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In the literature on implicit learning, controversy exists regarding whether the knowledge
obtained from implicit sequence learning consists of context-bound superficial features
or context-free structural rules. To explore the nature of implicit knowledge, event related
potentials (ERP) recordings of participants’ performances in a non-local dependent
transfer task under two response-stimulus-interval (RSI) conditions (250 and 750 ms)
were obtained. In the behavioral data, a transfer effect was found in the 750 ms RSI
condition but not in the 250 ms RSI condition, suggesting that a long RSI is the basis for
the occurrence of non-local dependent transfer, as which might have provided enough
reaction time for participants to process and capture the implicit rule. Moreover, P300
amplitude was found to be sensitive to the impact of RSI on the training process (i.e.,
the longer RSI elicited higher P300 amplitudes), while variations in both N200 (i.e., a
significant increase) and P300 amplitudes (i.e., a significant decrease) were found to
be related to the presence of a transfer effect. Our results supported the claim that
implicit learning can involve abstract rule knowledge acquisition under an appropriate
RSI condition, and that amplitude variation in early ERP components (i.e., N200 and
P300) can be useful indexes of non-local dependent learning and transfer effects.

Keywords: implicit sequence learning, transfer, RSI, ERP, non-local dependencies

INTRODUCTION

Implicit learning plays an important role in various forms of human cognition, such as language
acquisition (Leung and Williams, 2011), music practice (Rohrmeier and Rebuschat, 2012), and
the formation of perceptual-motor skills (Fu et al., 2010). As such, implicit learning is a
critical component of learning and human life. How does implicit learning occur? According to
Cleeremans and Jiménez (2002), representation of implicit knowledge in human brains develops
from weak to strong neural association, with its representation quality as well as consciousness
improved concurrently. Only knowledge with high quality representation (i.e., in terms of
its stability, strength and uniqueness) can be fully conscious and orally reported. Moreover,
unconscious knowledge is usually bounded to the stimuli’s perceptual features and thus hard to
transfer, while conscious knowledge is often related to embedded rules and thus easy to transfer
(Zhang and Liu, 2014).
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Several factors may influence knowledge representation
quality in implicit learning. Destrebecqz and Cleeremans
(2001, 2003) have found that variation in RSI impacts
on representation quality of knowledge from implicit
learning, with weak representation (i.e., mostly supported
by unconscious knowledge) associated with short RSI, and
strong representation (i.e., mostly supported by conscious
knowledge) associated with long RSI. Similar results have
been reported in several other studies (Zhang et al., 2014,
2015).

Another potential factor influencing knowledge
representation quality in implicit learning is training length.
Despite that Tanaka and Watanabe (2015) found that training
length (i.e., number of training trials) failed to predict the
occurrence of implicit transfer, other researchers have
demonstrated that elongated training length can improve
the representation quality of implicit rules and facilitate transfer,
with full consciousness (i.e., indexed by accurate oral report)
being achieved in the end (Cleeremans and Jiménez, 2002;
Destrebecqz and Cleeremans, 2003; Goldstone and Sakamoto,
2003). Notably, in Tanaka and Watanabe’s (2015), study
the settings of training length (i.e., 4, 12, 16, and 20 trials,
respectively) were probably too short for representation quality
to vary among these conditions.

The implicit learning literature suggests that participants are
not only able to acquire the perceptual features of implicit
rules (e.g., physical properties of stimulus), but also able to
obtain the deeper structural knowledge of embedded rules.
In the former case, participants acquire local dependencies
(i.e., knowledge of perceptual features of stimulus). In the
latter case, participants acquire non-local dependencies (i.e.,
knowledge of abstract rules not dependent on perceptual
structures). Early studies on non-local dependent transfer were
focused to artificial language learning (Onnis et al., 2005;
Williams, 2009), and then expanded to other areas such
as implicit music learning and implicit sequence learning.
Studies on implicit music learning generally show that tune
structures can be implicitly learned and transferred. For
example, when studying music tunes, participants were able
to detect the change of embedded implicit rules (Dienes
and Longuet-Higgins, 2004; Kuhn and Dienes, 2005; Dienes
et al., 2012). Li et al. (2013) reported in their study that
participants were capable of unconsciously obtaining the
structural knowledge of rotated as well as mirror-reversed
tunes. Tanaka and Watanabe (2014a,b) demonstrated that
participants were able to unconsciously obtain the structural
knowledge of spatial and temporal relationship of tunes and
transfer it to mirror-reversed or rotated versions. It should
be mentioned that these studies used music tunes as the
test materials, which are concrete in nature. Therefore, the
transfer effect found in those studies may be mediated by
concrete knowledge of tunes (e.g., chunks of musical tunes),
rather than abstract knowledge of implicit rules. To explore
non-local dependent transfer (i.e., transfer of knowledge of
implicit rules rather than knowledge of perceptual structures),
test materials must be designed to be non-concrete in
nature.

The present study was designed to use the technique of
ERP to explore the impact of RSI on non-local dependent
transfer of implicit sequence learning under extended training
(70 trials). Event-related-potentials (ERP) is high in temporal
resolution (Abla et al., 2008). It is suitable for exploring brain
activation related to tasks associated with quick reactivation,
such as implicit sequence learning. Some ERP studies on
implicit sequence learning have shown that amplitude variations
of the ERP components of N200 and P300 are sensitive to
transitions in implicit sequence learning (Miyawaki et al.,
2005; Ferdinand et al., 2008; Jost et al., 2011; Fu et al.,
2013). There is no previous study using both an implicit
transfer paradigm and the technique of ERP to investigate
implicit knowledge representation patterns under different RSI
conditions. Rüsseler and Rösler (2000) and Rüsseler et al. (2003)
have explored knowledge representation pattern differences
between implicit and explicit sequence learning by using
ERP, and found that implicit sequence learners obtained a
response–response connection, while explicit sequence learners
obtained one of stimuli–stimuli, stimuli–response, and response–
stimuli connections. Moreover, explicit learners’ knowledge
was represented as both perceptual and motor patterns, while
implicit learners’ knowledge was only represented as motor
patterns. These researchers only investigated perceptual and
motor implicit rules, but not higher-level abstract implicit
rules. Remillard (2008, 2010) explored non-local dependent
rule acquisition in a perceptual-motor sequence task and
found that participants were capable of acquiring the non-
local dependent rule. However, the non-local dependent rule
used in Remillard’s study is based on transfer probability and
thus may not be suitable for testing abstract rule acquisition
in implicit learning. For exploring the possibility of abstract
rule acquisition and transfer in implicit learning, a non-
local dependent rule with varied first-order structures (i.e.,
stimulus presentation or perceptual patterns), and an invariant
higher-order structure (i.e., an abstract rule) may be a better
choice.

Based on the above-mentioned reasons, the present study
was aimed to investigate the impact of two different RSIs (i.e.,
250 and 750 ms) on non-local dependent transfer in implicit
sequence learning by using ERP. The literature suggests that
250 ms RSI and 750 ms RSI are two time settings sensitive
to awareness changes, with mostly unconscious knowledge
triggered by 250 ms RSI, and a collaboration of conscious and
unconscious knowledge triggered by 750 ms RSI (Destrebecqz
and Cleeremans, 2001, 2003; Haider and Frensch, 2009;
Franco and Destrebecqz, 2012). It was hypothesized in the
present study that, only under the condition of 750 ms RSI,
participants’ consciousness would continually increase during
the training course, and their learning of the implicit rule
would gradually develop from perceptual learning to abstract
rule learning, which would eventually prompt their behavioral
performance from no transfer to transfer. Moreover, Amplitude
variations of the two ERP components of N200 and P300
were hypothesized to be sensitive to changes in awareness
levels (i.e., consciousness vs. lack of consciousness) and transfer
effects.
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MATERIALS AND METHODS

Participants
Fifty-five college students (mean age = 21.4, SD = 1.43)
were randomly selected from a university. All were right-
handed and with normal vision. Participants received a small
amount of cash as a token of appreciation after they finished
the experiment. One participant was excluded from the data
because of high error rate on the test (>10%). Another four
participants were excluded from the data because of high rates
of noise in the ERP data. The final sample consisted of fifty
participants (23 males and 27 females). Thirteen participants
were randomly assigned to the 250 ms RSI experimental
condition, and twelve participants were randomly assigned
to the 250 ms RSI control condition. Thirteen participants
were randomly assigned to the 750 ms RSI experimental
condition, and 12 participants were randomly assigned to the
750 ms RSI control condition (i.e., for the rational of using
two control groups, see Materials). All participants voluntarily
signed a consent form, which was approved by the Research
Ethics Committee of Soochow University. Full ethical review
and approval were required according to the national and
institutional requirements.

Materials
This study was conducted in a sound proof room. Participants
sat in front of a 17′′ computer screen (with a refresh rate of
75 Hz) at a distance of 90 cm. A classic sequence reaction task
(Cleeremans and Jiménez, 1998) was adapted for the purpose of
the present study. During the task, participants were required to
press a key corresponding to the spatial location of a dark dot
(with a diameter of 1 cm) presented on a computer screen as
quickly and accurately as possible.

The experiment included a training phase and a transfer phase.
The two experimental groups were required to finish both the
training and the transfer phases, while the two control groups
only the transfer phase. The experimental arrangements for both

FIGURE 1 | Experimental arrangements for experimental groups and control
groups.

the experimental groups and the control groups were shown in
Figure 1.

A classic SOC rule (Reed and Johnson, 1994) was used in the
sequences, in which the location of a third stimulus is determined
by the locations of previous two stimuli (e.g., 34→2, 42→3,
23→1. . .. . .).

During the training phase, the spatial location arrangement for
the stimuli followed a SOC1 rule: 342312143241 (i.e., numbers
represent the four quadrants of the computer screen). Sample
presentation sequence and corresponding key-press were shown
in Figure 2.

During the transfer phase, the spatial location arrangement for
the stimuli followed a SOC2 rule: 341243142132 (i.e., numbers
represent the four horizontal locations on the computer screen).
Sample presentation sequence and corresponding key-press were
shown in Figure 3.

Notably, the use of a SOC1 rule for the training phase
and a SOC2 rule for the transfer phase are critical for non-
local dependent transfer. SOC1 and SOC2 are different in first-
order structure (i.e., perceptual features), but share the same
higher-order structure (i.e., the SOC rule that the location of a
third stimulus is determined by the locations of previous two
stimuli). If participants’ knowledge is bounded to perceptual
features of SOC1 sequences, transfer to SOC2 sequences is not
possible. Successful transfer to SOC2 sequences depends on the
acquisition of the higher-order structure of SOC1 sequences.
This arrangement is advantageous in comparison to traditional
designs, such as using a mirror- reversed rule or a new rule for
the transfer phase, in which perceptual transfer and abstract rule
transfer can hardly be separated.

Moreover, the setting of control groups in the present study is
to control for the possibility that participants are able to acquire
the SOC2 rule during the transfer phase, without the training
on the SOC1 sequences. If a transfer effect was observed in the
experimental groups, with no significant learning effect observed
in the control groups (who were tested on the transfer phase
only), this transfer effect could be logically inferred as a transfer
of abstract knowledge of SOC1 sequences to SOC2 sequences.

All sequences were programmed via E-prime 2.0

Procedure
All participants received a practice section (24 random trials)
before the formal test to be acquainted with the key-pressing.

The training phase consisted of ten blocks, with ninety-six
trials in each block. All the blocks (except Block 8) in the training
phase were regular blocks. Each regular block contained seven
repeated SOC1 sequences and one stochastically inserted random
sequence (for the rationale behind inserting a random sequence,
see Norman et al., 2007). Block 8 was a random block containing
eight random sequences. Participants’ average reaction time
in Block 8 was used as a baseline for the training phase.
Participants were allowed to rest 15 s between every two blocks.
Their accuracy and reaction time were recorded. Logically, a
learning effect (i.e. knowledge acquisition by repeated exposure
to SOC1 sequences) is indexed by participants’ increasingly
shorted reaction time during the training phase. Therefore,
implicit learning magnitude was estimated by participants’
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FIGURE 2 | Sample stimulus presentation and corresponding key-press pattern for the training phase.

FIGURE 3 | Sample stimulus presentation and corresponding key-press pattern for the transfer phase.

average reaction time difference between the random block (i.e.,
baseline) and its proximate blocks [i.e., RT8-(RT7+RT9)/2].

The transfer phase consisted of six blocks (block 11–block 16),
with ninety-six trials in each block. All the blocks (except Block

14) were regular blocks. Each regular block contained seven
repeated SOC2 sequences and one stochastically inserted
random sequence. Block 14 was a random block containing
eight random sequences. Participants’ average reaction time
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in Block 14 was used as a baseline for the transfer phase.
Participants were allowed to rest 15 s between every two blocks.
Their accuracy and reaction time were recorded. Logically, a
transfer effect (i.e., application of SOC1 knowledge to SOC2
sequences) is indexed by a quick learning (i.e., faster than the
control groups, who were not trained on SOC1 sequences)
on SOC2 sequences. Therefore, implicit transfer magnitude
was estimated by participants’ average reaction time difference
between the random block and its proximate blocks [i.e.,
RT14-(RT13+RT15)/2].

After the test, all participants were asked the following three
questions to measure their awareness levels (i.e., consciousness
vs. lack of consciousness): what determines the spatial locations
of the dots? Can you describe the rule underlying the spatial
locations of the dots? By what time during the test did you find
out this rule?

ERP Recording and Analysis
Participants’ EEG data was concurrently recorded during
the test by using a 32-channel cap (Brain Product, Munich,
Germany). The electrodes on the cap were positioned
according to the international 10–20 system. VEOG and
HEOG were recorded. The EEG signals were filtered with
a bandpass of 0.05–100 Hz and sampled with a rate of
500 Hz.

The original EEG data was processed with the standard
procedures provided by the software of ANALYZER 2.0. EEG
data corresponding to behavioral data containing more than 10%
error responses (Weiermann et al., 2010) and extreme reaction
time (i.e., shorter than 100 ms or longer than 1000 ms) was
excluded. After eye blink correction, other artifacts (i.e., epochs
with EEG power exceeding± 100 microvolt) were removed from
the EEG data. The artifact-free data was segmented into EEG
epochs (i.e., 900 ms post-stimulus intervals), baseline corrected
(200 ms pre-stimulus interval), and averaged. The ERP data was
further divided into six parts corresponding to three learning
stages [stage 1 (Block 1, 2, and 3), stage 2 (Block 4, 5, and 6),
and stage 3 (Block 7, 9, and 10)] and three transfer stages
[stage 4 (Block 11 and 12), stage 5 (Block 13 and 14), and
stage 6 (Block 16)]. Following previous studies (Eimer et al.,
1996; Schlaghecken et al., 2000), EPR data on the four central
electrodes (i.e., Fz, FCz, Cz, Pz) was used in the analysis. The
amplitudes of N200 (230–310 ms) and P300 (340–530 ms) were
extracted separately for the 250 ms RSI condition and 750 ms RSI
condition.

RESULTS

Behavioral Data
The oral reports showed that none of the participants were
able to accurately describe the implicit rules, indicating that the
learning process was implicit for all participants. Behavioral data
containing more than 10% error responses and extreme reaction
time (i.e., shorter than 100 ms or longer than 1000 ms) was
excluded.

Occurrence of Implicit Learning on SOC1 Sequences
for the Two Experimental Groups
Participants’ reaction time showed an increase during both the
250 and 750 ms RSI conditions (see Figure 4). Based on the
commonly used index of implicit learning magnitude [average
reaction time difference between the random block and its
proximate blocks in the training stage, i.e., RT8-(RT7+RT9)/2
for the present study], average reaction time for Block 8 (RT8)
was compared to average reaction time of its proximate blocks
[(RT7+RT9)/2]. The occurrence of implicit learning would be
indicated by a significantly longer average reaction time of Block
8 than that of its proximate blocks. Repeated ANOVAs with
Block as the independent variable showed that the averaged
reaction time of Block 8 (404.32 ms± 54.28 ms) was significantly
longer than the average reaction time of its proximate blocks
(379.99 ms ± 60.58 ms) for the 250ms RSI experimental group
[F(1,12) = 22.27, p < 0.001, η2

= 0.65], and that the averaged
reaction time of Block 8 (357.98 ms± 23.56ms) was significantly
longer than the average reaction time of its proximate blocks
(345.94 ms ± 29.87 ms) for the 750 ms RSI experimental group
[F(1,12) = 10.73, p < 0.01, η2

= 0.47]. These results suggest that
effective implicit learning occurred in both experimental groups.

Comparison of Implicit Learning Magnitudes
between the Two Experimental Groups
To further explore the relative amount of implicit learning
magnitudes between the two experimental groups, a one-way
ANOVA with Group as the independent variable and learning
magnitude as the dependent variable showed that the 250 ms
RSI and 750ms RSI experimental groups (24.33 ms ± 18.59 ms
vs. 12.04 ms ± 13.29 ms) did not differ significantly on learning
magnitude [F(1,12)= 2.38, p > 0.05, η2

= 0.17].

Comparison of Implicit Transfer Magnitudes between
the Two Experimental Groups
To explore transfer effects in the two experimental groups,
repeated ANOVAs with Block as the independent variable were
conducted to compare the mean reaction time of Block 14
(RT14) to the mean reaction time of its proximate blocks
[(RT13 + RT15)/2]. These analyses yielded a significant main
effect for the 750 ms RSI experimental group [F(1,12) = 9.09,

FIGURE 4 | Reaction time trends over all the blocks in the 250 and 750 ms
RSI conditions. Error bar indicates the SE.
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FIGURE 5 | P300 amplitude (µV) differences on the electrode of Pz between the 250 and 750 ms RSI groups over the training phase (three stages). Red
line = 250 ms RSI group; Green line = 750 ms RSI group.

p < 0.05, η2
= 0.43], showing longer reaction time in Block

14 (404.32 ms ± 70.99 ms) than that in its proximate blocks
(376.17 ms ± 46.06 ms). No significant difference was found for
the 250 ms RSI experimental group [F(1,12) = 0.01, p > 0.05,
η2
= 0.001]. These results suggest that effective transfer occurred

in the 750 ms RSI experimental group, but not in the 250 ms RSI
experimental group.

Implicit Learning Magnitudes in the Control Groups
In the above analysis, the observed significant reaction time
changes in the 750 ms RSI experimental group during the transfer
phase can be caused by both a transfer of SOC1 knowledge to
SOC2 sequences (i.e., a transfer effect) and the learning process
on SOC2 sequences (i.e., a learning effect). To examine whether
it is a transfer effect or a learning effect, data of the control
groups must be compared to that of the experimental groups.
Notably, participants in the 250 and 750 ms RSI control groups
were assigned to the transfer phase without any previous training.
If the control groups fail to show a significant learning effect on
SOC2 sequences, it can be inferred that the observed significant
reaction time changes in the 750 ms RSI experimental group is a
transfer effect rather than a learning effect.

Repeated ANOVAs for the control groups revealed no
significant learning effects in both the 250ms RSI control group
(493.81 ms± 79.48 ms vs. 481.94 ms± 76.02 ms) [F(1,11)= 2.54,
p > 0.05, η2

= 0.19] and the 750 ms RSI control group
(425.44 ms± 44.17 ms vs. 423.09 ms± 47.42 ms) [F(1, 11)= 0.13,
p > 0.05, η2

= 0.01]. These results suggested that 4 blocks
of SOC2 sequence training were not enough for the control
groups to capture the structural rule, and confirmed that the
reaction time decrease over the transfer phase in the 750 ms RSI
experimental group was a transfer effect (i.e., the transfer of their
previous SOC1 knowledge to SOC2 sequence learning), rather
than a learning effect (i.e. structural rule acquisition by exposure
to the 4 blocks of SOC2 sequences).

ERP Data
ERP Data for the Training Phase
For the experimental groups, a 2 (Condition: 250 ms vs.
750 ms) × 4 (Electrode: Fz, Cz, Pz, and FCz) × 3 (Stage: 1, 2,
and 3) mixed ANOVA with N200 amplitude as the dependent
variable was conducted. This analysis showed a significant main

effect for Electrode [F(3,216)= 12.21, p < 0.001, η2
= 0.15], with

N200 amplitude over Fz being significantly stronger than those
over the other three electrodes (ps < 0.001). No other significant
effect was found. Notably, the lack of a significant main effect
of Condition suggests that N200 component is not sensitive for
differentiating the implicit learning processes between the 250
and 750 ms RSI conditions.

The same mixed ANOVA with P300 amplitude as the
dependent variable was performed for the experimental groups.
This analysis showed a significant main effect for Electrode
[F(3,216) = 12.09, p < 0.001, η2

= 0.14], with P300 amplitude
over Fz being significantly weaker than those over the other three
electrodes (ps < 0.001; Bonferroni corrected). A significant main
effect for Condition was also found [F(1,72) = 6.38, p < 0.05,
η2
= 0.08], with stronger P300 amplitude shown in the 750 ms

RSI condition (0.86 µV ± 1.41 µV) than that in the 250 ms RSI
condition (0.10 µV ± 0.88 µV) (see Figures 5, 6), suggesting
that P300 amplitude was sensitive to different learning processes
between the two RSI conditions. No other significant effect was
found.

ERP Data for the Transfer Phase
To explore the sensitivity of N200 and P300 in detecting transfer
effect, experimental groups and control groups were compared
on their ERP signals in the transfer phase.

N200 amplitude differences over the transfer phase
For the 250 ms RSI condition, a 2 (Group: experimental group
vs. control group) × 4 (Electrode: Fz, Cz, Pz, FCz) × 3
(Stage: 4, 5, and 6) mixed ANOVA with N200 amplitude as
the dependent variable was conducted. This analysis showed a
significant main effect for Electrode: F(3,276) = 13.16, p <0.001,
η2
= 0.16, with N200 amplitude over Fz (−2.06 µV ± 0.29 µV)

being significantly stronger than those over the other three
electrodes (−0.62 µV ± 0.31 µV; −0.22 µV ± 0.24 µV;
−0.88 µV ± 0.19 µV) (ps < 0.001, Bonferroni corrected).
A significant Group× Electrode interaction effect was also found:
F(3,276) = 9.13, p < 0.001, η2

= 0.12. Follow-up independent
t tests for this interaction effect showed that N200 amplitude of
the experimental group (−3.22 µV ± 3.07 µV) was significantly
stronger than that of the control group (−0.89 µV ± 1.59 µV)
over Fz [t(73)=−4.06, p < 0.001, Bonferroni corrected].

Frontiers in Psychology | www.frontiersin.org 6 December 2017 | Volume 8 | Article 2107

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02107 December 4, 2017 Time: 17:38 # 7

Huang et al. Transfer Effect in Implicit Learning

FIGURE 6 | Scalp distribution of N200 and P300 in the 750 ms RSI group over the transfer phase.

For the 750 ms RSI condition, the same mixed ANOVA
with N200 amplitude as the dependent variable was conducted.
This analysis showed a significant main effect for Electrode
[F(3,276) = 27.38, p < 0.001, η2

= 0.28], with N200 amplitude
over Pz (0.24 µV ± 2.45 µV) being significantly weaker than
that over the other three electrodes (−1.04 µV ± 2.04 µV;
−0.85 µV ± 2.23 µV; −1.11 µV ± 2.26 µV) (p < 0.001,
Bonferroni corrected). A significant main effect for Group
was found [F(1,69) = 44.38, p < 0.001, η2

= 0.39], with
N200 amplitude of the experimental group being stronger than
that of the control group. A significant Group × Electrode
interaction effect was also found: F(3,276) = 10.6, p < 0.001,
η2
= 0.13. Follow-up independent t-tests for this interaction

effect revealed that N200 amplitudes of the experimental
group (−1.86 µV ± 1.50 µV; −1.49 µV ± 1.31 µV;
−2.35 µV ± 1.29 µV) were significantly stronger than those of
the control group (0.23 µV ± 2.39 µV; 2.13 µV ± 1.97 µV;
0.23 µV ± 2.32 µV) over Cz, Pz, and FCz [t(73) = −4.57,
t(73)=−9.46, t(73)=−6.02, ps < 0.01; Bonferroni corrected].

P300 amplitude differences over the transfer phase
For the 250 ms RSI condition, 2 (Group: experimental group
vs. control group) × 4 (Electrode: Fz, Cz, Pz, FCz) × 3
(Stage: 4, 5, and 6) mixed ANOVA with P300 amplitude as
the dependent variable yielded a significant main effect for
Electrode [F(3,276) = 14.57, p < 0.001, η2

= 0.17], with
P300 amplitudes over FCz (0.43 µV ± 2.13 µV) and Pz
(0.01 µV ± 1.62 µV) being significantly stronger that those
over Fz (−1.50 µV ± 2.29 µV) and Cz (−0.58 µV ± 1.79 µV)
(ps < 0.001, Bonferroni corrected). Another significant
Group × Electrode interaction effect was also found:
F(3,276) = 9.65, p < 0.001, η2

= 0.12. Follow-up independent

t-tests for this interaction effect showed that P300 amplitude
in the control group (−0.56 µV ± 1.44 µV) was stronger than
that in the experimental group (−2.38 µV ± 2.59 µV) over Fz
[t(73)=−3.73, p < 0.01, Bonferroni corrected].

For the 750 ms RSI condition, the same mixed ANOVA
mixed ANOVA with P300 amplitude as the dependent variable
yielded a significant main effect for Electrode [F(3,276) = 22.56,
p < 0.001, η2

= 0.25], with P300 amplitude over Pz
(0.47 µV± 1.28 µV) being significantly stronger than those over
the other electrodes (−0.54 µV± 1.37 µV;−0.34 µV± 1.12 µV;
−0.57 µV ± 1.35 µV; ps < 0.001). A significant main effect
for Group was also found [F(1,69) = 14.24, p < 0.001,
η2
= 0.17], which was due to stronger P300 amplitude

in the control group than the experimental group. Another
significant Group × Electrode interaction effect was also
found: F(3,276) = 8.81, p < 0.001, η2

= 0.11. Follow-up
independent t tests for this interaction effect showed that P300
amplitudes over Fz, Pz, and FCz (−0.26 µV ± 1.53 µV;
1.38 µV ± 0.92 µV; −0.26 µV ± 1.66 µV) were significantly
stronger in the control group than those in the experimental
group (−0.81 µV ± 1.17 µV; −0.36 µV ± 0.97 µV;
−0.86 µV ± 0.92 µV) [t(73) = 2.00; t(73) = 7.41; t(73) = 2.05,
ps < 0.05; Bonferroni corrected].

DISCUSSION

Impact of RSI on Non-local Dependent
Transfer
Conflicts regarding the transferability of implicit knowledge
can be found in early artificial grammar learning studies.
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One of the main questions is whether implicit learning
involves the acquisition of perceptual patterns or abstract
rules. Reber (1967) argued that knowledge obtained from
implicit learning was the representation of an abstract rule.
However, some other researchers believed that people could
only acquire perceptual patterns in implicit learning, such
as repeated letter chunks (Perruchet and Vinter, 1998), or
specific artificial grammar examples (Vokey and Brooks, 1992;
Jamieson and Mewhort, 2009). Both points of view have
been supported by some empirical studies (Kuhn and Dienes,
2005, 2006, 2008; Pothos, 2007). However, neither of them
has been fully backed up. In light of this, we used a
completely abstract non-local dependent rule in the present
study. In this non-local dependent design, the SOC2 rule
in the transfer phase shares a higher-order structural rule
(i.e., the location of a third stimulus is determined by the
locations of previous two stimuli), rather than superficial
representations with the SOC1 rule in the training phase.
Therefore, a transfer effect depends on the acquisition of
the higher-order structure, rather than superficial patterns
of the training sequences. Our behavioral results showed a
significant transfer effect in the 750 ms RSI condition, with
no accurate description of the implicit rule being reported,
indicating that participants were able to acquire the deep
structural rule embedded in repeated sequences without full
consciousness. The fact suggests that implicit knowledge can be
abstract and transferable in nature under an appropriate RSI
condition.

Notably, no significant non-local dependent transfer
was found in the 250 ms RSI condition. Previous studies
suggest that 250 ms RSI elicits primarily unconscious
knowledge, which is bounded to perceptual patterns of
sequences and therefore hard to transfer (Cleeremans and
Jiménez, 2002; Kuhn and Dienes, 2006; Zhang and Liu, 2014).
With elongated RSI, the implicit learning process tends to
involve more and more conscious knowledge (i.e., abstract
and transferable knowledge), and eventually leads to an
effective transfer (Kuhn and Dienes, 2006). Consistently, the
absence of non-local dependent transfer in the 250 ms RSI
condition in the present study may be related to overly low
representation quality of implicit knowledge caused by a limited
RSI.

Interestingly, in the present study, no significant learning
effects were found in the control groups with 3 blocks of
training on SOC2 sequences. This result stands contrast to the
significant learning effects with 7 blocks of training on SOC1
sequences in the experimental groups (i.e., with relatively similar
sample sizes in the experimental groups and control groups).
This finding is consistent with the reports in previous studies,
as such that effective implicit learning could only occur with
appropriate length of training (Cleeremans and Jiménez, 2002;
Destrebecqz and Cleeremans, 2003; Goldstone and Sakamoto,
2003; Cleeremans, 2006). Our finding suggests that a qualitative
difference of non-local dependent learning effect can occur
between 3 blocks (i.e., 288 trials) and 7 blocks of training (672
trials). However, since no detection of learning effect in the early
training stage was set in the present study experimental design,

it could not tell us the exact numbers of training trial under
which the transition occurred. This query may be explored in
future studies using a revised design to detect the occurrence
of effective learning in early stage of non-local dependent
training.

Sensitivity of P300 to Changes in the
Training Phase
N200 has been though as an index of early processing
(i.e., coding and storing) of sequence information (Fu
et al., 2013). In the present study, N200 amplitude
during the training phase was not significantly different
between the 250 and 750 ms RSI experimental groups,
suggesting that it is not sensitive for detecting RSI
variation. However, this result may also suggest that RSI
variation does not affect early processing of sequence
information.

P300 has been suggested as indicating participants’ subjective
estimation of the material being processed, which is closely
related to increased consciousness (Stadler et al., 2006). Similar
to previous reports (Rugg et al., 1998; Atienza et al., 2003; Chu
and Liu, 2010), P300 amplitude was found to be significantly
stronger in the 750 ms RSI experimental group than that in the
250 ms RSI experimental group in the present study, which may
be caused by the increase of consciousness in the 750 ms RSI
experimental group (i.e., despite that no full consciousness was
achieve in this group). Moreover, given that effective transfer
effect was only found in the 750 ms RSI experimental group,
its strengthened P300 amplitude relative to that in the 250 ms
RSI experimental group during the training phase may suggest
a learning process involves abstract rules rather than perceptual
patterns.

Dissociated Transfer Effects Indexed by
ERP Components
Our ERP data of the transfer phase showed that N200
amplitude in the experimental group was significantly stronger
than that in the control group over Fz in the 250 ms RSI
condition, and over all central electrodes in the 750 ms RSI
condition According to Mecklinger (2010), N200 is related
to participants’ prediction in sequence learning. Strengthened
N200 amplitudes in the experimental groups may indicate
that the experimental groups were more prone to making
prediction of stimulus’ location in the SOC2 sequences based
on their knowledge of the SOC1 sequences, while the control
groups tended to perceive the SOC2 stimuli as randomly
presented.

In contrast, P300 amplitudes in the experimental groups
were significantly weaker than those in the control groups
during the transfer phase in both 250 and 750 ms conditions.
According to Kok (2001), increase of P300 amplitude over the
central electrodes indicates an increase of attention resources.
Therefore, this result may suggest that the control groups
activated more attention resources than the experimental groups
to process the sequences, which was completely novel to
them.
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CONCLUSION

Overall, the present study preliminarily proved that a non-local
dependent design was useful for differentiating the confounding
effects of perceptual similarity and structural identical in
traditional study paradigms.

Our behavioral results showed that, with enough processing
time (i.e., a 750 ms RSI), participants were capable of acquiring
abstract and transferable implicit knowledge of non-local
dependencies. Our ERP data showed that both N200 and P300
were useful for detecting non-local dependent transfer effect.
Increase in N200 amplitude indicates enhanced ability to predict
stimuli sequences and decrease in P300 amplitude indicates
less attention and effort needed. Moreover, Increase in P300
amplitude may suggest that the learning process involves the
acquisition of abstract knowledge (i.e., implicit rules) rather than
perceptual knowledge. Moreover, Both N200 amplitude and P300
amplitude varied significantly between the experimental and the
control groups, suggesting that they are useful in differentiating a
transfer process and a learning process.

Despite the fact that none of the participants achieved full
consciousness (i.e., based on their oral reports), training on SOC1
sequences was found to facilitate study on SOC2 sequences under
the 750 ms RSI condition, suggesting that abstract knowledge can
be acquired with partial consciousness. However, it is unknown
whether SOC1 training could continually facilitate the study on
SOC2 sequences, or only be temporally effective in the early stage.
This question can be explored in follow-up studies using more
SOC2 blocks.

BULLET POINTS

(1) Longer RSI increases the chance of successful non-local
dependent transfer.

(2) Increase in P300 amplitude during the training phase
indicates a learning of abstract rules rather than perceptual
knowledge.

(3) Increase in N200 amplitude and decrease in P300
amplitude during the transfer phase indicate a transfer
effect of SOC1 training to SOC2 learning.
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