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The Experience Sampling Method is a common approach in psychological research for

collecting intensive longitudinal data with high ecological validity. One characteristic of

ESM data is that it is often unequally spaced, because the measurement intervals within

a day are deliberately varied, andmeasurement continues over several days. This poses a

problem for discrete-time (DT) modeling approaches, which are based on the assumption

that all measurements are equally spaced. Nevertheless, DT approaches such as (vector)

autoregressive modeling are often used to analyze ESM data, for instance in the context

of affective dynamics research. There are equivalent continuous-time (CT) models, but

they are more difficult to implement. In this paper we take a pragmatic approach

and evaluate the practical relevance of the violated model assumption in DT AR(1)

and VAR(1) models, for the N = 1 case. We use simulated data under an ESM

measurement design to investigate the bias in the parameters of interest under four

different model implementations, ranging from the true CT model that accounts for all

the exact measurement times, to the crudest possible DT model implementation, where

even the nighttime is treated as a regular interval. An analysis of empirical affect data

illustrates how the differences between DT and CT modeling can play out in practice. We

find that the size and the direction of the bias in DT (V)AR models for unequally spaced

ESM data depend quite strongly on the true parameter in addition to data characteristics.

Our recommendation is to use CT modeling whenever possible, especially now that new

software implementations have become available.

Keywords: experience sampling method, autoregressive modeling, continuous-time, discrete-time, unequal

spacing, intensive longitudinal data, time series analysis

1. INTRODUCTION

Intensive longitudinal research is a popular way of investigating intra-individual processes in
psychology, such as the dynamics of emotion, behavior and thought processes from moment to
moment. One established approach of investigating such processes is the experience sampling
method (ESM; Hektner et al., 2007), in which aspects of people’s experiences are measured as they
go about their normal lives, using, for instance, smartphone mobile apps. This method results in
high ecological validity and can be used to study fluctuations that occur over short time periods,
rather than only slow or long term developments. The current study focuses on an unresolved
question concerning optimal analysis approaches for the type of intensive data resulting from such
research, which is critical to address given the importance of this research methodology.
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A search for recent journal articles in which the ESM is
employed illustrates the method’s popularity and versatility,
yielding studies into widely varying topics such as the social
experiences of children with Asperger syndrome (Cordier
et al., 2016); tourists’ experiences (Quinlan Cutler et al., 2016);
involuntary musical imagery (Floridou and Müllensiefen, 2015);
affect regulation (Catterson et al., 2016); body satisfaction and
self-esteem in adolescents (Fuller-Tyszkiewicz et al., 2015); and
chronic fatigue symptom fluctuations (Band et al., 2015). The
ESM has been most frequently applied, however, in the field
of emotion dynamics, mood and psychopathology (e.g., Larson
et al., 1980; Ebner-Priemer and Sawitzki, 2007; Brans et al., 2013;
for a review of ESM studies in the context of mood disorders, see
Ebner-Priemer and Trull, 2009).

By using the ESM, researchers can study lagged relationships
between different variables, or the correlation of a variable
with itself over time, addressing questions about processes,
development or dynamics. An important issue, which to our
knowledge has not yet been addressed, is the question whether
it is justifiable to use discrete-time (DT) modeling approaches
for unequally spaced ESM data. In the broader literature
on longitudinal data analysis, it has been pointed out that
continuous-time (CT) modeling, which explicitly accounts for
the timing of measurements, has several important advantages
over DT modeling, both for theoretical and practical reasons
(see, e.g., Oud and Delsing, 2010; Voelkle et al., 2012; Deboeck
and Preacher, 2016). A specific limitation of DT models, which
is particularly relevant for ESM research, is these models’
inbuilt assumption that the time intervals between consecutive
measurements are all equal. In ESM studies, the intervals are
typically varied, with the result that the data clearly violate this
assumption. CT modeling does not involve this assumption and
can make full use of the information contained not only in
the observations themselves, but also in the exact timing of the
measurements. Still, DT models continue to be widely used even
in these situations.

In the current study, we evaluate the practical relevance of the
choice between DT and CT modeling in the specific context of
(vector) autoregressive modeling of unequally spaced ESM data.
We focus on the N = 1 case where a model is fit to one person’s
data, using simulations as well as an empirical illustration to
address the question of whether substantial bias in the parameters
of interest may result from using DT (vector) autoregressive
models. This is an important question because autoregressive
(AR) models and extensions such as the vector autoregressive
(VAR) model are frequently used in ESM research in areas such
as affect dynamics (e.g., Suls et al., 1998; Koval and Kuppens,
2012; de Haan-Rietdijk et al., 2016; Van Roekel et al., 2016) and
the emerging network approach to psychopathology (Borsboom
and Cramer, 2013; Bringmann et al., 2013; Wichers, 2014). Thus,
questions about the validity of DT model results for unequally
spaced data bear directly on findings reported in these fields and
on recommendations for follow-up studies, in addition to general
questions about optimal design and data analysis for these types
of studies. We approach the comparison of different methods
from a pragmatic point of view. Our goal is not only to identify
the best method for analyzing unequally spaced ESM data, but

also to evaluate the robustness of common approaches under
conditions that are typical for current practice.

This paper is organized as follows. We start by providing
the reader with essential background information through a
brief introduction of the ESM as well as the AR / VAR
modeling approach, highlighting the problem that can occur
when unequally spaced ESM data are analyzed with such
models. Then we discuss CT alternatives to these models which
would solve this problem, looking also at other considerations
regarding the choice between CT and DT modeling for ESM
data. After that, we use simulations to investigate the bias that
may result when data from a typical ESM design with unequal
measurement intervals are analyzed using AR(1) or VAR(1)
model implementations. To address the practical significance
of this issue, we present an empirical illustration using positive
affect ESM data from three adolescents. We conclude with a
discussion of the findings and limitations of the current study and
recommendations for researchers interested in using the ESM.

2. BACKGROUND: ESM DATA AND (V)AR
MODELING

In this section we briefly introduce the ESM, and we discuss the
discrete-time AR / VAR models which have been used to study
lagged relationships in such data, as well as a limitation of these
models that is relevant for unequally spaced ESM data.

2.1. The Experience Sampling Method
The ESM (Hektner et al., 2007) is a type of ambulatory assessment
(Trull and Ebner-Priemer, 2013) that aims to tap into the
day to day experiences of people as they go about their lives.
Rather than relying on retrospective reporting, which can be
subject to various types of cognitive bias (Schwarz and Sudman,
2012), the ESM involves prompting participants throughout the
day to report on their experiences right then and there. An
advantage of this methodology is that it yields data with high
ecological validity, because the measurements are taken in real-
life situations. The ESM is a popular approach in the study of
affect, because it can be used to gain a more in-depth or fine-
grained understanding of affect dynamics at the individual level.
Examples of studies that employed the ESM to investigate affect
include Suls et al. (1998) and Koval and Kuppens (2012); an
overview of research approaches to affect dynamics is given by
Hamaker et al. (2015).

An important aspect of an ESM study design, and what
interests us most here, is the signaling or measurement schedule,
that determines when and how often measurements are taken.
Hektner et al. (2007) distinguished between three general classes
of measurement schedules in ESM studies: Event-contingent
sampling, interval-contingent sampling, and signal-contingent
sampling (also sometimes called random time-based sampling;
Bolger et al., 2003). The choice for one or the other measurement
schedule in a particular study is theory-driven and can have
important implications for the validity of the findings. In
this paper, we focus on the data analytic implications of
choosing a signal-contingent sampling schedule. This appears
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to be the most widely used of the three, and as a result, this
type of measurement schedule has come to be seen by many
researchers as a characteristic feature of ESM research. In this
approach, measurements occur after random beeps that are
delivered by a signaling device; usually the same device that is
used for recording the self-reports. An important advantage is
that predictability of the measurements is avoided, increasing
ecological validity. The person’s waking hours are divided into
blocks of time, usually around 90 to 120 min, and then the exact
beep time within each block is determined by a random sampling
procedure. Typically, the beep time within a block is sampled
from a uniform distribution, so that in principle, the beep is
equally likely to occur at any moment. However, researchers
can impose restrictions, for instance, prohibiting beep intervals
shorter than 20 min.

It is important to see how the intervals betweenmeasurements
in a signal-contingent sampling scheme will vary. If the
probability distribution for the beep time within each block is
uniform, this implies that the time difference or interval between
two measurements follows a triangular probability distribution
with a lower bound of a = 0, an upper bound b of two times
the length of a block, and a mode c equal to the length of one
block. For instance, suppose that each block is lb = 90 min long,
and that we start counting at 0; suppose, further, that we ignore
any practical limitations on infinitely short intervals. Then the
first beep can occur anywhere between 0 and 90 min with equal
probability, and the second beep can occur anywhere between 90
and 180 min with equal probability. The triangular distribution
for the interval between two consecutive beeps in this example
is depicted in Figure 1. Its mean or expected value is defined as
(a+b+c)

3 , which gives us
(0+2lb+lb)

3 = lb or 90 min. The variance

of a triangular distribution is given by a2+b2+c2−ab−ac−bc
18 , which

can be simplified in our case to
3l2
b

18 , yielding 1,350 min. This
distribution is symmetrical and its mode is equal to the mean, but
this only applies when even the shortest intervals are possible and
allowed. If short intervals are excluded, the distribution becomes
truncated and asymmetrical; the mean will be larger than the
mode; and the variance will be reduced.

2.2. VAR(1) Models for ESM Data
Data obtained using the ESM can be analyzed in various
ways (for instance, the time series data can be aggregated to
obtain statistics at the person level), but here we focus on
(vector) autoregressive (AR or VAR) modeling, because this
is commonly used in research areas like emotion dynamics
and psychopathology. In some applications in the literature,
researchers usedmultilevel models, in which the fixed parameters
represent population averages and the random effects account
for individual differences (e.g., Kuppens et al., 2010; Bringmann
et al., 2013). In the current article, we focus on theN = 1 case for
simplicity.

The VAR model—of which the AR model is a special case
for univariate data—is used to model the dependency between
consecutive observations in a (multivariate) time series (cf.
Hamilton, 1994; Box-Steffensmeier et al., 2014). For instance,
participants in an ESM study may have rated the intensity of

FIGURE 1 | Distribution of the time intervals between consecutive

measurements in an ESM study when beeps are uniformly randomly

distributed within blocks (here, a block equals 90 min). In practice, it may be

desirable to impose a minimum time interval, effectively truncating the

distribution.

their affect at each measurement, or they may have reported on
multiple specific emotions, behaviors, or thought processes. The
term “spill-over” is used to reflect the extent to which the current
state (e.g., a person’s current emotion) influences the state at a
later time. We can estimate the spill-over within a single variable,
and in the multivariate case also the spill-over between variables,
which is captured in cross-lagged coefficients. The first-order
VAR model, denoted as a VAR(1) model (Hamilton, 1994), is
given by

yi = c+ 8yi−1 + ǫi, (1)

where yi is the vector of K outcome variables observed at
measurement i, and8 is aK×K matrix of regression coefficients.
The 1 in the name of the model refers to the assumption that
there is no correlation between yi and any of yi−2, yi−3, yi−4, . . .
after conditioning on yi−1. The diagonal elements of 8, denoted
as φ11, φ22, . . .φKK , are the autoregressive parameters, and the
off-diagonal elements represent the cross-lagged effects between
variables, such that φ12 is the regression coefficient for predicting
y1i from y2(i−1). The vectors c and ǫi are the intercepts and the
innovations for observation i, respectively, and the innovations
are assumed to follow a multivariate normal distribution with
a zero mean vector and covariance matrix 6ǫ . This covariance
matrix is related to the stationary covariancematrix of the process
(6y) by

6ǫ = 6y − 86y8
′, (2)

where 8
′ is the matrix transpose of 8.
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In the special case of a univariate process, the VAR(1) model
reduces to what is known as the AR(1) model. For a VAR(1)
process to be stationary, there are restrictions on the parameter
8 (Hamilton, 1994), which in the univariate case (that is, in the
AR(1) model) simply amount to −1 < φ < +1. The stationary
mean of an AR(1) process isµy =

c
1−φ

, from which it can be seen

that if the intercept (c) is zero, so is the mean.
The parameter φ in the AR(1) model has been referred to

as emotional inertia in affect research applications (Suls et al.,
1998), because a higher value of φ indicates greater predictability
in affect, or put differently, more spill-over of affect from one
moment to the next. As a descriptive measure of a person’s affect
dynamics in daily life, inertia appears to be related to personality
traits and psychological well-being (cf. Hamaker et al., 2015;
Houben et al., 2015). In a different vein, VAR modeling of
ESM data plays an important role in the recently developed
network approach to psychopathology (Borsboom and Cramer,
2013; Bringmann et al., 2013), where the estimated regression
coefficients for different symptoms can be used to construct a
dynamic network that provides insight into a person’s proneness
to, for instance, clinical depression, and the progression of
symptoms over time. Two other, recent examples of VAR model
applications using ESM data are the empirical illustrations in
the methodological studies by Schuurman et al. (2016b) and
Schuurman et al. (2016a).

2.3. ESM Data Typically Violate a VAR
Model Assumption
The VARmodel is a discrete-time (DT) model, because it assumes
that time proceeds in equal discrete steps between each pair of
observations. We can see in Equation (1) that one unit of time is
assumed to have passed between each two observations, because
y at measurement i is always predicted from y at measurement
i− 1 without specifying the amount of time that passed between
the measurements. This is quite a restrictive assumption, and it
is typically violated in ESM data, even if there are no missing
observations.

In most studies using the ESM, measurements are taken over
a period of multiple days, resulting in several short time series
separated by stretches of nighttime. To analyze such data as if
they constituted a single long time series with equal intervals
would be inappropriate, as it would ignore that the time interval
between themorning’s first measurement and the previous night’s
last measurement is much longer than the time intervals between
measurements on the same day (in addition to possible interval
length variation within a day). Thus, in the specification of an AR
or VARmodel for such ESM data, at the very least we would want
to prevent the first measurement of 1 day from being regressed
on the last measurement of the previous day. To achieve this,
we could set the values of the predictor yi−1 to missing values
for those outcomes yi which are the first measurements of
a day.

A trickier problem for AR and VAR modeling is the within-
day timing of measurements in signal-contingent sampling
schemes, where measurements are taken at irregular times. Even
if the day in such a sampling schedule has been divided up into

blocks of equal length, the exact timing of each beep is varied
randomly so that the interval lengths will vary. Obviously, then,
the resulting data will violate the assumption of equal spacing
inherent in AR, VAR and other DT models. It remains to be seen
how robust the parameter estimates of interest might be to the
violation of this assumption. Since many studies in the literature
have relied on DTmodeling of unequally spaced ESM data, this is
an important question. If the violation of this assumption causes
serious bias in the parameters of interest, not only would we have
to conclude that DT models are unsuitable for unequally spaced
ESM data and that continuous-time (CT) models should be used
instead, but this would also cast doubt on previous findings.

Since the distribution of the time intervals obtained by
random beeps within blocks is (nearly) symmetric, at first glance
we may think that there should only be a problem with noise,
and not with bias, as it may appear that shorter and longer time
intervals will “cancel out” in estimating the 8 which applies
to the interval length of one block. However, as illustrated in
Figure 2, the relationship between the interval length and the
true autoregressive coefficient(s) is non-linear, so that shorter and
longer time intervals are not associated with symmetric increases
and decreases in the true autocorrelations. This becomes clear
if we iteratively fill in the predicted (determined) part of
Equation (1), to make explicit the assumed relationship between
observations that do not directly follow each other in the
measurement sequence. Under the AR(1) model,

yi = c+ φyi−1 + ǫi,

and

yi−1 = c+ φyi−2 + ǫi−1.

Therefore, it follows implicitly that

yi = c+ φ(c+ φyi−2 + ǫi−1)+ ǫi

= (c+ φc)+ φ2yi−2 + (φǫi−1 + ǫi),

where the last part (between parentheses) represent the
accumulation of unexplained (innovation) residuals, and where
we can see that the expected correlation between yi and yi−2 is
φ2. Thus, estimating a lagged relationship between consecutive
observations, as we do in AR modeling, always implies a non-
linearly decaying relationship between observations at longer
lags. For any two measurements separated by 1 times the
measurement interval, the predicted correlation between yi and
yi−1 is φ1, and this also holds in the hypothetical case of
observations separated by decimal lags. Therefore, if the true
model underlying our data is an ARmodel, and the measurement
intervals are irregular, we should expect that the true correlation
between some consecutive measurements is much higher than
that between others, and that they are not equally close to the
true correlation for the average time interval.

Consider the plotted line for a “low” autocorrelation, by which
we mean a true φ coefficient of 0.1 at an interval length of
one block, or 90 min. If the data we are using to estimate this
parameter has some intervals of 45 min (0.5 block) and some
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FIGURE 2 | The relationship of the autocorrelation to the (proportionate)

interval length 1, given by φ raised to the power of 1, is illustrated here for

cases where the autocorrelation for a one-block interval is 0.1, 0.4, or 0.7,

labeled as low, medium, and high φ parameters, respectively. The interval

length is expressed as a ratio of the block length chosen in the study design,

such that an interval of 0.5 is half a block and 2.0 is two blocks; and the

depicted relationship holds regardless of what amount of time (e.g., 60 or 120

min) is considered to be “one block.” When the autocorrelation for a one-block

interval is low to medium, shorter and longer time intervals in an empirical data

set cannot be expected to cancel each other out exactly in the estimation of φ.

of 135 min (1.5 block), the true autocorrelation for the shorter
interval will be 0.10.5 = 0.32, whereas for the longer interval
it will be 0.11.5 = 0.03. Thus, while the average of these two
interval lengths is one block, the average of the autocorrelation
coefficients associated with them is 0.18 instead of the 0.10
which we know is the autocorrelation φ for a one-block interval.
This illustrates that when the autocorrelation φ for a one-block
interval is low, shorter intervals in the data set can be expected
to exert more influence on the estimation than longer intervals,
positively biasing the estimate of φ. In contrast, as Figure 2

shows, when the true autocorrelation for a one-block interval is
0.4 or higher, the relationship between the autocorrelation and
the time interval is much more linear within the range of interval
lengths obtained in a sampling scheme with random beeps within
fixed blocks. Therefore, if the true autocorrelation for a one-block
interval is expected to be this high, there is little reason to worry
about bias in this particular study design.

In the literature, there are many studies involving DT
modeling of unequally spaced data where this shortcoming is not
addressed. Examples of ways that some researchers did address
the issue are adding the length of the time interval as a predictor
(e.g., Moberly and Watkins, 2008) or as a moderator (Selig
et al., 2012), but this cannot correct for the potential bias in 8,
because it does not change the fact that 8 is estimated under the
false assumption that all the measurements are equally spaced.

Another strategy that is useful in some cases is the phantom
variable approach, which treats the unequal intervals as a missing
data problem (cf. Oud and Voelkle, 2014). However, in ESM
research this may not be feasible, since one would need many
“missing” observations in between each pair of measurements to
account for all the (subtly) different interval lengths that occur
in this kind of study design. While it seems feasible to use this
approach to at least reduce the random variation in interval
lengths, and thus to reduce the potential bias, a more elegant way
to handle unequally spaced data is to use CT modeling, which
explicitly accounts for the exact time intervals.

3. THE CONTINUOUS-TIME (CT)
ALTERNATIVE

Where DT models assume equally spaced data, CT models are
more flexible and therefore, more appropriate for unequally
spaced ESM data. In a CT model, the actual time intervals are
used in the model equations. In this section we present the CT
analog to the VAR(1) model, denoted as the CVAR(1) model,
and we briefly discuss other considerations from the literature
surrounding the choice between DT and CT models.

3.1. The CVAR(1) Model
The VAR(1) model (and its univariate special case, the AR(1)
model) that we presented in section 1 has a CT analog, where
a stochastic differential equation is used to model the continuous
change (both explained and unexplained) in the process. Using
the more general notation for a multivariate case (i.e., for a
CVAR(1) model), this equation has the form

dy(t)

dt
= a+ By(t)+ G

dW(t)

dt
, (3)

where a is an intercept vector, B is the drift matrix, G

is the Cholesky triangle of the innovation covariance (also
called diffusion) matrix, and W(t) is the continuous-time error
(Wiener) process (also called Brownian motion). If we assume
that the process has a mean of zero (or is analyzed in deviation
form, i.e., after mean-centering) we can drop the intercept vector
a to simplify Equation (3). For more details on the differential
equation and the steps involved in solving it, we refer the reader
to Oud and Delsing (2010), Voelkle et al. (2012), and Oravecz
et al. (2009). Here we focus on its solution, which gives us the
CVAR(1) model, or the CAR(1) model in the univariate case.
Note that the CAR(1) model is also known as the Ornstein-
Uhlenbeck process or model (cf. Oravecz et al., 2009).

The CVAR(1) model, which is the solution to Equation (3),
effectively predicts the i-th observation, which is taken at time t
and is denoted by yti , from the previous observation (denoted
by yti−1

) and the time interval 1i = ti − ti−1 between the
two observations. Assuming (for ease of presentation) that all
variables are in deviation form, so that the intercepts are all zero,
we can write the CVAR(1) model equation as

yti = eB1iyti−1
+ ǫ1i , (4)
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where B is the drift matrix and is multiplied by the interval length
1i, and ǫ1i is the vector of innovations, with

ǫ1i ∼ N (0,6ǫ1i
). (5)

The innovation covariance matrix 6ǫ1i
for an interval of length

1i is derived by

6ǫ1i
= 6y − (eB1i6ye

B′1i ). (6)

In these Equations, eB1i and eB
′1i are matrix exponentials, and

it can be seen that the covariance matrix for the innovations
reduces asymptotically to the stationary covariance matrix 6y

as the prediction interval 1i increases (since e
B1i then reduces

to zero). In the case of a univariate process, B is a single value
and the matrix exponentials reduce to ordinary exponentials.
Conceptually we can see the DT VAR(1) model as a special case
of the CVAR(1) model, where time is not explicitly included in
the model, but is assumed to only increase in equal, discrete
steps, by fixing 1i in the CVAR(1) model to 1 for all i1. Note
that CVAR(1) model parameters can always be transformed
into corresponding VAR(1) parameters for any given interval;
the DT autoregressive parameter for a time interval of 1

units on the CT model’s time scale is given by φ = eB1.
In contrast, VAR(1) parameter estimates can only validly be
transformed into corresponding CVAR(1) parameters when the
data set, to which the VAR(1) model was fitted, was truly equally
spaced.

3.2. Considerations in Choosing between
DT and CT Modeling
Wenow discuss four points of consideration when it comes to the
choice between DT and CT models. The first three point to CT
modeling as the preferred approach, but the fourth is pragmatic
and may (in part) explain the predominance of DT models even
for ESM data.

First, an advantage of CT modeling, especially if it becomes
widely known and used, is that it allows researchers flexibility
in choosing their data collection schemes. Bolger et al. (2003)
warned against the danger of making study design choices solely
on the basis of data analytic concerns, and this can be applied
to situations where DT modeling would call for the collection
of equally spaced data. The ecological validity of ESM data is
improved by using unpredictable measurements (Hektner et al.,
2007), and in some cases unequally spaced measurements are
(also) more efficient in terms of gathering information about the
underlying process (Voelkle and Oud, 2013).

Second, it has been argued that CT modeling fits more
naturally with our theories and hypotheses about how processes
are continually evolving, and that the discrete time intervals
which become the focus in DT modeling are an artifact of

1An additional difference between the DT and CT models is that the DT AR(1)

/ VAR(1) models allow for negative autocorrelations, resulting in a process that

tends to oscillate around its mean after each discrete unit of time; such a process

cannot be obtained from a CAR(1) / CVAR(1) model. There are, however, other

CT models that can represent various sorts of oscillating processes which have no

corresponding DT model representation.

measurement rather than a thereotically meaningful construct
(Oud, 2002; Oud and Delsing, 2010). Any ESM researcher who
takes measurements at irregular intervals has assumed from the
outset that the process continues to exist and evolve in between
the measurements, so a CT model is a natural choice.

A third consideration in favor of CT modeling is that DT
model parameters cannot easily be generalized or compared
between studies that use different (average) time lags between
measurements, which poses a serious problem for meta-analysis
and for theory formation more generally (Oud, 2002; Voelkle
et al., 2012; Deboeck and Preacher, 2016). As Deboeck and
Preacher show, even the interpretation of parameters within a
single DT VAR model easily leads to confusion. In contrast,
CT model parameters can always be compared or transformed
into corresponding DT parameters for any given time interval of
interest.

The fourth point of comparison between DT and CT models
is pragmatic: while AR and VAR models (including multilevel
extensions) can be implemented in many major statistical
software packages, this is not the case for their CT analogs. Recent
advances have been made, though, with the publication of the R
package ctsem for CT structural equation modeling (Driver et al.,
2017), which can be used to fit the CAR(1) and CVAR(1) models
as well as many other and more complicated models for time
series and panel data.

4. A SIMULATION STUDY TO ASSESS BIAS
IN VAR(1) MODELING OF ESM DATA

Given that VAR(1) models are frequently used for studying
lagged relationships in unequally spaced ESM data, it is
important to determine whether any bias that may result is
substantial enough to lead to problems in practice, or whether (in
some situations) results and substantive conclusions are robust
against the violation of the assumption of equal spacing. In
this section, we present a simulation study that addressed this
question specifically for the context of N = 1 AR(1) and VAR(1)
modeling of ESM data. Note that, for the sake of brevity, in this
section we will use the abbreviations VAR(1) and CVAR(1) when
we are referring to both the multivariate and univariate [i.e., the
AR(1) and CAR(1)] models.

We compared the performance, in terms of accurate
estimation of8, of VAR(1) and CVAR(1) models, under different
specifications. We simulated data under the CVAR(1) model,
examining both a univariate and a bivariate case, and assuming
that tenmeasurements are taken per day for either 10 days (giving
us a short time series) or 1,000 days (giving us a very long
time series). The data were generated using a signal-contingent
sampling scheme where the waking hours (15 h) of each day
are divided into 10 back-to-back 90-min blocks during which
a beep can randomly occur. In a first round of simulations
it was assumed that any interval length, including very small
intervals > 0, could occur (although very short intervals have
a low probability); in a second round of simulations, we put
a restriction on the intervals such that they must be at least
15 min long, which is more realistic. By comparing the results,
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TABLE 1 | Illustration of the difference between the true time intervals, which are

used in the CT model (MI4 1i ) and are given in the right-most column, and the

assumed time intervals in the other model implementations (MI 1 to MI 3, in worst

to best order).

Block Beep ti MI 1 1i MI 2 1i MI 3 1i MI 4 1i

Day 1, 1 0.069 - - - -

Day 1, 2 1.818 1 1 1.67 1.75

Day 1, 3 2.943 1 1 1.17 1.12

Day 1, 4 3.269 1 1 0.33 0.33

Day 1, 5 4.169 1 1 1.00 0.90

Day 1, 6 5.034 1 1 0.83 0.86

Day 1, 7 6.179 1 1 1.17 1.14

Day 1, 8 7.642 1 1 1.33 1.46

Day 1, 9 8.023 1 1 0.50 0.38

Day 1, 10 9.008 1 1 1.00 0.99

Day 2, 1 16.393 1 7 7.33 7.38

Day 2, 2 17.814 1 1 1.33 1.42

Day 2, 3 18.376 1 1 0.67 0.56

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Note that the blocks are 90 min each, and the beep time is expressed in blocks, so that a

time ti of 9 corresponds to 13.5 h after the start of the study, and a ∆i of 0.5 to a 45-min

interval. The average interval between evening and morning measurements is 7 blocks,

corresponding to 10.5 h.

we could get an impression of the bias that may occur in the
theoretical “worst case” scenario as well as in a more realistic
research scenario. We expected that prohibiting the shortest
possible intervals attenuates the bias caused by ignoring the
unequal spacing, since the shortest intervals are associated with
the largest true autocorrelation, as was illustrated in Figure 2.

4.1. Data Generation
The simulated data were generated using R (R Core Team,
2016) and the R packages MASS (Venables and Ripley, 2002),
matrixcalc (Novomestky, 2012), and expm (Goulet et al., 2015).
The general procedure was as follows: First we generated the
exact beep times according to a signal-contingent sampling
scheme for the specified number of days, measurements per day,
and block length. Time was scaled in such a way that a 1 value
of 1 corresponded to a block of 90 min, and the minimum
interval length was either 1i > 0 or 1i > 1

6 , with the
latter restriction corresponding to a minimum interval of 15 min
between measurements, used in the second round of simulations.
In all simulations we assumed that there are ten measurements
per day, and that the process continues unobserved throughout
the night; each day’s first observation was only (very) weakly
correlated to the previous day’s last observation. The exact
time intervals 1i for all pairs of consecutive measurements
yti , yti−1

were calculated by subtracting their exact times ti
and ti−1.

The first observation was randomly drawn from the stationary
distribution, that is, from a (multivariate) normal distribution
with a zero mean (vector) and (co)variance (matrix) 6y. The
means of the time series were always fixed at 0, and the variances

at 1, giving us standardized variables. For each consecutive
observation starting at i = 2, we used the obtained values
of 1i and yti−1

together with the specified B to derive the
predicted value(s) of yti according to Equation (4) (which holds
for mean-centered variables). To obtain the actual yti , we added
to this prediction the random innovation term(s) ǫ1i , which were
distributed as in Equation (5), with6ǫ1i

derived from1i and the
parameters B and 6y, using Equation (6).

4.1.1. Univariate
In the univariate simulations, we used nine different values for
the autoregressive parameter φ for an interval length of 1 = 1,
ranging from 0.1 to 0.9 in increments of 0.1. Although the largest
of these φ values are less likely in practice, using both small and
large values provided us with a complete picture that enabled us
to see how the bias depends on the true autocorrelation. Note
that, due to the differing scales of φ and B, a true φ of exactly 0
would correspond to an infinitely negative B, whereas a φ close
to its upper bound of 1 would correspond to a B close to its
upper bound of 0. The values 0.1 to 0.9 for φ thus corresponded
to values −2.30 to −0.11 for B in the CAR(1) model. For each
condition we simulated one very long time series with 1,000
days (giving us 10,000 observations) to study the asymptotic
performance of the models. In addition, we generated 1,000
shorter time series with 10 days each (giving us 100 observations
per time series), to investigate the (variability in) performance for
a more realistic sample size.

4.1.2. Bivariate
To ensure that 8 and 6 in the bivariate simulation had realistic
magnitudes for ESM research, we based our choice for these
parameters on the fixed-effects estimates reported in Schuurman
et al. (2016b), who estimated a multilevel bivariate VAR(1)
model for empirical data on Positive Affect and Worrying.
We generated standardized variables by first transforming the
reported parameter estimates from their study, setting the mean
to zero for both variables, and obtaining

6y =

[

1 −0.5155
−0.5155 1

]

for the covariance matrix. The standardized matrix 8 (for 1 = 1)
was

8 =

[

0.3540 −0.0482
−0.0679 0.2770

]

,

which corresponds (approximately) to the drift matrix

B =

[

−1.0541 −0.1554
−0.2188 −1.3021

]

.

Using these CVAR(1) parameters, we simulated one very long
time series (with 1,000 days) and 1,000 shorter ones (with 10 days
each), just as we did in the univariate simulation.

4.2. Analysis
All analyses were implemented using the ctsem package in R
(Driver et al., 2017), because it provides us with a straightforward
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way of implementing not only the C(V)AR(1) model, but also DT
models like the AR(1) and VAR(1) model. Empirical researchers
applying an AR(1) or VAR(1) model have many options for the
implementation, but in our simulations we wanted to use the
same software for all four model specifications. This ensures
the comparability of the results across the models, both in
terms of parameterization and estimation procedures. Since
an analysis in ctsem involves specifying the time intervals in
the data, we can choose to specify the time intervals in such
a way that, for practical purposes, a DT model is obtained
(by setting all intervals to the same value). We can also
specify the time intervals in such a way that a “compromise”
between a DT and CT model is obtained, as will be discussed
in more detail below. This allows us to implement models
that resemble two common data adjustment strategies in
DT modeling of ESM data: removing the nighttime interval
from the model, and inserting missing values in the data
to reduce the differences in interval lengths. Any differences
in performance between our model implementations can be
attributed to how they account for the time intervals, as there
are no confounding factors like differing estimation algorithms
or parameter restrictions.

Each of the simulated data sets was analyzed with four
different model specifications, which are illustrated in Table 1;
the first three are different DT model implementations, and
the fourth is a true CT model. Model implementation (MI)
1 represents the standard VAR(1) model approach, where all
information about the interval lengths is ignored, and the
data are analyzed as if all time intervals are exactly equal,
including the nighttime interval. Of course, this is a crude
modeling approach which we would not recommend to any
researcher. MI 2 is better in that it takes the longer nighttime
interval into account, but it still relies on assuming that all the
measurements within days are equally spaced. This approach
is quite similar to a common analysis approach for ESM data,
where researchers fit VAR(1) models after setting the lagged
predictor to a missing value for those cases where the first
measurement of a day is predicted; that way, they prevent a
day’s first measurement from being regressed on the previous
day’s last one. Our third MI goes one step further, by using
an approximation of the true interval lengths up to a certain
precision of, in our case, 15 min (or 1

6 th of a block). This
MI is interesting because, as discussed in a previous section,
one proposed method of dealing with unequal time intervals
is to use phantom variables (deliberately added “missing” data
points) to at least partly account for timing in a DT model. As
a result, differences in interval lengths are accounted for up to
a certain extent, and this is what we have in our MI 3. This
is implemented in ctsem by rounding the true time intervals
to increments of 1

6 th, as illustrated in Table 1, and using these
rounded values as model input instead of the true intervals.
Finally, our fourth MI is the true CT model which uses the exact
interval lengths between the measurements, and which we expect
gives us the least biased estimates of 8. The main question of
interest to us is whether MI 3 or even MI 2 approximates this
closely enough that we can conclude that a DT VAR(1) model
with appropriate cautionary measures—removing the nighttime

interval from the analysis, and possibly also inserting missing
data—is an acceptable substitute for the CVAR(1) model in
practice.

We discuss bias in terms of 8 rather than B, because B has a
less straightforward scale, which makes it harder to evaluate the
relevance of a given amount of bias2. Another reason to focus
on 8 is that these DT parameters are commonly reported in the
literature, and our interest is whether and howmuch they may be
biased because of the timing issue. Thus, we derive the implied 8

for an interval length of one block (i.e., 90 min or 1 = 1) from
the B obtained in ctsem, and then we compare them with the true
8 for that interval.

4.3. Results for the Univariate Data
4.3.1. For One Very Long Time Series
First we consider the results of the simulations allowing all
theoretically possible (short) interval lengths, representing the
“worst case” scenario where the most potential bias in the DT
model is expected. The upper pane of Figure 3 illustrates the
absolute bias (estimate—true value) in φ (for an interval length
of 1 = 1) for each of the four MIs and for each true φ; the
lower pane illustrates the relative bias, defined as the absolute bias
divided by the true parameter size. It can be seen that for 8 out
of the 9 parameter values, the CAR(1) model (MI 4) performed
better than MI 1 and 2, which resemble two common AR(1)
modeling approaches. An important finding is that MI 3 is barely
distinguishable from the CAR(1) model, so it appears that adding
this amount of “missing” data (allowing interval lengths to differ
by increments of one sixth) is sufficient to counter most of the
bias resulting from inappropriate handling of interval lengths.
Only when the true autocorrelation for an interval of one block
is as low as 0.1 does it appear that MI 3 is still slightly affected
by bias due to timing misspecification, as it overestimates the
autocorrelation by 0.009, while the CAR(1) model (MI 4) is off
by only 0.002.

To get an overall impression of how the four model
implementations perform, we can also average the absolute or
relative bias over the nine different true φ values, obtaining the
results shown in Figure 4. Whether we look at the absolute or
relative bias does not change the conclusion that the CAR(1)
model and its closest approximation, MI 3, clearly outperform
MI 1 and 2, indicating that inappropriately assuming equal time
intervals causes positive bias in the autocorrelation estimate,
as we expected. Note that the comparison between MI 1 and
2 reverses depending on whether we look at the absolute or
the relative bias. In Figure 3 it can be seen that MI 2 suffers
from a positive bias for all the true φ values of 0.6 and under,
congruent with our expectations, but MI 1 suffers less from
this positive bias, and is even strongly negatively biased for
true φ values of 0.5 and higher. To understand why this is,
consider first that MI 1 and MI 2 have a source of positive
bias in common, namely that they both inappropriately treat
measurements within a day as equally spaced. But on top of

2Consider, for instance, that B in a CAR(1) model can range from −∞ to 0, and

that the difference between −1 and −0.1 is more meaningful than that between

−100 and−99.1 or that between−100 and−10.
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FIGURE 3 | Absolute and relative bias for each model implementation and each true φ in the univariate simulation with one very long time series (of 1,000 days) and

no minimum interval length. Each line represents a model implementation, and on the X-axis we have the nine different true values of φ.

that, MI 1 adds a second faulty assumption, namely that the
nighttime interval is also equally long as all other intervals. This
causes an additional bias, which is downwards: Observations
which, in reality, are at best very weakly correlated (by φ7) are
treated in this model as if they must be correlated by φ, and in

our sampling scheme, this applies to 10% of the observations.
This negative bias can attenuate or overcompensate for the
positive bias that MI 1 has in common with MI 2, and it
becomes more pronounced as the true φ parameter becomes
larger.
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FIGURE 4 | A comparison of the average size of the absolute and relative bias (ignoring its sign) of each model implementation over all true φ (from 0.1 to 0.9), in the

univariate simulation with one very long time series (of 1,000 days) and no minimum interval length.

4.3.2. For One Thousand Shorter Time Series
To investigate a more realistic scenario, we also simulated 1,000
shorter time series for each true value of φ, with each time
series consisting of 10 days (100 observations). Each model
implementation was applied to these datasets, and the findings
are illustrated in Figure 5. We calculated the deviation between
the estimated and true φ for each fitted model and then took
the median over the 1,000 values as a summary of estimation
error or bias. The same was done for the deviation divided
by the (absolute) true parameter value, to get an indication of
relative rather than absolute bias. We used the median because
the distribution of the deviations tends to be skewed when the
true parameter φ is near its lower (0) or upper (1) bound, making
the mean an inappropriate summary statistic.

Comparing the median bias values in Figure 5 with the bias
values for the very long time series in Figure 3, we see that the
patterns are largely similar. One difference to note is that the
median estimation error over one thousand short time series is
always negative, regardless of the true parameter value, for the
true CT model (MI 4) and for its close approximation MI 3.
This is consistent with the known negative bias in the estimated
autoregression for shorter time series demonstrated in the
literature on both CAR(1) and AR(1) models (cf. Hurwicz, 1950;
Marriott and Pope, 1954; Yu, 2012). This also explains why, as
the true φ increases, MI 1 and especially MI 2 become negatively
biasedmore quickly than they did in the asymptotic case. Judging
by the median estimation error, it would appear that MI 2 gives
themost accurate estimate of the four implementations whenever
the true φ is greater than 0.5. This can be explained by the
fact that the positive bias particular to MI 2, and the negative
bias common to all implementations, cancel each other out to
some extent. Given this explanation, the model can hardly be
considered a good alternative to the true model MI 4 or its close
approximation MI 3; and we can see in Figure 5 that the latter
two have the least relative median estimation error overall, that
is, if we consider the whole range of true φ values from 0.1 to 0.9.

4.4. Results for the Bivariate Data
4.4.1. For One Very Long Time Series
Our findings for a very long time bivariate time series are
illustrated in Figure 6. There it can be seen that MI 1 and 2

suffer from a positive bias for each element in the 8 matrix,
whereas MI 3 and MI 4 have a negatively biased estimate of one
of the off-diagonal elements. The total size of each bar gives an
indication of the amount of total bias in the 8 matrix, and it is
clear that the data-generating, true CT model MI 4 is the least
biased overall. MI 2 has the most bias overall, and the reason is
that it most strongly overestimates both of the diagonal elements
of 8, that is, both the autoregressive coefficients. The fact that
MI 1 outperforms MI 2 in this regard can likely be explained
by the fact that MI 1 involves several competing sources of bias
which can cancel each other out, as discussed above. The bottom
pane of the Figure shows the relative bias, which means that the
absolute bias in each element of 8 is divided by the (absolute
value of the) true coefficient to get a better impression of the
relevance of the bias. Here it can be seen that MI 1 and 2 differ
much less in the total amount of relative bias, and that MI 1
comes out worse, because MI 1 has a larger absolute bias in the
off-diagonal elements of 8, which have smaller true values, so
that in a relative sense this bias is worse than the bias of MI 2 in
the diagonal elements. MI 4 comes out as the least biased model,
overall, whether we look at the absolute or relative bias.

4.4.2. For One Thousand Shorter Time Series
Turning again to the more realistic case where we have shorter
time series, and where we look at the median of the estimation
error over one thousand such time series, consider the results for
the bivariate data illustrated in Figure 7. Here we see that only
for MI 2 the pattern of results is very similar to the asymptotic
case, with a positive bias in all four elements of 8, which is
the largest for the diagonal (autoregressive) coefficients. For the
other three model implementations, however, we note that the
results for shorter time series are quite different from those for
the asymptotic case. The median estimation error in both of
the diagonal elements of 8 is now negative for MI 1, 3 and 4,
and the positive bias for φ12 has virtually disappeared for MI
3 and 4. Their negative bias in φ21 is similarly diminished, but
both implementations show a large negative estimation error for
the diagonal elements, which were actually overestimated in the
asymptotic case. We note that this pattern of results is consistent
with what we found in the univariate case, since a negative
bias in estimated autoregressive coefficients is to be expected in

Frontiers in Psychology | www.frontiersin.org 10 October 2017 | Volume 8 | Article 1849

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


de Haan-Rietdijk et al. Discrete-Time Modeling of ESM Data

FIGURE 5 | Median absolute and relative estimation error, for each model implementation and true φ, over 1,000 shorter univariate time series (of 10 days each), with

no minimum interval length. Each line represents a model implementation, and on the X-axis we have the nine different true values of φ.

both DT and CT models for shorter time series. The size of the
underestimation in φ11 and φ22 for MI 3 and 4 in the short
time series is also consistent with our findings for the univariate
simulation with short time series, where a median estimation

error roughly between −0.01 and −0.02 was found for true 8

values between 0.4 and 0.3 (recall that the values of φ11 and
φ22 in the bivariate simulation are 0.354 and 0.277, respectively).
Furthermore, in both of the simulations we see that MI 2 is
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FIGURE 6 | Absolute and relative bias in 8 for each model implementation in the bivariate simulation with one very long time series (1,000 days) and no minimum

interval length. In this graph, each stacked bar represents a model implementation and each color represents a different element of the matrix 8, with the

autocorrelations in blue and the cross-coefficients in green. It can be seen that MI 1 and 2 have a greater total amount of bias (longer bars) than MI 3 and 4, and that

only the latter two model implementations have any negative bias (namely, for φ21). MI 2 stands out particularly because of its large positive bias in both of the

autocorrelations.
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FIGURE 7 | Median absolute and relative estimation error in 8 for each model implementation, over one thousand shorter (10-day) bivariate time series, with no

minimum interval length. In this graph, each stacked bar represents a model implementation and each color represents a different element of 8. In terms of the total

amount of absolute estimation error, MI 2 and MI 4 are hard to distinguish and only MI 1 is clearly more biased than the rest; but when we consider the relative

estimation error, it is clear (from the length of the stacked bars) that MI 3 and MI 4 outperform the other two MIs. MI 2 stands out because it is the only MI that

overestimates the autocorrelations.
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the only implementation that does not show this well-known
negative bias in estimated autoregressive coefficients in shorter
time series, but as we discussed above, this does not justify the
conclusion that it is to be preferred. What is consistent between
the asymptotic simulation and the one with shorter time series
is that MI 4 and MI 3 clearly have less total estimation error in
8 than MI 1 and 2, and that MI 4 has the least estimation error
overall (although the difference betweenMI 3 and 4 is very small).

4.5. The Effect of Prohibiting Intervals
Shorter than 1/6th of a Block (or 15 Min)
All the above simulations were repeated while prohibiting
measurement intervals shorter than 15min (one sixth of a block),
to investigatemore realistic circumstances. To save space, the bias
results under this restriction are provided in the Appendix; and
here we only summarize the most noteworthy results and our
conclusion.

In the univariate case, the positive bias in the autoregressive
parameter in MI 1 and 2 is somewhat ameliorated by prohibiting
the shortest measurement intervals, as we expected; however, this
effect is only seen for the smallest true φ (of 0.1). This finding was
the same for the asymptotic case as for shorter time series. No
such benefit of prohibiting short time intervals was consistently
observed when the true φ was larger.

In the bivariate simulations, we find that the total amount of
bias in 8 for MI 1 and MI 2 is highly similar to what we found
while allowing short intervals, so that there is no clear advantage
to prohibiting short intervals. A surprising result is that in MI 3
and MI 4 the cross-coefficient φ12 is more strongly (positively)
biased when short intervals are prohibited, and in the specific
case where we have shorter time series, φ21 is also biased more
heavily (albeit negatively) when short intervals are prohibited.
Thus, it seems that, especially in the realistic case of shorter
time series, bivariate VAR(1) model estimates do not necessarily
become less biased when short time intervals are prohibited, and
CVAR(1)model estimatesmay even becomemore biased because
of it. An explanation may be that short intervals can be highly
informative for estimation, depending on the true parameter
size(s). Under these simulation conditions, MI 3 and MI 4 no
longer even seem preferable to MI 1 and MI 2 in terms of the
total amount of (absolute or relative) median estimation error,
but this is not because MI 1 and MI 2 have become less biased, as
we would have expected; it is only because MI 3 and MI 4 have
become more biased.

In summary, it is not clear that prohibiting intervals shorter
than 1/6th of a block is an effective way of reducing the bias in
the DT models, except in the specific case of a univariate process
where it is expected that the true autocorrelation at a lag of 1 is
very small (φ ≤ 0.1).

5. CONCLUSION

Our simulations showed that the bias caused by misspecification
of the timing of the measurements depends to a large degree on
the true parameters of the process, in such a way that it appears
to be most relevant when the true effects for an interval of one

block are small. As discussed in the literature, both the AR(1) and
CAR(1) model suffer from a negative bias in the autoregressive
parameter when short time series are analyzed (Hurwicz, 1950;
Marriott and Pope, 1954; Yu, 2012), but this bias tends to be
small relative to the true parameter size. In our simulations we
found that the cruder model implementations MI 1 and MI 2,
which correspond to common DT applications of AR(1) models
in the literature, can result in much more severe bias. For small
autocorrelation values (< 0.3), which are commonly reported in
the literature, MI 2 can result in a bias as large as 60% of the true
parameter size. The fact that MI 1 and MI 2 are differentially
biased for different true values of 8 also seems problematic
given that in practice, researchers often aim to compare the
8 coefficients for different persons’ time series (or to predict
them from person-level covariates). MI 3 and MI 4 appear to
be more consistent in both the direction and the absolute size of
the bias.

The true model, MI 4, and its close approximation MI 3
typically outperformed the others in terms of overall absolute
or relative bias in the 8 parameters. This indicates that, in
addition to theoretical considerations in favor of CT modeling
approaches, they are advantageous in terms of reducing bias
in 8 when analyzing unequally spaced ESM data. However,
since the results for MI 3 and MI 4 were barely distinguishable
in our simulations, it seems that, for practical purposes, an
approximation of a CT model may be as good as the real thing,
under the conditions considered in the present study. In our
simulations the specification of MI 3 was such that an interval
of one block in the original data is divided into six blocks in the
analysis. If the blocks were divided into fewer parts, so that the
true interval lengths were approximated less closely, the approach
would likely perform less well.

6. EMPIRICAL ILLUSTRATION

We now analyze empirical data concerning the positive affect
of three adolescents, to investigate how DT vs. CT modeling
of unequally spaced ESM data can play out in practice. AR(1)
models are often used for the analysis of affect data, to investigate
differences between individuals in their autocorrelation, which is
an indicator of affect regulation (and is often called inertia in this
context). Therefore, this analysis investigates how the substantive
findings in this line of research might differ when CTmodeling is
used instead of DT modeling, to gauge the practical relevance of
the choice between these approaches.

6.1. The Data
The data that we will analyze resulted from the first wave of ESM
data collection in a larger study that was designed to detect at-
risk mood profiles related to depression in adolescents. As part of
this study, ESM questionnaires were filled out by 244 adolescents
(aged 12 to 16) from a high school in the Netherlands, after
both the adolescents and their parents had given active informed
consent. The study was approved by the ethics committee of the
Faculty of Social Sciences at Utrecht University.

The participants filled out the ESM questionnaires
throughout the day, including during school hours, as the
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school administrators had agreed that students were allowed
to do so during lessons, if necessary. The questionnaires were
delivered on the adolescents’ own smartphones, using the
mobile app Mypanel. The first wave of ESM measurement
lasted for 7 consecutive days, and on each day a maximum of
eight measurements were taken between 8 AM and 10 PM.
A morning measurement occurred between 8 and 10 AM; an
evening measurement between 8 and 10 PM; and there were six
measurements between 10 AM and 8 PM. A signal-contingent
sampling scheme was used, and each beep was programmed
to occur randomly within each block, without imposing a
minimum interval length. The participants were instructed to
respond to a beep as quickly as possible, but they could respond
later, if necessary (in which case, they were instructed to report
their affect at the time of responding, not their affect at the beep
time). The six questionnaires during the day had to be filled out
within 1.5 h after the beep; the morning questionnaire within
2 h; and the evening questionnaire within 4 h. The purpose
behind this flexibility was to enable all participants to fill out
all questionnaires even if they had busy schedules and activities
that they could not interrupt. Filling out a questionnaire took
approximately 1–2 min.

A scale score for the adolescent’s positive affect (PA) was
obtained by averaging over six specific items, namely feeling
relaxed, satisfied, confident, cheerful, energetic, and enthusiastic.
Each item was measured using a 7-point scale, where 1 indicated
that the respondent did not feel that, 4 indicated that they
moderately felt that, and 7 indicated they definitely felt that.
The reliability for the PA scale in the first ESM wave of the
study was high with a Cronbach’s alpha of 0.928 based on 6,213
available data points. For our illustration, we analyze the PA
scores of three adolescents who were selected as follows: First,
we selected the participants who had completed at least 50 ESM
measurements, and then we visually inspected the time series of
PA for these nine participants to determine whether they were
suitable for (C)AR(1) modeling, given its assumptions. Six of
these time series were affected by skewness, ceiling effects, or
apparent shifts over time, but the other three looked free of
trend, skewness or outliers. By selecting the three time series
without (gross) violations of other model assumptions, we could
focus on the effect of ignoring the violation of the assumption of
equal spacing in the AR(1) model, rather than conflatingmultiple
issues. The time series for the selected adolescents are shown in
Figure 8, where the measurement time is expressed in units of
105 min since the start of measurement for that person. Note
that the time variable reflects the time at which the respondents
completed a questionnaire, not the time that a beep was delivered;
and if the person did not initially hear the beep or was not
able to respond immediately, they might respond a bit later
than the beep time. The stored data thus reflect both the time
and the affect at the moment of responding. As a consequence,
short intervals between observations occur more frequently in
these data (namely, when participants had not yet responded
to a beep until it was almost time for the next one) than they
did in our simulations. The average measurement interval was
approximately 105 min.

6.2. Analysis
The PA data for each adolescent was analyzed in four ways.
Using ctsem, we fit a CAR(1) model, and for the purpose of
comparison we also fitted MI 3 and 2 in the same way as we did
in our simulations. In addition, we used the lm() function in R
(R Core Team, 2016) to implement an AR(1) model under the
same principles as MI 2. The analysis in lm() is a more likely
choice for researchers using DT models in practice: researchers
would not use ctsem unless they wanted to fit CT models. The
CAR(1) model, by definition, uses the exact recorded times of all
responses, while the AR(1) model using lm() and MI 2 in ctsem
only account for the nighttime, not for the random differences in
interval lengths between measurements on the same day; and MI
3 accounts for the measurement times up to a precision of 1/6th
block (1/6th of 105 min), just as in our simulations.

Each person’s data were mean-centered in advance, to aid
model convergence (as recommended in Driver et al., 2017). For
the AR(1) model in lm(), we created a lagged predictor with
the slide() function from the DataCombine R package (Gandrud,
2016), ensuring that the lagged predictor was assigned a missing
value (N/A) for each first observation of a day. In this way, we
prevent treating the nighttime interval als comparable to within-
day intervals, because we do not regress 1 day’s first observation
on the previous day’s last one. For the ctsem CAR(1) model (MI
4), time was scaled in such a way that 1t = 1 corresponded to
a 105-min (or 1.75 h) interval, which was the intended average
length of the blocks in the measurement schedule in the study.
Because time was scaled in this same way for all three persons,
the results for the parameter φ at a lag of 1 for the CAR(1) model
have the same meaning for all three persons. This is not the
case, however, for the AR(1)model estimates obtained using lm():
those reflect the φ for a specific person under the assumption that
1t = 1 reflects the time interval between their measurements
(within a given day), ignoring potential differences between the
three persons in their actual average time intervals, as well as
variation in the individual intervals for a given person. The
AR(1) model (MI 2) estimated with ctsem is comparable to the
AR(1) model estimated with lm() in that it assumes that the
measurements within a day are equally spaced.

We compare the estimated DT-parameter φ for all three
models and persons, and use the 95% confidence interval (CI)
as an indication of the significance of the autocorrelation. For the
AR(1) model estimated with lm(), the 95% CI is automatically
obtained as part of the output; for the models estimated with
ctsem, we can obtain a 95% CI for the autocorrelation for any lag
(interval length) that occurred in the input data. That means that
for MI 2 and 3 in ctsem, we can obtain a 95% CI for φ at a lag of
exactly 1.75 h, similar to what we get for the AR(1) model in lm(),
since a lag of 1.75 h or 1 = 1 occurs in the input data: In MI 2
it is assumed to be the lag between all consecutive measurements
within a day, and inMI 3 this value occurs frequently because the
true 1 values are rounded to a precision of 1/6. For the CAR(1)
model (MI 4) we can only obtain approximate 95% CIs for the
φ at a lag of 1 = 1 or 1.75 h, because the true interval lengths
closest to 1.75 h that actually occurred in the data for the three
persons were 1.742, 1.749, and 1.727 h, respectively.
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FIGURE 8 | Positive affect data for the three adolescents in our empirical analysis. The dots indicate the observations and reveal that they were spaced irregularly,

sometimes following each other quickly. Note that the software recorded the times that the questionnaires were filled out (thus matching the affect that the respondent

reported), not the times of the beeps. The dotted line represents the person’s mean of PA.

6.3. Results
The model estimates are given in Table 2, together with some
data descriptives that are relevant for interpreting the models.
As can be seen in the Table, both the median and the mean
of the interval length between consecutive measurements on
the same day were not exactly equal for the three adolescents.
Person 2 has somewhat longer measurement intervals, on
average, than was to be expected under the beep schedule;
but as we noted, participants were able to respond some time
after the beep if necessary (e.g., if they had not heard it or
if they were unable to respond immediately), which increases
the variability of the intervals. For the CAR(1) model, this
poses no problem whatsoever, since the exact measurement
times are used in the model and we can estimate the φ

that applies to an interval of 1.75 h for all three adolescents.
For the AR(1) model, however, differences between persons
in the average interval length may mean that a comparison
of their estimated φ coefficients is less than perfectly valid,
as their coefficients would not apply to the exact same time
lag.

The results from the CAR(1) model, shown in Table 2,
indicate that only person 2 had substantial autocorrelation at a
lag of 1.75 h, with an estimated φ of 0.39 and an approximate 95%
CI that lies far away from zero. It is important to note that in a
CAR(1) process, negative autocorrelations are impossible, which
means that the 95% CI of φ can never include negative values and
can only approach 0 more and more closely. In the case of person
2 it is far enough removed from the zero bound to conclude that
the autocorrelation is significant, but for persons 1 and 3 the 95%
CI was very close to zero, in addition to the point estimates of
φ being much smaller (0.05 and 0, respectively). For person 3
we reported exact zeros because the software returned them; the
values are toominute for the numerical precision. Even the upper
bound of the 95% CI for person 3 was extremely close to zero,
which clearly indicates a lack of autocorrelation.

Comparing the results of the CAR(1) model with those of
its approximation MI 3, the only noteworthy change we see is
that the estimated φ for person 1 becomes larger (0.10 instead of
0.05) when the interval lengths used in the model are less precise;
the lower bound of the 95% CI, however, remains close to zero.
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TABLE 2 | Data characteristics and parameter estimates under four model

implementations for the PA of the three adolescents in our empirical example.

Person 1 Person 2 Person 3

Data characteristics

Median within-day interval (h) 1.495 1.811 1.483

Mean within-day interval (h) 1.773 1.906 1.709

Number of observations 53 50 51

CAR(1) model (MI 4) in ctsem

Autocorr φ for 1 = 1.75 hr 0.05 0.39 0

± 95% CI of φ [±0, 0.36] [0.12, 0.64] [0, 0]

Stat. var. σ2
y 0.98 1.41 0.61

Approximation (MI 3) of the CAR(1) model, in ctsem

Autocorr φ for 1 = 1.75 hr 0.10 0.39 0

95% CI of φ [±0, 0.42] [0.11, 0.64] [0, 0]

Stat. var. σ2
y 0.97 1.42 0.61

AR(1) model (MI 2) in ctsem, accounting for nighttime intervals

Autocorrelation φ 0.19 0.35 0.05

95% CI of φ [±0, 0.50] [0.07, 0.61] [±0, 0.33]

Stat. var. σ2
y 0.94 1.36 0.61

AR(1) model with lm(), removing nighttime intervals

Autocorrelation φ 0.19 0.37 0.06

95% CI of φ [−0.13, 0.52] [0.06, 0.67] [−0.24, 0.35]

Stat. var. σ2
y 0.99 1.54 0.66

Note that exact zeros reported in the table represent values too small for the numerical

precision of the software. The 95% CIs for the CAR(1) model are approximations, based

on observed lags as close to 1.75 h as possible.

Switching to the AR(1) model implementation in ctsem (MI 2),
the first thing to note is that the overall conclusions remain the
same: persons 1 and 3 do not have significant autocorrelation,
but person 2 does, and the estimated φ of 0.35 for person 2 is
quite close to the estimate of 0.39 from the CAR(1) model. The
point estimates of φ for persons 1 and 3, especially the former, are
larger than under the CAR(1) model or its approximation MI 3,
and the upper bounds of the 95% CIs have shifted upwards quite
a bit, but the lower bounds of the 95% CIs are still so close to zero
that the autocorrelation should be interpreted as non-significant.
The only way that substantive differences in our conclusions from
the different models might arise, then, is if we were to use or
interpret the point estimates of φ without considering their (non-
)significance; for instance, if we were to use covariates to predict
differences in φ, as is common in multilevel analysis.

When we switch to a true DT AR(1) model in lm(), the
conclusions again remain unaffected, and the point estimates of
φ are highly similar between the AR(1) model and MI 2 in ctsem.
One point of difference is that the lower bounds of the 95% CIs
for the non-significant autocorrelations are negative values in the
AR(1) model, because a true (DT) AR(1) model does not restrict
φ to be positive in the way that the CAR(1) model (and thus
any ctsem model implementation, including MI 2 and 3), does.
Although a 95% CI for φ that can include negative values might
be seen as advantageous for the purpose of significance testing,
the possibility of a negative φ is inconsistent with the assumption
that the process unfolds continuously over time. One could argue
that if researchers decide to measure at irregular intervals, they
have committed themselves to that assumption from the outset.

Overall, it is reassuring that the significance of the parameters
comes out the same between the AR(1) and CAR(1) models for
these three time series. However, a point of concern is the change
in the point estimate of φ for person 1, which was 0.05 in the
CAR(1) model, 0.10 in the approximation of the CAR(1) model
(MI 3) and 0.19 in both of the AR(1) model implementations.
Here we cannot simply assume that the CAR(1) model estimate
must be right, because in our simulations we found that even the
true model can be biased, and indeed, in some cases it can be
biased more severely than cruder models which compensate one
source of bias with another, depending on the true parameter size.
Based on our simulation findings and on the literature regarding
bias in AR(1) and CAR(1) models (Hurwicz, 1950; Marriott and
Pope, 1954; Yu, 2012), it may be expected that the CAR(1) model
estimate of 0.05 suffers from some negative bias due to the small
number of observations: In our simulations we noted a consistent
negative bias for time series of one hundred observations, and
here we have only 53 observations, so a more severe bias may be
expected. This bias should also affect the AR(1) model, but there
it may be ameliorated by a positive bias due to ignoring the true
length of the measurement intervals. We found that this positive
bias is mostly applicable to true parameters of 0.1 (or smaller), so
it seems especially relevant for this empirical case, but we can only
guess to what extent this bias occurred in this specific empirical
application. Since our simulations indicated that, overall, the bias
for the CAR(1) model (as well as for MI 3) is smaller than that for
the AR(1) model (whether MI 1 or MI 2) and less dependent on
the true parameter value, it seems reasonable to put more stock in
the CAR(1) model and assume that the estimate of 0.05 is closer
to the truth than the estimate of 0.19 under the AR(1) model.

7. DISCUSSION

In this article we set out to investigate the practical relevance
of a known but seemingly ignored theoretical issue, namely
that unequally spaced ESM data violates an assumption of
DT models like the AR(1) and VAR(1) model. We discussed
why bias in the parameters of interest is to be expected when
measurement timing is not taken into account properly, and
why CT approaches like the CAR(1) and CVAR(1) models can
handle unequally spaced ESM data without any such issues.
While we noted that there are several reasons to favor CT
models over DT models in general, many previous research
findings are based on DT models. Furthermore, AR(1) and
VAR(1) will likely continue to be used for ESM data, because
they are easy to implement in many statistical software packages
(even in the case of multilevel model extensions). Indeed, AR(1)
or VAR(1) models are a popular approach to investigating
individual differences in autoregressive parameters, e.g., in the
context of research into emotional inertia or dynamic network
approaches to psychopathology.

Our simulations with univariate time series confirmed that
AR(1) modeling of unequally spaced ESM data may lead to
overestimation when the true autocorrelation is (very) small.
While the absolute size of the bias was small in many cases
in our simulation, and it may seem negligible, the bias can be
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large relative to the true parameter size, so it should not be
ignored. The CAR(1) model was less biased, overall, and more
consistent in the size and direction of its bias, than the two AR(1)
model implementations that we considered. In the bivariate
case, a CVAR(1) model also had less total bias than a VAR(1)
model. Furthermore, we found that a close approximation of
a CAR(1) or CVAR(1) model, such as could be obtained by
inserting “missing values” to reduce the measurement intervals
to a finer scale, can be an adequate substitute for the true
CAR(1) or CVAR(1) model in terms of its accuracy, at least in
all the circumstances we studied: The models were often barely
distinguishable in terms of their bias.

We note that all of the models had some estimation error,
especially in the case of shorter time series, where they are
affected by a negative bias that is known from the literature (cf.
Hurwicz, 1950; Marriott and Pope, 1954; Yu, 2012). Paradoxical
situations can occur when this negative bias cancels out with the
positive bias in a DT model for unequally spaced data, so that it
can appear to be a better model, when actually it is compounding
multiple sources of bias with unpredictable and highly variable
results. In practice there is probably always some bias, but a
serious issue with the DT models for unequally spaced data is
that both the size and the direction of the bias tend to depend
strongly on the true parameter.When the interest is in comparing
estimated parameters for different persons, a differential bias in
their estimates poses a threat to the validity of the analysis.

When a certain minimum time interval is required to pass
between consecutive measurements, the bias in a DT model
may in some cases be ameliorated, but in other cases it makes
little difference or even worsens the estimation of CT model
parameters. Having a few very short intervals in the data can be
both an advantage or disadvantage depending on whether a CT
or DT model is used, and on the true coefficients. In multivariate
processes the best observation interval for one effect is dependent
on all the other effects, so that we cannot give a general
recommendation concerning minimum measurement intervals.
In practice, other considerations such as software limitations,
respondent burden or ecological validity should factor into this
decision.

We recommend that researchers working with unequally
spaced ESM data make use of CT models whenever possible.
These models provide a natural match with the assumptions and
hypotheses involved in observing a process at irregular intervals
throughout the day, and they allow researchers more freedom to
interpret, compare and generalize their findings, both within or
across studies, because of how their estimated parameters can be
transformed to DT parameters for any time interval of interest.
In addition, the risk of bias arising from unequal measurement
intervals in the data is wholly avoided when CT models are used.

We consider this to be particularly relevant for studies involving
multiple persons where it is crucial that the ordering of the
persons’ estimated parameters not be affected by differential bias.
While DT model implementations that approximate CT models
(by adding missing values) can be an acceptable substitute in
terms of avoiding bias, they are less appropriate when there are
differences in the average measurement intervals of participants;

and designing a study to prevent such differences may not always
be feasible.

In this paper we focused on N = 1 (vector) autoregressive
models, but multilevel extensions of these models are in demand
as an approach to studying interpersonal differences in dynamics.
Multilevel DT AR(1) and VAR(1) models have seen multiple
applications, but up until recently there were no ready made
solutions in statistical software for implementing multilevel
CAR(1) or CVAR(1) models. This has changed now that version
2.3.1 of the ctsem R package incorporates a Bayesian routine
for estimating CT models with random effects in all parameters
(Driver and Voelkle, 2017). In addition, version 8 of Mplus
includes Bayesian estimation for various (multilevel) time series
models, and it can be used to approach CTmodeling by inserting
missing values (Asparouhov et al., submitted). In conclusion,
then, the door is open for a transition toward new default
approaches in dynamic modeling of ESM data, where the
measurement schedule is carefully taken into account and the
data is used to its full advantage.
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