naming probes

The third column shows the criterion established to move on the training stages for both the original study and the simulation.
*The stages 1–7 of Phase 6 were presented in different sequences. Only Participants A.D. and D.W. received tests in the sequence from 1 to 7.

groups 1 and 2 acquired the trained relations in fewer training
blocks and responded correctly to transitive relations.

Our computational simulation aimed to account for the
performance of children in group 3. We assumed that the more
or less developed language abilities, as well as the capability
to learn equivalences, are both outcomes of a system with
particular constraints. Therefore, we aimed to elucidate a possible
mechanism in the context of Hebbian learning that accounted for
deficits in deriving stimulus relations.

Neurophysiological evidence from mouse models of
intellectual disability (e.g., models of Down syndrome and
Fragile X syndrome) has shown altered plasticity processes,

particularly increased levels of synaptic weakening (LTD) and
reduced levels of strengthening (LTP) (Rueda et al., 2012). It has
been suggested that an impaired balance between LTD and LTP
may result from an increased threshold to produce LTP, so that
neural mechanisms associated with LTP induction are in place
but require higher levels of activity to be triggered (Meredith
et al., 2007). A number of synaptic alterations that impact on
computing power have been also described for populations with
intellectual disability. The main alterations include reduction of
synapse density, inhibitory predominance, and abnormal growth
of dendritic spines (Dierssen et al., 2003; Ayberk Kurt et al., 2004;
Dierssen, 2012).

Frontiers in Psychology | www.frontiersin.org 8 October 2017 | Volume 8 | Article 1848

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Tovar and Westermann Neurocomputational Approach to Equivalence Classes

FIGURE 4 | (A) Is reproduced from Sidman and Tailby (1982) with permission from John Wiley & Sons, Inc. Each row of bars gives participant’s A.D. percentage of

correct responses on transitivity/equivalence, symmetry (sym.), and baseline trials. (B) Shows the final connection values/relatedness in the network for derived and

baseline relations.

TABLE 2 | Sequence of training and testing phases used in Devany et al. (1986) and in Simulation 3.

Devany et al., 1986 Simulation 3 Criterion

Training Training Correct/Total trials

A1B1 A1B1 9/10

A2B2 A2B2 9/10

A1B1, A2B2 A1B1, A2B2 9/10

A1C1 A1C1 9/10

A2C2 A2C2 9/10

A1C1, and A2C2 A1C1, A2C2 9/10

A1B1, A2B2, A1C1, A2C2 A1B1, A2B2, A1C1, A2C2 9 consecutive correct/10 in original

study

7/8 in Simulation 3 with each relation

appearing twice

A1B1, A2B2, A1C1, and A2C2 with gradual lowering of reinforcement

probability until ≈0.25

A1B1, A2B2, A1C1, and A2C2 without reinforcement Not specified in original study. 2/2 for

each relation in Simulation 3

Tests Tests –

One block with B1C1, C1B1, B2C2, C2B2 tests, each relation was

presented 10 times

One block with B1C1, C1B1, B2C2, C2B2 tests,

each relation was presented once

The third column shows the criterion established to move on the training stages for both the original study.

The evidence about an altered LTP/LTP balance motivated a
modification in our model to simulate participants in group 3
by increasing the coactivation threshold θ, which is functionally
analogous to the LTP threshold in that it restricts the connection
strengthening in the model to high coactivation values, and we
lowered the learning rate β, which captures more generally the
synaptic abnormalities that limit computing power. We ran the
model once with the regular parameters to simulate typically
developing children from group 1. In a second step, to simulate
children with learning disability from group 3, we increased
the coactivation threshold θ from 0.7 to 0.72; and lowered the
learning rate β from 0.2 to 0.1. Children from group 2 were not
considered in this simulation since they have a profile of learning
disability that seems less altered than the profile of children from
group 3.

For the simulation we presented input patterns corresponding
to the 4 trained relations with the same sequence and the same
number of trials used in the original study (see Table 2). During
tests, four input patterns representing the four tested relations

(i.e., B1C1, C1B1, B2C2, and C2B2) where presented to themodel
in a randomized sequence.

Results
The main result from Devany et al. (1986) was that typically
developing children from group 1 responded with high accuracy
to transitive relations approaching an errorless performance as
the test trials went on, while children from group 3 (learning
disabilities without language skills) performed near chance level
during tests. We calculated the mean accuracy during tests
from the graphics presented in the original paper for groups 1
and 3. Group 1 showed 85% of correct responses to transitive
relations, while group 3 performed near chance level with 42%
of correct responses to transitive relations. In Figure 5 we
show in bars the connection values achieved for trained and
derived relations when the conditions of typical development and
learning disability were simulated.

Both models show learning of the baseline relations AB
and AC, although the connection values are stronger in the
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FIGURE 5 | Connection values/relatedness achieved by the model for trained

and tested relations when typical development and learning disability (Learn.

Dis. No Lang.) groups are simulated.

simulation of typically developing children compared with
the learning disability simulation. The connection value for
transitive relations in the simulation of typical development
(0.85) approaches the mean accuracy of the typically developing
children in group 1 (85.6%). In contrast, in the learning
disability simulation, transitive weights failed to develop almost
completely. This accounts for the chance-level performance of
children from group 3.

The mechanistic explanation of failed transitivity in the
model is as follows: direct stimulation (training trials) generated
full activation of units and resulting coactivation was likely to
surpass the threshold to trigger weight strengthening. However,
connection weights did not develop as strong as in the
simulation of typical development, thus for transitive relations,
the coactivation values resulting from spreading activation were
less likely to surpass the elevated threshold and trigger positive
changes in the corresponding weights. This is, once AB and AC
were trained, the connections of A with both B and C allowed the
network to activate units A, B, and C for any given training trial,
but it was unable to strengthen the transitive connection between
B and C since they produced a coactivation value that fell below
the threshold.

Further Simulations and Model Prediction
Further simulations in our model of learning disability indicated
that establishing transitive relations was possible by using
an alternative training sequence. A possible cause for weak
connections of baseline relations is that the training of one
relation (AB) interferes with training of the second (AC). During
AC training the network not only strengthens the connection
between A and C but also weakens (decays) the connection
between A and B, due to the fact that AB coactivation is lower
than θ. Nonetheless, in this model, when AB is trained alone
(avoiding interference of AC) until its connection acquires a
value near 1 (i.e., 0.99 after 45 trials) and just then blocks of mixed
AB and AC trials are presented (30 trials), the presentation of an
AC trial generates activations of A, B, and C with values that now
surpass the threshold and the transitive BC relation appears in
the network.

These simulations can be taken as a prediction of our model
indicating that avoidance of interference during training should

benefit trained and derived equivalence relations in participants
with learning disabilities.

Simulation 4: Spencer and Chase (1996)
Different relatedness between the members of a stimulus class
may depend on nodal distance: as the number of nodal stimuli
increases the relatedness decreases. Decreased relatedness is
supposed to manifest in increased response times. In their study,
Spencer and Chase were particularly interested in measuring the
response speed during equivalence responding. Their purpose
was to characterize baseline and derived relations through
temporal analyses of responding.

In the original study there were three experimental groups.
The first group was verbally instructed about how stimuli were
related and the second was queried during testing about the
rationale of their responses. For this simulation we focus on the
third group called standard group, formed by college students
who were neither instructed nor queried about their responding.
Stimuli were 21 nonsense figures arranged in three 7-member
stimulus classes. Participants learned six sets of relations (AB,
BC, CD, DE, EF, and FG for classes 1, 2, and 3) via MTS
with three response options per trial. Training was divided into
seven stages with 48 trials per stage. Each set of relations was
learned during each of the first six stages; for example, the AB
set, composed of A1B1, A2B2, and A3B3 relations, was learned
during the first stage, and once completed, participants moved on
to the second stage. From the second to the sixth stage 24 trials
were used for new stimulus relations and 24 were designated for
maintenance of previously learned relations. Correct responses
were followed by verbal feedback and gaining of points; each
point was equivalent to $0.01. Incorrect responses resulted in the
darkening of the screen for one second and no gain of points. The
accuracy criterion to advance from one stage to the next was at
least 90% of correct trials with nomore than one error on any one
relation. During stage 7 all the learned relations were intermixed
in the 48-trial block and presented in extinction conditions. Five
consecutive blocks of stage 7 were required to be responded to
with at least 90% of correct trials to finish training. Table 3 shows
the stimulus relations and sequence used for the 7 training stages.

A total of 108 derived relations were evaluated: forty-five
transitive relations (e.g., A1C1), another 45 equivalence trials
called “combined trials” because symmetry and transitivity were
combined (e.g., C1A1) and 18 symmetry trials (i.e., B1A1). These
trials are listed in Table 4. Three stages of testing evaluated
a different proportion of test trials. The number and type of
trials evaluated during these stages are depicted in Table 3. No
reinforcement was presented during tests, however, at least 90%
of correct trials were required in each test stage to continue
and finish the experiment. Spencer and Chase (1996) found
a tendency to decreased response speed as nodal distance
increased, demonstrating nodal distance effects.

Training in the network was based on the number of trials,
sequence of stages and criteria from the original study. A total of
18 input patterns were designed to teach the six sets of relations
(AB, BC, CD, DE, EF, and FG) for the three classes. Stage 7
presented all the trials randomly mixed without reinforcement.
During tests the network was stimulated with a total of 126
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TABLE 4 | All the stimulus relations presented as baseline, symmetry, transitivity

or combined trials in Spencer and Chase (1996) and in Simulation 4.

Type of Trial Stimulus relations presented for classes 1, 2, and 3

Baseline AB, BC, CD, DE, EF, FG

Symmetry BA, CB, DC, ED, FE, GF

Transitivity AC, AD, AE, AF, AG, BD, BE, BF, BG, CE, CF, CG, DF, DG, EG

Combined CA, DA, EA, FA, GA, DB, EB, FB, GB, EC, FC, GC, FD, GD, GE

input patterns which corresponded to the total of possible
trials (Table 4); 18 baseline, 18 symmetry, 45 transitive and 45
combined trials.

Results
Figures 6A,B show results from the original paper, particularly
the response speed for baseline and derived relations with a
tendency toward decreasing speed as nodal distance increases.
Figure 6C shows the values of the connection weights of the
model for baseline and derived relations depending on the
number of nodes separating each stimulus relation. It can be
observed that relatedness appears as an inverse function of
nodal distance. As the number of nodes increases, the level of
association between stimuli in a class decreases. Figure 6D shows
themean connection values achieved by themodel for all baseline
and all derived relations.

Further Simulations Exploring Transitive Relatedness
Although the relatedness between baseline and one through five-
node transitivity relations reported by our model was in line
with the speed analyses reported by Spencer and Chase, we were
interested in testing if there were other influences, besides nodal
distance, that could explain the final relatedness between stimuli.
This question was in part motivated by the idea that nodal
distance can be confounded with exposure to a different number
of baseline trials (Imam, 2006).

The left side of Table 3 shows the number of trials scheduled
for each baseline relation when the original study of Spencer
and Chase was simulated. Since baseline relations were gradually
introduced and mixed with maintenance trials of previously
learned relations, there was a considerable difference in the
frequency of presentation for each trained relation. For example,
AB relations were presented more frequently than the rest of the
trained relations.

We ran a simulation in which we trained the model with
65 trials of each of the AB, BC, CD, DE, EF, and FG relations.
The relatedness for baseline and one through five node transitive
relations achieved by the model is presented in Table 5 and
values are compared with the relatedness obtained when the
training phase of Spencer and Chase was simulated. Differences
in relatedness still appear in accordance with nodal distance,
however, there is not a gradual decrease in relatedness; instead
one and two node relations achieved the same value of 0.77 which
is just below the relatedness value of baseline relations (0.78),
three node relations acquired a value of 0.68, and there is no
derived transitivity for four and five node relations.

Our model therefore shows that nodal distance may not be
the only source of differential relatedness for transitive relations
in a stimulus class, this also partially explains why there is
a non-continuous degradation of associative strength as nodal
distance increases, suggesting that relatedness also depend on
other variables such as different frequency of trained relations.

DISCUSSION

We have presented a neural network model that simulated
several core results from the SE literature, focusing on
exploring relatedness for trained and transitive relations. The
learning mechanism incorporated in our model, based on
Hebbian learning, extracted the statistics of co-occurring
events in the environment by means of adapting artificial
synaptic connections between coactive stimulus representations,
which accounted for relatedness of trained relations. Our
hypothesis is that the model accounts for how human
participants are sensitive to the environmental regularities
of stimulus correlations, which may have a strong influence
on how they learn, and organize information of stimulus
classes.

The Hebbian learning mechanism in our model is biologically
sound. The inclusion of parameters θ and λ, which modulate
the positive and negative changes of connection efficacy, were
motivated by neurophysiological descriptions of functionally
analogous processes, including LTP/LTD balance and
metaplasticity (Bliss et al., 2007; Meredith et al., 2007; Abraham,
2008). Notably, the way in which these parameters operate, in
combination with our instantiation of a reinforcement signal
through the learning rate β, is in accordance with traditional
approaches of reinforcement learning. For example, in the
Rescorla and Wagner model (Rescorla and Wagner, 1972) the
associative strength between two stimuli changes depending
on the difference between the prediction of co-occurrence and
the actual co-occurrence of stimuli. In our model, changes in
connection weights result from the co-occurrence of sample
and comparison stimuli after correct and incorrect responses.
Thus, for trained stimulus relations, the quantitative description
of associative strength provided by our model is similar
to that suggested by the Rescorla and Wagner model. Our
model, however, extends the scope and explanatory power
of reinforcement learning models by providing quantitative
descriptions of associative strength for derived (non-directly
experienced) stimulus relations.

Deriving the transitive AC relation after being trained on AB
and BC was explained through spreading activation triggering
the Hebbian learning mechanism: whenever B was presented,
activation flowed through non-zero connections and triggered
activation of the representations of A and C. Therefore, with A, B,
and C coactive as an outcome of a mixture of direct stimulation
and spreading activation, relatedness between A and C was
learned. Our model, then, presents a parsimonious approach to
equivalence since it accounts for trained and transitive relations
through the same principles. Moreover, it integrates the study
of equivalence classes with a wider approach of associative and
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FIGURE 6 | (A,B) Are taken from the standard group of participants in Spencer and Chase (1996) with permission from John Wiley & Sons, Inc. (A) Shows the mean

speed of correct responding on one through five node transitivity trials. (B) Shows the mean speed of correct responses on baseline, transitivity and combined

(symmetry plus transitivity, or equivalence tests) trials. (C) Shows the final mean connection values/relatedness in Simulation 4 for baseline and one through five node

transitivity relations. (D) Shows the final mean connection strength values/relatedness for baseline and for all transitive relations in Simulation 4.

TABLE 5 | Relatedness for baseline and one through five node transitive relations

reported by the neurocomputational model after simulating the training procedure

by Spencer and Chase (1996) and simulating training with equal numbers of trials

per trained relation.

Simulation of Spencer and Chase

(1996) procedure

Simulation with equal number of

trials per trained relation

Stimulus relation Relatedness Stimulus relation Relatedness

Baseline 0.83 Baseline 0.78

1-node 0.7 1-node 0.77

2-nodes 0.33 2-nodes 0.77

3-nodes 0.13 3-nodes 0.68

4-nodes 0.12 4-nodes 0

5-nodes 0.07 5-nodes 0

reinforcement learning. In support of this view, we showed
that transitive relatedness in our simulations is comparable with
accuracy and response speed in three published empirical studies,
covering processing in typical and atypical children, and nodal
distance effects.

Our model did not require the learning of previous abilities
or experience with other sets of stimuli to show learned and
derived relations, which are prerequisites in the naming and
RFT approaches to SE (Horne and Lowe, 1996; Hayes et al.,

2001). Sidman’s (1990) account considers equivalence as a
basic stimulus function not derivable from more fundamental
processes. At this point our model converges with Sidman’s
account in that equivalence is a basic process, and we propose
a mechanistic explanation for trained and derived transitive
equivalences based onHebbian learning principles and spreading
activation processes. Nonetheless, we cannot exclude that
experience and development of other symbolic behavior can have
an influence on equivalence formation.

The simulation of Sidman and Tailby (1982) covered the
performance of typically developing children showing final
connection weights that were in accordance with accuracy
performance of the children. The simulation of Devany et al.
(1986) showed that the model is also suitable to simulate
performance of children with atypical development. This was
done by adapting the neural coactivation threshold in accordance
with neurophysiological hypotheses of increased LTP thresholds
in models of learning disability (Meredith et al., 2007). When
disabilities were simulated themodel learned the trained relations
but could not derive transitive relations as the children from the
original study did. A prediction of the model, and a possibility for
intervention in children with learning disabilities, arose by using
a training procedure that was slightly different from the one of
Devany and colleagues. This showed that if stimulus relations are
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mastered avoiding interference, by means of exhaustive training
of one stimulus relation before its training is mixed with another
stimulus relation, then transitivity appears.

Simulation 4 replicated nodal distance effects after linear
series training when the procedure by Spencer and Chase (1996)
was simulated. The model showed that relatedness for transitive
relations depend on the number of nodes and number of trials
used for training.

Compared with previous computational models of
equivalence classes (Barnes and Hampson, 1993; Lew and
Zanutto, 2011; Tovar and Torres-Chávez, 2012), our approach
provides a quantitative description for trained and transitive
relations that can be directly compared with speed and accuracy
of participants in empirical studies. As a key contribution,
our model provided a tool to explore the effects of different
training procedures on learning and deriving stimulus relations.
One implication of this approach is that it allows further
testing by confirming our predictions for trained and derived
equivalence relations after specific training schedules. The
second implication is that with this model it will now be
possible to run simulations to test the influence of trial
repetitions, sequence of trained relations, training structures,
and other variations in order to find the best way to teach
equivalence relations and thereby propose training protocols to
be used with people, either typically developing or with learning
disabilities. This will make it easier for participants to expand a
number of behavioral skills related to using equivalence classes
with benefits in comprehension, reading, mathematics, and
general symbolic communication skills.

In our model stimulus relations are learned through a purely
bottom-up process based on the co-occurrence of stimuli in
the environment and the activation and modification of lateral
connections between stimulus representations, and we show
that these processes are sufficient to account for a range of
behaviors in the processing of equivalence classes. However, top-
down processes can also modulate class formation (Wisniewski
and Medin, 1994). For example, if a participant experiences
the stimuli AB together along with the label “not related,”
it is probable that she does not derive transitive equivalence

between A and other stimuli associated with B. Such “meta-
information” cannot be represented in the current model.
Our model also does not account for shifts in the functional
properties of stimulus relations, for example as a result of
changing the context, where for example, A1RB1 in context
one, but A1RB2 in context two. Likewise, in the model we
used localist representations in order to minimize perceptual
overlap between stimuli so that SE formation was solely based
on co-occurrence statistics and not on perceptual relatedness.
While this choice was based on the existing literature using
stimuli that are not perceptually similar, as a consequence it is
impossible in the model to integrate effects of perceptual overlap.
For this to become possible distributed representations would be
necessary.

In this model, we provided a biologically motivated
learning algorithm for the learning of equivalence classes.
Aiming for parsimony we kept the architecture of our
model simple (i.e., a single layer of fully interconnected
units). Future models should evaluate if a more complex
architecture that incorporates the learning principles presented
here could significantly extend the scope of this approach.
Our model, so far provides a mechanistic account of the
learning and derivation of SE relations, for both typical and
atypical populations with potential implications for studies on
categorization, organization of semantic memory, and concept
formation.
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