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Although individual differences in complex problem solving (CPS) are well–established,

relatively little is known about the process demands that are common to different dynamic

control (CDC) tasks. A prominent example is the VOTAT strategy that describes the

separate variation of input variables (“Vary One Thing At a Time”) for analyzing the causal

structure of a system. To investigate such comprehensive knowledge elements and

strategies, we devised the real-time driven CDC environment Dynamis2 and compared it

with the widely used CPS test MicroDYN in a transfer experiment. One hundred sixty

five subjects participated in the experiment, which completely combined the role of

MicroDYN and Dynamis2 as source or target problem. Figural reasoning was assessed

using a variant of the Raven Test. We found the expected substantial correlations

among figural reasoning and performance in both CDC tasks. Moreover, MicroDYN

and Dynamis2 share 15.4% unique variance controlling for figural reasoning. We found

positive transfer from MicroDYN to Dynamis2, but no transfer in the opposite direction.

Contrary to our expectation, transfer was not mediated by VOTAT but by an approach

that is characterized by setting all input variables to zero after an intervention andwaiting a

certain time. This strategy (called PULSE strategy) enables the problem solver to observe

the eigendynamics of the system. We conclude that for the study of complex problem

solving it is important to employ a range of different CDC tasks in order to identify

components of CPS. We propose that besides VOTAT and PULSE other comprehensive

knowledge elements and strategies, which contribute to successful CPS, should be

investigated. The positive transfer from MicroDYN to the more complex and dynamic

Dynamis2 suggests an application of MicroDYN as training device.

Keywords: complex problem solving, complex dynamic control, dynamic decision making, strategies, knowledge

acquisition

INTRODUCTION

Complex problem solving (CPS) is a phenomenon that is investigated in many domains, ranging
from scientific discovery learning over industrial process control to decision making in dynamic
economical environments. At the heart of the scientific investigation of the phenomenon are
complex dynamic control (CDC) tasks (Osman, 2010) that are simulated in the laboratory.
Simulated CDC tasks provide the opportunity to study human deciding and acting in complex
situations under controlled and safe conditions.
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Currently, research on CPS is dominated by attempts to
construe it as one-dimensional ability construct, which means
that a single measure represents a person’s ability to solve
complex problems. To this end, Greiff and Funke (2010) and
Greiff et al. (2012) have developed the minimal complex systems
test MicroDYN. This CPS environment consists of a number of
linear systems with mostly three input and three output variables.
The systems are presented with various cover stories (e.g.,
how do different training schedules affect aspects of handball
performance?). The subjects have to explore each system, enter
their insights into a causal diagram (knowledge acquisition
phase) and subsequently steer the system to a given array of
target values by entering input values (knowledge application
phase). Each system is attended to for about 5min. MicroDYN
yields reliable measures of knowledge acquisition and knowledge
application (Fischer et al., 2015a). As both variables are highly
correlated, they are often combined to obtain a measure of
CPS ability (e.g., Greiff and Fischer, 2013). MicroDYN has been
validated using various criteria—predominantly school grades.
The typical result of these studies is that the combined CPS
measure accounts for 5% variance in school grades incremental
to figural reasoning (Schoppek and Fischer, 2015).

Consistent with our view of CPS as a multifaceted
phenomenon (Schoppek and Fischer, 2015), we claim to
use the denomination “complex problem solving” in a
broader sense. We adhere to the conception of Dörner
(1997), who characterizes complex problems as being complex
(many variables), interrelated (with many relations among
the variables), dynamic (with autonomous state changes),
intransparent (with not all information being available at the
outset), and polytelic (more than one goal has to be considered;
often goals are contradicting). As these characteristics are
not defined precisely, and can take shape to varying degrees,
CPS refers to a broad range of problems, which can differ
considerably in their requirements for being solved (Fischer
and Neubert, 2015). This could be considered a conceptual
weakness. However, for the labeling of broad phenomena
this is common practice. For example, the established label
“problem solving” has an even larger domain. Therefore,
assuming a one-dimensional construct “CPS” does not do
justice to the heterogeneity of the domain (Fischer and Neubert,
2015).

In order to make progress toward a deeper understanding of
CPS we propose a preliminary process model (see Figure 1). The
model is composed of assumptions that are established in the
CPS literature. We classify these assumptions as pertaining to
processes and structures.

One coarse process assumption divides CPS in the phases
(or sub-processes) of knowledge acquisition and knowledge
application (Fischer et al., 2012). Knowledge acquisition refers to
the requirement of detecting the causal structure of the system
by means of appropriate exploration strategies1. Knowledge

1Although we would prefer to distinguish between tactics (= concrete methods for
accomplishing goals), and strategies (= abstract plans), we use the more general
term “strategy” for both, because the distinction has not become widely accepted
in cognitive science.

application means using the acquired knowledge to plan and
implement interventions in order to reach given target states.
This assumption of Fischer et al. (2012) originates in the
Dynamis approach by Funke (1991, 1993) and underlies the
MicroDYN paradigm (Greiff and Funke, 2009). In view of
the widely spread use of this model, we call it the “standard
model of CPS.” A second classification, proposed by Osman
(2008, 2010), distinguishes between monitoring, which “refers
to online awareness and self-evaluation of one’s goal-directed
actions” (Osman, 2008, p. 97), and control, which refers to
“the generation and selection of goal-directed actions” (ibid.,
p. 97). As Osman (2008) operationalized monitoring through
observation of exploration behavior of oneself or others,
the kinship between monitoring and knowledge acquisition
becomes obvious. However, control pertains to knowledge
application and exploratory manipulations (which are part
of the knowledge acquisition sub-process of the standard
model).

With respect to structure, Schoppek (2002) has proposed a
classification of knowledge types that are learned during and/or
applied to CPS: Structural knowledge is knowledge about the
causal relations among the variables that constitute a dynamic
system. I-O knowledge (shorthand for “input-output knowledge”)
represents instances of interventions together with the system’s
responses. Strategy knowledge represents abstract plans of how to
cope with the CDC problem. An example is the awareness of the
control of variables strategy (Chen and Klahr, 1999), also known
as VOTAT (Vary One Thing At a Time, Tschirgi, 1980).

VOTATwas first described in the context of testing hypotheses
in multivariate stories (Tschirgi, 1980). In the context of CDC
tasks, it means varying a single input variable in order to observe
its effects on the output variables. The extent of using this
strategy predicts better structural knowledge and better control
performance (Vollmeyer et al., 1996; Wüstenberg et al., 2014).

A related strategy is to apply an impulse to an input variable:
The problem solver sets one or more input variables to certain
values greater than zero, then sets the values back to zero again. In
the following simulation steps where all input variables are zero,
the course of the output variables informs the problem solver
about side effects and eigendynamics of the output variables2.
Schoppek (2002) instructed this strategy to participants in an
experiment that involved a CDC task of the Dynamis type and
found better structural knowledge in the trained group (see also
Beckmann, 1994 and Schoppek and Fischer, 2015). Evidence
about the usefulness of this strategy for controlling MicroDYN
has recently been reported by Greiff et al. (2016) and Lotz et al.
(2017). These authors refer to the strategy as non-interfering
observation or NOTAT. We use the label PULSE, following
Schoppek’s (2002) characterization as setting an impulse.

Back to the process model: Processual and structural
assumptions are different perspectives rather than alternative
conceptions. For example, in the knowledge acquisition phase the

2A side effect is an effect of one output variable on another; eigendynamic is the
effect of an output variable on itself (Funke, 1992). Considerations about how to
deal with eigendynamic can be traced back to the early days of CPS (Dörner, 1980;
Beckmann, 1994; Dörner and Schaub, 1994).
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FIGURE 1 | Visualization of the preliminary process model. Brown arrows denote processes that require much working memory capacity; yellow arrows denote

processes that require little working memory capacity. The arrows originating from “strategy knowledge” indicate that this knowledge determines most of the

displayed processes. Gray arrows indicate that the processes can iterate within the same problem.

goal is to gain structural knowledge about a system by application
of appropriate strategies such as VOTAT, which are part of
the strategy knowledge of the problem solver. The execution of
VOTAT in turn is a process.

Our process model includes assumptions about the transfer
distance of the different knowledge types (Schoppek, 2002).
Structural knowledge about one specific System A cannot be
transferred to another System B with a different structure (far
transfer, see Paas, 1992). However, it can be transferred to the
problem of reaching a different goal state in System A (near
transfer). In contrast, strategy knowledge acquired in the context
of System A can likely be transferred to System B. This is
particularly plausible when the strategy refers to the acquisition
of structural knowledge. For example, if participants learn to
apply the VOTAT strategy to System A successfully, we expect
them to try it also when confronted with a new System B. Such
cross-situational relevance has been shown repeatedly for the
VOTAT strategy (Müller et al., 2013; Wüstenberg et al., 2014).
We indicate the fact that VOTAT can be applied to a wide range
of problems by referring to it as a comprehensive strategy.

Further assumptions of our preliminary processmodel pertain
to the role of working memory (WM). We assume that the
various strategies that serve knowledge acquisition are differing
with respect to WM requirements. A simple trial and error
strategy, associated with lowWM load, is not efficient for learning
the causal structure of a system, but may be suitable for acquiring
I-O knowledge—which is probably often memorized implicitly
(Dienes and Fahey, 1998; Hundertmark et al., 2015). The VOTAT
strategy on the other hand puts a heavy load on WM and
is suitable for acquiring structural knowledge. To substantiate

such assumptions, we adopt the terminology of cognitive load
theory (Sweller, 1988; Sweller and Chandler, 1994). Solving a
new complex problem yields intrinsic cognitive load. Corbalan
et al. (2006) describe this to the point: “In terms of cognitive load
theory the difficulty of a task yields intrinsic cognitive load, which
is a direct result of the complex nature of the learning material.
That is, intrinsic cognitive load is higher when the elements of the
learning material are highly interconnected (. . . ) and lower when
they are less interconnected” (p. 404). Cognitive load associated
with learning is called “germane load.” As the capacity of WM
is limited, high intrinsic load leaves little capacity for germane
load, thus leading to poor learning. Together, these assumptions
predict that the difficulty and complexity of a source problem
restrain the learning of generalizable knowledge about structures
or strategies, leading to poor transfer. This prediction has been
confirmed by Vollmeyer et al. (1996) in the context of CPS.

In summary, to learn comprehensive strategies such as
VOTAT, learning opportunities should not be too complex.
We suppose that transfer experiments are particularly useful
for investigating the reach or comprehensiveness of knowledge
elements and strategies.

To test some of the predictions of our preliminary process
model, we have developed Dynamis2, a new CPS environment
that accentuates the aspect of dynamics, which has been central
in early work on CPS (e.g., Dörner and Schaub, 1994). Like
MicroDYN, it is based on Funke’s (1991, 1993) Dynamis
approach, which uses linear equations for calculating state
changes of the system’s variables. Unlike the traditional approach,
Dynamis2 simulates system dynamics in real time, which means
that the state of the system is mandatorily updated every second.
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The user can apply inputs at any time. A typical run with
Dynamis2 comprises 250 simulation steps. As much of the
research with CDC tasks has been done with systems whose states
are updated in less than 9 time steps—triggered by the user—
we regard Dynamis2 as an important step toward investigating
dynamic decision making that deserves this label (cf. Fischer
et al., 2015b; Schoppek and Fischer, 2015).

The primary goal of the present study was to test assumptions
about the transfer of knowledge elements, in particular strategic
knowledge, from one CDC task to another. We did this with
a transfer experiment where the source function and the target
function of two CPS environments were completely combined3.
This enabled us to estimate transfer effects in both directions.
Secondary goals were to explore the psychometric properties of
Dynamis2, and to use it as validation criterion for the more
established MicroDYN (Greiff et al., 2012). MicroDYN has not
been validated extensively with other standardized CPS tasks (but
see Greiff et al., 2013, 2015; Neubert et al., 2015). Therefore,
it appears worthwhile to test the expectation that MicroDYN
predicts performance in Dynamis2 over and above intelligence.
In a fashion that was common at the time when we planned
the experiment, we used figural reasoning as a proxy for general
intelligence. We will discuss the implication of this decision and
its relation to recent findings about broader operationalizations
of intelligence in the discussion section (Kretzschmar et al., 2016;
Lotz et al., 2016).

We expected (1) positive transfer from MicroDYN to
Dynamis2, mediated by the VOTAT strategy. As demonstrated
by Wüstenberg et al. (2014), the extent of using this strategy
predicts performance in MicroDYN. As VOTAT was in the
focus of discussion about strategies in CDC tasks at the
time when we designed the experiment, we did not explicitly
expect PULSE as a mediator. However, we investigated the
role of that strategy in post-hoc analyses. We expected (2)
less to no transfer from Dynamis2 to MicroDYN, because the
former is more difficult than the latter. Due to the quick
time lapse of Dynamis2, the learner has to coordinate several
concurrent subtasks in real time: Observing the course of the
system, analyzing the effects of their actions, and planning
new interventions. In terms of cognitive load theory (Sweller,
1988; Sweller and Chandler, 1994), this results in much more
intrinsic cognitive load than MicroDYN, where the environment
guides the course of action. Therefore, controlling Dynamis2
leaves less WM capacity open for germane load, which is
necessary for conscious learning (Rey and Fischer, 2013).
Based on recent evidence on the relation between CPS and
intelligence (Wüstenberg et al., 2012; Greiff et al., 2013), we
expected (3) that figural reasoning andMicroDYN should predict
performance in Dynamis2. MicroDYN should explain unique
variance in Dynamis2 (beyond figural reasoning) due to similar
requirements (linear equation systems, knowledge acquisition,
knowledge application).

3Problems that are used for learning in a transfer design are called source problems;
problems in the transfer phase are called target problems. Combining refers to
the fact that all levels of the factors “CPS environment” and “Function (source vs.
target)” were combined.

METHODS

We first introduce the instruments and the tasks we used in
the experiment, including the measures for performance and
proceeding, followed by the description of the design, the
participants, and the procedure. Although some of the measures
were only subject to exploratory analyses, which we conducted
after testing the hypotheses, we report their operationalization
here.

Figural reasoning was measured with a modified version of
theWMT (“WienerMatrizentest”, Formann et al., 2011). Because
the original test was constructed for adolescents, we replaced two
items of the original test by four more difficult items from the
original APM (Raven et al., 1994). The highest possible score was
20 points. Although matrix tests load high on general intelligence
assessed with broader batteries (Johnson and Bouchard, 2005),
we refer to our measure as “figural reasoning”.

Wason task: This task requires interactive hypothesis testing
(Wason, 1960). Participants are shown a list of three numbers
and are asked to find out the rule that underlies the list. For
example, if the list is “2 4 6,” the rule might be “three ascending
even numbers” or simply “three different numbers.” To test their
hypotheses, participants enter new lists and are given feedback
whether the lists conform to the rule or not. To solve problems
of this kind, it is important to try to falsify one’s hypotheses.
Many subjects fail the task because they focus on confirming
their hypotheses (Gorman and Gorman, 1984). We presented the
task with three different rules. (The first was the original rule
used by (Wason, 1960): “any ascending sequence”. AF devised
the other two rules in the style of the first rule). As a performance
measure (“Wason score”) we used the number of correctly
identified rules.

Complex Dynamic Control Tasks
Both CDC tasks we used in the experiment are based on linear
equation systems with up to three input variables and up to three
output variables (cf. Fischer et al., 2015a). The state of the system
is calculated in discrete time steps as a function of the current
state of the input variables and the state of the output variables
from the preceding time step. We refer to these time steps as
cycles. Figure 2 shows an overview of the terminology we used
to describe the CDC tasks. Details about the individual systems
are reported in the Appendix.

MicroDYN: This CDC is constructed in the style of a test,
consisting of several scenarios. Each scenario is defined by a
specific equation system and a corresponding cover story. The
process of working on the task is the same for each scenario: First,
the problem solver has to explore the system’s causal structure by
repeatedly varying the input variables and monitoring the effects
(knowledge acquisition). To complete a cycle and see the effect
of their actions the problem solver has to click a button (labeled
“apply”). The problem solvers enter their insights about the
systems as arrows in a causal diagram. There is a time restriction
of 180 s for the exploration phase of each item. After this, the
problem solvers are given goal states for each output variable that
they must achieve within 90 s by manipulating the input variables
up to four cycles in a row.
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FIGURE 2 | Delineation of the design and the terminology used to describe the CDC tasks. KA stands for “knowledge acquisition.”

To assess structural knowledge, we had participants draw
arrows in a causal diagram at the bottom of the screen. An arrow
represented an assumed causal relation. A causal diagram was
rated correct if it contained all causal relations of the system
and no relation that was not simulated. Structural knowledge in
the knowledge acquisition phase was scored by summing up the
ternary graded degree of correctness over all causal diagrams (0:
more than one error, 1: one error, 2: no errors).

Performance in the knowledge application phase was scored
by summing up the ternary graded degree of target achievement
across the six items (0: targets missed, 1: targets partially
met, 2: targets totally met; a single target was coded as met
when the deviation was no larger than ±1). As an overall
performance measure, we added the knowledge acquisition score
and the knowledge application score and divided the sum by
two.

To determine the problem solvers’ strategies, we analyzed the
log files. For each cycle we observed if all input-variables were
set back to zero (PULSE strategy, see below). If only one variable
was set to a value different from zero at least once (VOTAT
strategy), it was determined for which variable this was the case.
Over all cycles of the exploration phase, we scored the proportion
of input variables for which the VOTAT strategy was applied,
and whether or not the PULSE strategy was applied at least
once (0–1). These values were averaged across the scenarios to
represent the extent of using each strategy. For example, when
there are three input variables in a system and the participant

used VOTAT for two of them at least once, the VOTAT measure
is 0.66.

Dynamis2 was developed in order to emphasize the dynamic
aspect of complex problem solving (Schoppek and Fischer, 2015).
Like in the original Dynamis approach (Funke, 1991, 1993),
the systems are simulated using sets of linear equations. The
crucial difference is that Dynamis2 is real-time driven, which
means that the simulation is updated every second, regardless if
the subject manipulates the input variables or not. This makes
the dynamics of the simulated systems more tangible than
in extant CPS environments such as the business microworld
Tailorshop, MicroDYN, Genetics Lab, Cherry Tree (Beckmann
and Goode, 2014), etc. In addition, genuine time pressure results
for the subjects. Figure 3 shows the causal diagram of one of
the systems used in the experiment. Subjects can manipulate the
three medicines Med A, Med B, and Med C (input variables) in
order to control the blood values of three fictitious substances
Muron, Fontin, and Sugon (output variables). Interventions can
be entered for one or more input variables and applied at any
time by clicking the “apply” button. Each scenario of Dynamis2
consists of a run (250 cycles) of free exploration, followed by two
runs where subjects are asked to reach and maintain a given goal
state (e.g., Muron = 100, Fontin = 1,000). Performance in the
goal runs is measured by goal deviation according to Equation 1,
where n is the number of cycles (here 250), k is the number of
goal variables, xij is the value of variable j in cycle i, gj is the goal
value of variable j, and s is the cycle when the learners entered
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FIGURE 3 | Diagram of the causal structure of one of the Dynamis2 systems used in the experiment. The numbers denote coefficients in the linear equations that

determine the state of each output variable. For example, the state of Muron at time t is given by Muront = 0.1*Muront−1 + 2.0*MedAt.

their first input.

dev = ln

(

n
∑

i=s

∑k
j=1

∣

∣xij − gj
∣

∣

∑k
j=1 gj

)

(1)

Because this measure is hard to interpret, we centered it on the
grand mean and reversed the scale. The resulting score thus has
the same orientation as the other performance measures: Higher
values represent better performance.

After completion of the exploration phase, we had participants
draw arrows in diagrams on paper. As a measure of structural
knowledge, we subtracted the number of wrongly drawn relations
from the number of correctly drawn relations and divided the
difference by the number of all possible relations.

As a measure of strategy, we assessed VOTAT analogously to
MicroDYN. A VOTAT event in Dynamis2 was defined by the
manipulation of a single input variable, followed by at least five
cycles (i.e., seconds) with no interventions. For a comprehensive
measure of using the strategy, we calculated the proportion of
input variables for which the VOTAT strategy was applied at least
once in the exploration phases of each of the three scenarios.
We averaged these proportions across the scenarios. Likewise,
we defined a PULSE event by setting all input variables (back)
to zero for at least five cycles and counted these events over
all exploration runs. The reason why the operationalizations of
PULSE differ between the two CDC tasks is that the scenarios in
Dynamis2 are much longer than inMicroDYN. Due to the higher
difficulty of Dynamis2 scenarios (longer runs, more dynamics),
it can be quite reasonable to repeat PULSE interventions, for
example to test hypotheses or to help memorizing certain effects.

Design
We used a transfer design that allowed estimating transfer effects
in both directions. As can be seen in Figure 2, there were
four experimental conditions. In two conditions, subjects had
two blocks of either MicroDYN (condition MM) or Dynamis2

(condition DD). Block 1 in these conditions consisted of separate
Items that were not incorporated into the calculation of transfer
effects. A third condition had one block of MicroDYN, followed
by one block of Dynamis2 (condition MD). The fourth condition
started with one block of Dynamis2, followed by one block
of MicroDYN (condition DM). Participants were randomly
assigned to one of the four conditions.

In MD, DM, and the second block in MM we applied six
MicroDYN scenarios. In the first block of MM, the first scenario
was declared as practice scenario. All blocks of Dynamis2
consisted of three scenarios (with a different set of scenarios in
the first block of DD).

Participants
One hundred-sixty-five subjects participated in the experiment.
Students of diverse majors were recruited from the University
of Heidelberg (n = 83) and from the University of Bayreuth
(n = 82). Ethical approval was not required for this study
in accordance with the national and institutional guidelines.
Participation was in full freedom using informed consent.

We excluded three cases from the dataset due to dubious
behavior during the experiment (not complying with the
instructions; aborting the experiment). In other three cases,
we imputed missing values of the variables Dynamis2 score or
MicroDYN score. We applied multiple regression imputation
based on the cases in the respective condition. The resulting
dataset comprised N = 162 cases, 40 in the DD condition, 41
in DM, 42 in MD, and 39 in MM. The four conditions did not
differ in figural reasoning, age and sex (all Fs < 1).

Procedure
The experiment took place in two sessions. Session 1 began
with a short introduction and the administration of the figural
reasoning test with paper and pencil. Next, subjects worked on
the three items of the Wason task. Session 1 ended with the first
block of complex problem solving tasks, according to the design:
either six items MicroDYN or three scenarios Dynamis2 (with
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two performance scores each). In Session 2, which took place 2
days after Session 1, we administered the second block of complex
problem solving tasks, followed by two other tasks that are not
reported in the present paper (a computerized in-basket task and
an item from the wisdom questionnaire by Staudinger and Baltes,
1996). Each session lasted about 90min.

RESULTS

For the statistical analyses, we used an alpha level of 0.05. In
addition to the significance levels, we report Cohen’s (1988) effect
sizes or partial η2. The sample size was adequate for detecting
at least medium-sized effects (d = 0.5) with a power of 0.72
for simple mean comparisons and a power of 0.68 for one-way
ANOVA (Faul et al., 2007). Descriptive statistics of the most
important variables are shown in Table 2.

To assess the reliability of the CPS measures, we calculated
Cronbach’s alpha values using the results of individual scenarios
as items.We obtained α= 0.70 for theMicroDYN score (6 items),
and α = 0.64 for the Dynamis2 score (6 items). The measure
for figural reasoning, assessed with the extended WMT, yielded
α = 0.75.

Figure 4A shows the means of the Dynamis2 scores in the
three conditions that involved Dynamis2 (error bars denote
95% confidence intervals). The value in the DD group denotes
performance in Block 2. We found an overall effect of condition
[F(2, 121) = 9.11, p< 0.001, partial η2 = 0.132], with performance
linearly increasing from the DM group to the DD group. A
planned comparison between the DM and the MD group yielded
a significant advantage of the MD group [t(81) = 1.82, one-sided
p < 0.05, d = 0.40]. This indicates that practicing MicroDYN
in Block 1 is beneficial for Dynamis2. We calculated the amount
of transfer using Katona’s (1940) formula (Equation 2, cited after
Singley and Anderson, 1989).

%transfer =
CB1 − EB1

CB1 − CB2
× 100 (2)

The denominator of Equation (2) describes the amount of
improvement when the same type of problem is solved a second
time (C stands for control group, E for experimental group,
B for the first and second occasion). The numerator describes
the difference between the baseline performance (CB1) and the
performance of the experimental group in the target problem
(where the experimental group has solved a different type of
problem before). To estimate the transfer from MicroDYN to
Dynamis, we used the mean performance in the first block of
the DM group as baseline performance CB1, performance in
the second block of the DD group as CB2, and performance
in the second block of the MD group as EB1. The calculation
results in an estimate of 40% transfer from MicroDYN to
Dynamis2. Hence, the part of Hypothesis 1 that assumed transfer
is supported by the data.

A different picture emerges with the MicroDYN scores
(Figure 4B). We found significant differences between the
conditions [F(2, 120) = 4.14, p < 0.05, partial η2 = 0.065], but
no difference between the DM and the MD group [planned
comparison, t(81) = 0.32, two-sided p = 0.75, d = 0.07]. This
means that as expected in Hypothesis 2, there is much less
transfer from Dynamis2 to MicroDYN. Stating no transfer is
not warranted because of the limited statistical power of our
experiment.

Prediction of Dynamis2 Performance
Table 1 shows the bivariate correlations between the
performance measures, based on pairwise deletion (i.e., the
largest possible part of the sample, respectively). For example,
only three fourths of the sample have worked on MicroDYN
(the MD, DM, and MM groups; other three fourths have worked
on Dynamis2—the MD, DM, and DD groups). We found the
expected significant correlations among figural reasoning and
the two CPS tasks. Performance in MicroDYN and Dynamis2
are more closely related to each other than to figural reasoning.
Performance in the Wason task, which is interactive like the

FIGURE 4 | Means and 95% confidence intervals of the performance scores in Dynamis2 (A) and MicroDYN (B). In the MM and DD conditions, the results of the

second block are displayed.
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CDC tasks, but not dynamic, correlates slightly, but mostly
still significant with all other measures. The partial correlation
between MicroDYN and Dynamis2 performance when figural
reasoning is controlled for, is r = 0.422∗∗.

To analyze how MicroDYN and figural reasoning predict
performance in Dynamis2 we conducted a regression analysis
and a commonality analysis (see Fischer et al., 2015a). These
analyses are based on the part of the sample who worked on
bothMicroDYN and Dynamis2 (n= 83). Therefore, the bivariate
correlation coefficients can differ from those shown in Table 1.
The multiple regression coefficient is R = 0.54. Both predictors
explain significant proportions of variance. The MicroDYN
score explains a unique share of 15.4% variance (β = 0.402,
p < 0.001); figural reasoning explains a unique share of 7.4%
(β = 0.279, p < 0.01). The confounded variance explains 6.2%
in the criterion. Altogether, these results support Hypothesis
3 that figural reasoning and MicroDYN predict performance
in Dynamis2 (and that MicroDYN explains unique variance in
Dynamis2, which suggests similar requirements).

Mediation of Transfer
To test our hypothesis that transfer from MicroDYN to
Dynamis2 is mediated by use of the VOTAT strategy we checked
three indicators. If all three indicators are positive, the hypothesis
is confirmed.

Indicator 0 is a significant correlation between the amount of
using the strategy and performance in Dynamis2. This is a basic
requirement that is necessary but not sufficient for demonstrating
a mediation. When there is no advantage of using a certain
strategy, the strategy cannot be considered to explain a transfer
effect.

Indicator 1 is a significant difference of the amount of using
the strategy between the MD and the DM group. When the MD

TABLE 1 | Bivariate correlation coefficients between various performance scores

(*p < 0.05, **p < 0.01).

Fig. reasoning Wason MicroDYN

Wason 0.196* (n = 160)

MicroDYN 0.356** (n = 122) 0.215* (n = 121)

Dynamis2 0.342** (n = 123) 0.171 (n = 122) 0.465** (n = 83)

group has learned to use VOTAT in MicroDYN, then this group
should use this strategy more often in Dynamis2 than the DM
group who lacks this experience.

Indicator 2 provides a more challenging test of the hypothesis.
It requires that there is a significant correlation between the use
of the strategy in MicroDYN and performance in Dynamis2,
particularly in the MD group.

As the correlation between use of VOTAT in Dynamis2 and
performance in Dynamis2 is significant, but not substantial
(r = 0.28∗∗), Indicator 0 can be viewed as ambiguous and
further tests will probably fail, because this indicator is essential.
Indicator 1 is positive: There is a small, but significant difference
in the use of the VOTAT strategy between the DM group
(M = 0.82, s = 0.19) and the MD group [M = 0.89,
s = 0.16, t(81) = 1.88, one-sided p = 0.032, d = 0.46].
However, Indicator 2, the correlation between use of VOTAT
in MicroDYN and performance in Dynamis2, r = 0.27 (MD
group), does not support the hypothesis that transfer from
MicroDYN to Dynamis2 is mediated through VOTAT. Hence,
the part of Hypothesis 1 that refers to attributing the transfer
to the use of VOTAT is not convincingly supported by
the data.

To find an explanation of the transfer effect we searched for
further strategic behaviors post-hoc. One of them is to set one
or more input variables to values greater than zero, then setting
all input variables back to zero for a specified number of time
steps (one in MicroDYN, five in Dynamis2). This is a useful
strategy for analyzing the momentum of the output variables. We
dubbed this strategy “PULSE.” For quantifying this behavior, we
counted how often PULSE occurred in all exploration rounds.
For that variable, all indicators to mediation were positive:
The correlation between PULSE and control performance in
Dynamis2 is r = 0.40∗∗ (Indicator 0); there are significant
differences in the use of the strategy between the relevant groups
[Indicator 1: DMgroup:M= 1.85, s= 2.47,MD group:M= 5.24,
s = 3.88; t(80) = 4.70, p < 0.001, d = 1.04]; and also the use of
PULSE in MicroDYN correlates substantially with performance
in Dynamis2 (Indicator 2: r = 0.46∗∗ in the MD group). So the
transfer fromMicroDYN to Dynamis2 can partially be explained
by the fact that many subjects have learned the strategy of
deploying pulses in MicroDYN and applied it successfully to
Dynamis2.

TABLE 2 | Descriptive statistics of important variables of the experiment in the four experimental conditions (Rt: theoretical range; Re: empirical range; MDyn: MicroDYN;

Dyn2: Dynamis2).

MD DM MM DD

Rt M (s) n Re M (s) n Re M (s) n Re M (s) n Re

Performance MDyn 0.0–12.0 6.90 (2.06) 42 0.0–11.0 6.75 (2.36) 41 0.5–10.5 8.17 (2.81) 39 1.5–12.0

Performance Dyn2 – −0.03 (0.43) 42 −0.83–1.0 −0.21 (0.48) 41 −0.96–1.1 0.24 (0.52) 40 −1.47–1.26

VOTAT MDyn 0.0–1.0 0.85 (0.21) 42 0.12–1.0 0.91 (0.16) 41 0.35–1.0 0.85 (0.24) 39 0.12–1.0

VOTAT Dyn2 0.0–1.0 0.89 (0.16) 42 0.44–1.0 0.82 (0.19) 41 0.33–1.0 0.94 (0.11) 40 0.56–1.0

PULSE MDyn 0.0–1.0 0.70 (0.35) 42 0.0–1.0 0.61 (0.35) 41 0.0–1.0 0.70 (0.38) 39 0.0–1.0

PULSE Dyn2 0–20+ 5.24 (3.88) 42 0–14 1.85 (2.47) 40 0–8 4.02 (3.91) 40 0–15

Figural Reasoning 0–20 14.7 (3.1) 42 6–20 14.2 (2.8) 41 8–19 14.1 (4.2) 39 3–20 14.7 (3.3) 40 6–20
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Exploratory Analyses
So far, the reported results largely support our hypotheses.
As we also assessed structural knowledge in Dynamis2, using
structural diagrams like those inMicroDYN, we could test further
predictions of the preliminary process model4. If VOTAT or
PULSE are important strategies for the acquisition of structural
knowledge in Dynamis2, their use should correlate with the
knowledge scores in each problem.

When we aggregated the scores across the three problems,
the measures are correlated in the range of r = 0.35∗∗

(PULSE—knowledge) to r = 0.41∗∗ (knowledge—performance).
When controlling for figural reasoning, the correlations
are still significant (PULSE—knowledge: r = 0.35∗∗,
knowledge—performance: r = 0.39∗∗).

Whenwe look at the individual problems, the pattern becomes
more ambiguous: The correlations between the number of
PULSE events and the structural knowledge scores in three
Dynamis2 problems are r1 = 0.11, r2 = 0.34∗∗, and r3 = 0.12.
The correlations between structural knowledge scores and
performance in these problems are r1 = 0.25∗∗, r2 = 0.48∗∗,
and r3 = 0.16. So the expected role of knowledge acquisition is
corroborated only in Problem 2.

This pattern of results may indicate that the low correlations in
the single problems might have been due to reliability problems.
However, overall this is not convincing evidence for an essential
function of complete structural knowledge for performance in
controlling dynamic systems. Correlations around r = 0.40
involve a noticeable number of cases that do not conform to the
relation suggested by the coefficient. As an example, we depict

4We report this “under exploratory analyses”, because we had not put forward this
hypothesis ex ante. In view of the current debate about false-positive results in
psychological research (Pashler and Wagenmakers, 2012; Ulrich et al., 2016), we
attach much importance to clearly distinguishing between the context of discovery
and the context of justification.

in Figure 5 the progress of the system’s variables of a participant
with low structural knowledge (standard score z = −1.10) who
nonetheless was successful in goal convergence (z = 1.68). The
goals were Fontin= 1,000 and Muron= 100.

To compare our results with studies that were published after
our experiment was run (e.g., Greiff et al., 2016), we report
another post-hoc analysis of the correlations between strategy
measures and performance in both CDC tasks. VOTAT and
PULSE are more closely related in MicroDYN (r = 0.524∗∗)
than in Dynamis2 (r = 0.330∗∗). The notion that using PULSE
is more significant for successful problem solving in Dynamis2
than in MicroDYN is supported by the fact that the partial
correlation between PULSE and performance in Dynamis2
controlling for VOTAT is only slightly lower (r = 0.344∗∗)
than the corresponding bivariate correlation (r = 0.401∗∗). In
MicroDYN, controlling for VOTAT changes the correlation from
r = 0.615∗∗ to r = 0.410∗∗.

DISCUSSION

By and large, our hypotheses are supported by the data:
Performance in MicroDYN explains a unique proportion
of variance in Dynamis2. We found positive transfer from
MicroDYN to Dynamis2, but not in the opposite direction.
This null result has to be interpreted with the reservation
that the statistical power of the respective test was rather low
(0.72). It may be that studies with larger samples could detect
transfer effects from Dynamis2 to MicroDYN. However, the
asymmetry of the transfer effects is obvious in our experiment.
The assumption that transfer was mediated by using VOTAT was
not clearly supported; instead, it was a different strategy called
PULSE that could explain the transfer effect. PULSE is defined
by setting input variables to zero and observing the system for a
number of time steps (≥1 in MicroDYN and ≥5 in Dynamis2).

FIGURE 5 | Course of output variables produced by a participant with low structural knowledge. Note that the participant still approached the goals well

(Fontin = 1,000, Muron = 100). There were also participants with an inverted constellation: good structural knowledge and poor control performance.
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This strategy—Greiff et al. (2016) refer to it as “non-interfering
observation behavior”—is helpful for identifying eigendynamics
(Schoppek and Fischer, 2015).

Exploratory analyses have shown that the relationships
between using PULSE and the resulting structural knowledge,
as well as between the latter and control performance are not as
close as one might expect. Only when the respective scores were
aggregated, we found substantial correlations.

With regard to aggregated results, our findings can be
interpreted as supporting the standard model of CPS (Fischer
et al., 2012), which assigns a critical role to knowledge
acquisition (and strategies for acquiring knowledge) for the
control of complex dynamic systems. As this has been shown
before repeatedly (Funke, 1992; Osman, 2008; Greiff et al.,
2012; Wüstenberg et al., 2012), we also want to discuss the
controversial details and limitations of our findings later on.
Another positive statement is that MicroDYN was successfully
validated. Explaining a unique proportion of 15.4% variance
in Dynamis2 performance is a considerable accomplishment,
given the differences between these two classes of problems:
More dynamics and momentum in Dynamis2, real-time vs. user-
controlled course of events, 250 vs. on average 8 time steps
(median). Also, consider the fact that the measures in the present
study are manifest variables, whereas many comparable studies
report proportions based on latent variables, which raises the
amount of explained variance. For example, with regard to
latent variables Greiff et al. (2015) report a variance overlap
of 24% between MicroDYN and MicroFIN after partialling
out figural reasoning (MicroFIN is another class of minimal
complex systems, based on finite automata, but administered
in a way similar to MicroDYN, cf. Greiff et al., 2013). Between
MicroDYN and Tailorshop, they report an overlap of 7%.
However, the respective study has been criticized for several
methodological shortcomings, such as having administered
the Tailorshop inadequately, namely in one round without a
separate exploration phase (Funke et al., 2017; Kretzschmar,
2017). Altogether, the variance overlap between MicroDYN and
Dynamis2 (on top of the variance that both tasks share with
figural reasoning) fits neatly within the range of values from
comparable studies.

In recent studies, it turned out that the established finding
that MicroDYN explains variance in school grades over and
above figural reasoning, cannot be replicated when intelligence
is operationalized broadly (Kretzschmar et al., 2016; Lotz et al.,
2016). This casts doubt on the distinctiveness perspective that
construes CPS as an ability separate from general intelligence
(Kretzschmar et al., 2016). However, Kretzschmar et al. (2016)
still found unique covariance between MicroDYN andMicroFIN
not attributable to intelligence, which can be viewed as
supporting the distinctiveness view. Consistent with this, we
also found considerable unique covariance between the two
different CDC tasks. Irrespective of the difficult question if CPS
should be construed as an ability construct in its own right, our
results clearly confirm the notion that figural reasoning facilitates
complex problem solving.

From a practical perspective, our results suggest that
MicroDYN can be used as training device for more dynamic

task environments. However, as there are numerous instances
of rather ineffective CPS training (e.g., Schoppek, 2002, 2004;
Kretzschmar and Süß, 2015) this prediction needs to be
confirmed in further studies. We shall discuss the question
what kind of real life situations are modeled by MicroDYN or
Dynamis2 below.

The finding that not VOTAT could explain the transfer
effect from MicroDYN to Dynamis2 but the related PULSE
tactic points to the plurality of potentially relevant tactics or
strategies. Post-hoc analyses showed that our findings correspond
with recent analyses by Greiff et al. (2016), who found that
controlling for VOTAT substantially reduces the relation between
PULSE and knowledge acquisition in MicroDYN. However, we
did not find this pattern of results in Dynamis2, where PULSE
plays a discrete role. We consider two possible explanations
for this difference: First, whereas all Dynamis2 scenarios
involved eigendynamics, this was the case for only half of the
MicroDYN scenarios (which is common practice in research with
MicroDYN). Second, the real-time character of Dynamis2 makes
it more obvious to vary only one variable at a time (even though
it was possible to vary more variables, because the input values
were transferred to the running simulation only when an apply
button was pressed). Maybe a certain proportion of VOTAT
events in Dynamis2 was not actually analyzed by the participants,
but rather happened as a byproduct of their way of handling the
CDC environment.

Findings like these raise questions about the generality of
problem solving strategies: If the viability of strategies such as
VOTAT and PULSE differs between certain problem classes,
they could be used for classifying complex problems. Many
studies have confirmed the significance of VOTAT for scientific
reasoning as well as for CDC tasks from the Dynamis family
(Vollmeyer et al., 1996; Chen and Klahr, 1999; Wüstenberg
et al., 2014). Our results are an exception to this series, as they
highlight the importance of PULSE. However, on a conceptual
level the PULSE strategy is closely related to VOTAT and could
be considered an extension to that strategy. On the other hand,
there are many CDC tasks in- and outside the laboratory that
obviously cannot be accomplished using experimental tactics like
VOTAT. For example, when pilots have to handle an in-flight
emergency, they are not well advised to adopt a VOTAT strategy.
Generally, VOTAT is not an option in situations that forbid free
exploration. In the discussion about the relationship between
strategies and complex problems we should keep in mind that
there are good arguments that most problem solving strategies
are domain-specific to some extent (for a discussion see Tricot
and Sweller, 2014; Fischer and Neubert, 2015).

Although correlations around r = 0.41 (e.g., between
knowledge and performance) are usually interpreted as
supporting an assumed causal relation, they leave a large amount
of unexplained variance, and the number of cases that differ from
the general rule is not negligible. In our context, this means that
there are subjects who do control our systems successfully with
merely rudimentary structural knowledge. To date, most authors
have taken a stand on the question about the significance of
structural knowledge for performance in system control—either
approving (Funke, 1992; Osman, 2008; Greiff et al., 2012;
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Wüstenberg et al., 2012) or disapproving (Broadbent et al., 1986;
Berry and Broadbent, 1988; Dienes and Fahey, 1998; Fum and
Stocco, 2003). In our opinion, the evidence on this question is so
ambiguous that an all-or-none answer is not appropriate. Some
subjects seem to rely on structural knowledge, some don’t (see
Figure 5). Therefore, future research and theorizing should be
aimed at specifying situational and individual conditions that
predict the use (or usefulness) of structural knowledge5. As
mentioned in the introduction, we believe that available working
memory capacity—either varied individually or situationally
(concurrent tasks, fatigue) could be such a predictor: The lower
the capacity, the less promising a WM-intensive strategy is. For
an excellent example of this idea applied to a static problem, see
Jongman and Taatgen (1999). Although our results are consistent
with these WM-related assumptions, they are not adequate for
testing them directly. We plan to do this in future experiments.

If structural knowledge is not the exclusive necessary
condition for successful system control, what other forms of
knowledge are relevant? At this point, we can only speculate,
based on our experience in the domain: Knowledge about and
experience with growth and decay processes, saturation, and time
delays are in our view concepts that are worth investigating.
Relatedly, concepts such as wisdom may foster an appropriate
way of controlling complex and dynamic systems (Fischer, 2015;
Fischer and Funke, 2016).

In real life, situations where problem solvers have to find out
the causal structure of a system through systematic exploration
are rare. Comparable settings can be found in scientific discovery,
pharmaceutical efficacy studies, organizational troubleshooting
(Reed, 1997), or psychotherapy. On the other hand, there are
quite a lot of situations where dynamically changing variables
have to be controlled: driving a car, heating a house economically,
controlling combustion processes, or monitoring vital functions
in intensive care. Therefore, we consider it worthwhile to
investigate how humans handle dynamic systems. However,
to make our research more applicable, we—the scientific

5This endeavor could well be tackled in the spirit of the early studies of
Broadbent and colleagues. However, we suspect that the “salience” concept these
authors focused on is closely tied to the very special characteristic of oscillatory
eigendynamics, rather than a generalizable determinant of structural knowledge
(see also Hundertmark et al., 2015).

community—should shift the focus away from questions about
the acquisition of structural knowledge about simple artificial
systems to questions about how humans approach more realistic
CDC tasks with existing knowledge that may be limited or
simplified. For example, Beckmann and Goode (2014) found
that participants overly relied on their previous knowledge when
dealing with a system that was embedded in a familiar context.

At last, we should not forget that although Dynamis2 exceeds
MicroDYN in complexity and dynamics, both environments
share some family resemblance. Therefore, we cannot generalize
our results to CPS in general. Future research is necessary to
investigate the common requirements of systems of the Dynamis
type and more semantically rich systems such as the Tailorshop,
where knowledge acquisition does not play the same role as in
MicroDYN (Funke, 2014). We believe that transfer experiments
could play an important role in answering these questions, too.
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