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Stable maximum likelihood estimation (MLE) of item parameters in 3PLM with a modest

sample size remains a challenge. The current study presents a mixture-modeling

approach to 3PLM based on which a feasible Expectation-Maximization-Maximization

(EMM) MLE algorithm is proposed. The simulation study indicates that EMM is

comparable to the Bayesian EM in terms of bias and RMSE. EMM also produces smaller

standard errors (SEs) than MMLE/EM. In order to further demonstrate the feasibility, the

method has also been applied to two real-world data sets. The point estimates in EMM

are close to those from the commercial programs, BILOG-MG and flexMIRT, but the SEs

are smaller.

Keywords: EMM, Bayesian EM, MLE, mixture modeling, 3PL

1. INTRODUCTION

In the field of educational measurement, item response theory (IRT) models are a powerful tool
aimed at providing an appropriate representation of students’ test-taking behavior, and produce
accurate estimates of students’ ability. IRT models are expected to capture the underlying response
processes such as students’ ability and other strategies students might take. One of the most
common strategies is guessing behavior when students cannot solve a problem correctly. The
guessing strategy is prevalent particularly for multiple-choice questions in a low-stakes test (Lord,
1980; Baker and Kim, 2004; Cao and Stokes, 2008; Woods, 2008). To count for guessing, the three-
parameter logistic model (3PLM; Birnbaum, 1968) has been commonly used in many applications
of IRT in the measurement industry.

Despite of its popularity, however, several studies have pointed out technical and theoretical
issues regarding the c-parameter (the guessing parameter) and its interpretation (Lord, 1974, 1980;
Kolen, 1981; Thissen and Wainer, 1982; Holland, 1990; Hambleton et al., 1991; Yen et al., 1991;
San Martín et al., 2006, 2013, 2015; Woods, 2008; Maris and Bechger, 2009; McDonald, 2013). The
current paper focuses on one of long-standing issues for the 3PLM, the item parameter estimation,
which has proved to be challenging (Thissen and Wainer, 1982). Mislevy (1986) pointed out that
the essential difficulty is the sparse data for the guessing parameter, yielding unstable maximum
likelihood estimates (MLEs). The well-established marginal maximum likelihood estimation via
expectation-maximization (MMLE/EM) algorithm (Bock and Aitkin, 1981) is not feasible in this
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case. According to Thissen and Wainer (1982), the sample size
required for obtaining MLE for 3PLM with acceptable standard
errors using MMLE/EM is about 10,000 and, for some items,
as large as 1,000,000 which seems prohibitively expensive or
impractical even now. A most recent empirical study testifying
to this claim is Tay et al. (2016) in which the researchers
recommended that a sample of 20,000 is desirable when fitting
a 3PLM with covariate (Tay et al., 2013). In fact, Thissen and
Wainer (1982) even concluded that “naked maximum likelihood
estimation for the three-parameter model is not a technique that
is likely to give happy results.” San Martín et al. (2015) showed
that the 3PLM is not even identifiable if a fixed-effects approach is
adopted and the question of identifiability of the random-effects
3PLM is still open.

By now only some decent Bayesian methods have been
developed, such as Bayesian EM (Mislevy, 1986), Bayesian joint
estimation (Swaminathan and Gifford, 1986), and MCMC (Patz
and Junker, 1999) MLE, however, enjoys favorable statistical
properties (Casella and Berger, 2002). It may avoid some issues
in Bayesian methods, such as assigning priors, convergence
checking in MCMC, etc. and, thus, usually is preferred for
parameter estimation. It would be a valuable addition to existing
methods if that a practical feasible MLE algorithm could be
developed for the 3PLM. The current study intends to make
some contribution in this respect. The authors propose a feasible
EM algorithm for the 3PLM, namely expectation-maximization-
maximization (EMM). EMM can be considered as a modified
version of the MMLE/EM algorithm (Bock and Aitkin, 1981)
and the extra maximization step is especially designed for the
guessing parameter due to a different setup for the complete data
based on a mixture-modeling reformulation of the 3PLM.

This mixture-modeling approach to the 3PLM is not entirely
new in the IRT literature. Mixture modeling is a well-established
tradition in IRT, especially for Rasch models (von Davier and
Rost, 2006). As for the 3PLM in particular, Hutchinson (1991)
first discussed the two underlying processes of guessing and
answering based on ability which points to the idea of mixture
modeling for the 3PLM. San Martín et al. (2006) proposed
an ability-based guessing model to describe the interaction
between guessing behavior and examinee’s ability based on this
perspective. von Davier (2009) further presented two different
interpretations of the 3PLM from this standpoint. One may even
easily notice that the reformulation of the 3PLM developed by
the current study can be considered as a special case of the
HTBRID model (Yamamoto, 1982) and the general diagnostic
model (von Davier, 2008), both of which are of a strong mixture
modeling flavor. Motivated by this tradition, especially the work
by von Davier (2009) and Hutchinson (1991), the current study
presents a new mixture-modeling reformulation of the 3PLM by
introducing an extra latent indicator for the guessing behavior
and develops a feasible MLE algorithm, although this concept
of mixture-modeling approach for the 3PLM has recurred in the
IRT literature.

More specifically, a conceptual summary of developing such
a new algorithm goes as: (a) introducing a new latent variable
to construct a space one dimension higher than the old one,
which appears to be unwise because the reformulation makes the

original 3PLM estimation problem more difficult by adding one
more dimension. (b) invoking the independent assumption of
guessing and problem-solving process to approximate the joint
distribution of the response and the newly introduced latent
variable. It is worth noting that this practice is very common in
statistics to approximate a high-dimension space. (c) using the
approximation as a surrogate of the original 3PLM likelihood
function to obtain item parameter estimate. Since the goal is
to calibrate items with the traditional 3PLM, the convergence
criterion is still calculated through the likelihood function of the
original 3PLM, though the E and M steps are involved with the
approximation of the likelihood function of the reformulated
model.

The remaining is organized as the follows: Section 1 will
present the reformulation of 3PLM based on the mixture
modeling (McLachlan and Peel, 2004). In next section, EMM is
developed and derivation of the estimation standard errors (SEs)
for EMM is provided. In section 3, a comprehensive simulation
study is conducted and the EMM is also applied to two empirical
examples fromBILOG-MG (Zimowski et al., 2003) and flexMIRT
(Houts and Cai, 2015). The last section gives a brief discussion
and future directions.

2. A MIXTURE-MODELING APPROACH TO
3PLM

Mixture modeling is a powerful statistical tool for representing
the presence of heterogeneous subpopulations within an overall
population. The generic density form of mixture modeling for a
random vector Y can be written as

f (y) =

g
∑

i= 1

πifi(y), (1)

in which the quantities π1, . . . ,πg are called the mixing
proportions or weights for the g groups and the functions
f1(y), . . . , fg(y) are called the component densities of the mixture.
Obviously, mixture modeling overcomes the limitation of
traditional modeling approach using one single density and
attempts to approximate data by a linear combination of possibly
various different densities. The idea of mixture modeling has
been applied in psychometrics. Various Rasch mixture IRT
models have been proposed to model different response styles
and test taking strategies (Rost, 1997; von Davier and Rost,
2006). This paper takes advantage of this idea to reformulate
3PLM. If guessing was considered as a test-taking strategy, with
introduction of a latent indicator variable for guessing, the 3PLM
could be reformulated as a mixture model for two heterogeneous
subpopulations: those who guess and those who do not, within
each item. The detail derivation is presented below.

The 3PLM is formulated as the follow:

P
(

uij = 1|θj, ai, bi, ci
)

≡ Pi(θj) = ci × [1]+ (1− ci)×
[

P∗i (θj)
]

,
(2)

with

P∗i
(

θj
)

=
1

1+ exp(−Dai(θj − bi))
(3)
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in which uij ∈ U is examinee j
(

j = 1, 2, . . . ,N
)

’s response to item
i (i = 1, 2, . . . , n), ai, bi, and ci are the item parameters; θj ∈ θ is
the ability parameter of the examinee j; D is the scaling constant
1.702. The 3PLM can be considered as a mixture of a degenerate
distribution (in which all the probability mass is on a single point)
with a probability of ci and a 2PLM with a probability of 1 − ci
within each item. Mixture models with a degenerate model is
termed as nonstandard mixture models and has been studied
intensively in statistics (Cornell University Library, 1989).

The observed data in a mixture problem is usually viewed as
incomplete. A latent indicator variable zij ∈ Z for guessing is
introduced:

zij =

{

1 if examinee j does not guess on item i;
0 if examinee j does guess on item i.

Thus, the marginal of zij follows a Bernoulli (1 − ci). And the

conditional distribution of uij on zij is as the follow (let ξi =
{

ai, bi, ci
}

∈ ξ represents the item parameter vector for the ith

item):

P(uij = 1|zij = 1, θj, ξi) = P∗i (θj), P(uij = 1|zij = 0, θj, ξi) = 1,

P(uij = 0|zij = 1, θj, ξi) = 1− P∗i (θj), P(uij = 0|zij = 0, θj, ξi) = 0.

(4)
To simplify the derivation of the joint distribution of uij and zij,
zij and θj are assumed to be independent which leads to:

P(uij, zij|θj, ξi) = P(uij|zij, θj, ξi)P(zij). (5)

More specifically,

P(uij = 1, zij = 1|θj, ξi) = (1− ci)P
∗
i (θj),

P(uij = 1, zij = 0|θj, ξi) = ci,

P(uij = 0, zij = 1|θj, ξi) = (1− ci)(1− P∗i (θj)),

P(uij = 0, zij = 0|θj, ξi) = 0. (6)

Please note that the case of uij = 0 and zij = 0, whose probability
is zero, is redundant, so the other three cases consist of the
three elements of the joint distribution. The assumption of
independence means that, for each item, the examinee decides
randomly whether guessing or ability-based responding is chosen
first (San Martín et al., 2006; von Davier, 2009). Let uj and
zj be the response vector and the latent indicator vector for
examinee j, respectively, and then the joint distribution for the
new augmented complete data (U,Z, θ) is

P(uj, zj, θj|ξ , τ ) = P(uj, zj|θj, ξ )g(θj|τ ), (7)

where

P
(

uj, zj|θj, ξ
)

=

n
∏

i= 1

[

(1− ci) P
∗
i

(

θj
)]uijzij

× c
uij(1−zij)
i

×
[

(1− ci)
(

1− P∗i
(

θj
))](1−uij)zij , (8)

and g
(

θj|τ
)

is a density function for θ , where τ is the vector
containing the parameters of the examinee population ability

distribution. Following Bock and Lieberman (1970), the marginal
distribution for a single examinee j is:

P(uj, zj|ξ ) =

∫

θj

P(uj, zj|ξ , θj)g(θj|τ )dθj. (9)

So, the likelihood function of the EMM is:

L(U,Z|ξ ) =

N
∏

j=1

P(uj, zj|ξ )

=

N
∏

j=1

∫

θj

P(uj, zj|ξ , θj)g(θj|τ )dθj.

(10)

and the log-likelihood ln L = ln
(

L(U,Z|ξ )
)

.

3. THE EXPECTATION-MAXIMIZATION-
MAXIMIZATION (EMM) ALGORITHM

The reformulation of 3PLM points to the possibility that the
guessing parameter can be estimated as a mixing parameter in
mixture models, separated from the item discriminatory and
difficulty parameters which will be estimated as the unknown
parameters in the component density (the 2PLM). Put this in the
language of the EM for IRT models and one has the Expectation
(with respect to the latent variables 2,Z)—Maximization (with
respect to the guessing parameter (ci)—Maximization (with
respect to the item discrimination and difficulty parameter ai
and bi). The first expectation step follows the same idea as the
EM for IRT (Bock and Aitkin, 1981) with slight modification
due to the introduction of the extra latent variable Z; the two
maximization steps consist of the EM algorithm for the mixture
models. In order to facilitate understanding, the description
and mathematical notations of EMM in the sequel will follow
Baker and Kim (2004). It is worthwhile noting that there is a
tremendous similarity in the derivation of EMM andMMLE/EM
with the only exception of the joint distribution of the complete
data.

3.1. Expectation Step and Artificial Data
Letψi denote any item parameter for item i in ξi, and very similar
to the mathematical derivation for MMEL/EM in Baker and Kim
(2004), the first derivative of the log-likelihood function in EMM
for each item parameter can be obtained as (see Appendix A in
Supplementary Material for details):

∂ ln L

∂ψi
=

N
∑

j=1

∂ ln P(uj, zj|ξi)

∂ψi

=

N
∑

j=1

1

P(uj, zj|ξi)

∂P(uj, zj|ξi)

∂ψi

=

N
∑

j=1

1

P(uj, zj|ξi)

∫

θj

∂P(uj, zj|θj, ξi)g(θj|τ )dθj

∂ψi
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=

N
∑

j=1

1

P(uj, zj|ξi)

∫

θj

[

∂ ln P(uj, zj|θj, ξi)

∂ψi

]

P(uj, zj|θj, ξi)g(θj|τ )dθj

=

N
∑

j=1

∫

θj

[

∂ ln P(uj, zj|θj, ξi)

∂ψi

] [

P(uj, zj|θj, ξi)g(θj|τ )

P(uj, zj|ξi)

]

dθj

=

N
∑

j=1

∫

θj

[

∂ ln P(uj, zj|θj, ξi)

∂ψi

]

P
(

θj|uj, zj, τ , ξi
)

dθj

=

N
∑

j=1

∫

θj

[

∂

∂ψi
ln

n
∏

i=1

[(1− ci)P
∗
i (θj)]

uijzij × c
uij(1−zij)

i

× [(1− ci)
(

1− P∗i (θj)
)

]
(1−uij)zij

]

P
(

θj uj, zj, τ , ξ
)

dθj

=

N
∑

j=1

∫

θj

[

[

uij − P∗i (θj)
]

zij

P∗i (θj)
[

1− P∗i (θj)
]

∂P∗i (θj)

∂ψi

+
uij(1− zij)

ci

∂ci

∂ψi
−

zij

1− ci

∂ci

∂ψi

]

P
(

θj uj, zj, τ , ξ
)

dθj

(11)

with

P
(

θj|uj, zj, τ , ξ
)

= P
(

θj|uj, τ , ξ
)

=
P(uj|θj, ξ )g(θj|τ )

∫

θj
P(uj|θj, ξ )g(θj|τ )dθj

,

P(uj|θj, ξ ) =
∏n

i=1
Pi(θj)

uij × (1− Pi(θj))
1−uij , (12)

where P
(

θj|uj, zj, τ , ξ
)

is the posterior probability of θj given
uj, zj, τ , and ξ , and P

(

θj|uj, zj, τ , ξ
)

always equals P
(

θj|uj, τ , ξ
)

because of θj and zj are assumed to be independent. The
conditional expectation of Z is also essential for the E step.
From the joint distribution in Equation (6), one can calculate the
expectation of zij conditional on uij and the marginal distribution
of zij. By using the Bayesian rule, one has the conditional
distribution of zij on uij as:

P(zij = 1|uij = 1, θj, ξi) =
(1− ci)P

∗
i (θj)

Pi(θj)
,

P(zij = 1|uij = 0, θj, ξi) = 1.

(13)

Then the conditional expectation of zij is

E(zij|uij, θj, ξi) =
(1− ci)P

∗
i (θj)

Pi(θj)
× uij + 1× (1− uij). (14)

The expectation step is to obtain the conditional expectation of
the complete-data log likelihood with respect to the observation
data, namely the response matrix U. In EMM it essentially
amounts to plugging the conditional expectation of the indicator
variable Z and integrating over the latent ability variable as in
the original MMLE/EM. Let Xk(k = 1, 2, . . . , q) be nodes on the

ability scale with an associated weight A(Xk), and the E step is as
the follow:

∂ lnE [L]

∂ψi

≈

N
∑

j=1

q
∑

k=1





[

uij − P∗i (θj)
]

zij

P∗i (θj)
[

1−P∗i (θj)
]

∂P∗i (θj)

∂ψi
+
uij(1− E(zij|uij,Xk, ξi))

ci

∂ci

∂ψi

−
E(zij|uij,Xk, ξi)

1− ci

∂ci

∂ψi



 P
(

Xk |uj, zj, τ , ξ
)

(15)

with

P
(

Xk|uj, zj, τ , ξ
)

= P
(

Xk|uj, τ , ξ
)

=
P(uj|Xk, ξ )A(Xk)

∑q

k=1
P(uj|Xk, ξ )A(Xk)

,

P(uj|Xk, ξ ) =
∏n

i=1
Pi(Xk)

uij × (1− Pi(Xk))
1−uij ,

(16)

where P
(

Xk|uj, zj, τ , ξ
)

is the posterior probability of θj at

Xk given uj, zj, τ , and ξ , and P
(

Xk| uj, zj, τ , ξ
)

always equals

P
(

Xk| uj, τ , ξ
)

because of the independence between Xk| and

zj. Furthermore, P
(

Xk|uj, zj, τ , ξ
)

can be used to compute the

“artificial data”. For instance, Bock and Aitkin (1981) has

provided two fundamental artificial data for the traditional EM

algorithm as:

f̄ik =
∑N

j=1
P
(

Xk|uj, τ , ξ
)

=
∑N

j=1
P
(

Xk|uj, zj, τ , ξ
)

,

r̄ik =
∑N

j=1
uij × P

(

Xk|uj, τ , ξ
)

=
∑N

j=1
uij × P

(

Xk|uj, zj, τ , ξ
)

,

(17)
in which f̄ik is the expected number of examinees with ability Xk.
Thus, the sum of f̄ik for every ability Xk equals the total number
of examinees N. The second index, r̄ik, is the expected number of
examinees with ability Xk answering item i correctly.

As can be seen from Table 1, the EMM algorithm introduced
a new latent variable Z, so there are two new artificial data:

f̄
(Z)
ik

=
∑N

j=1
E(zij|uij,Xk, ξ )P

(

Xk|uj, zj, τ , ξ
)

,

r̄
(Z)
ik

=
∑N

j=1
uij × E(zij|uij,Xk, ξ )P

(

Xk|uj, zj, τ , ξ
)

,
(18)

in which f̄
(Z)
ik

is the expected number of examinees with ability

Xk without using guessing strategy; r̄
(Z)
ik

is the expected number
of examinees with ability Xk answering item i correctly without

using the guessing strategy. Thus, r̄
ik

− r̄
(Z)
ik

is the expected
number of examinees with ability Xk who can answer item i
correctly using the guessing strategy. The expected number of
examinees with ability Xk who can answer item i incorrectly by
using the guessing strategy is zero which can be inferred from
P(uij = 0, zij = 0|θj, ξi) = 0. Putting these facts together, one
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TABLE 1 | The expected frequencies among examinees with ability Xk for item i.

Item i zj =1 zj =0 Marginal of zj

uj =1 r̄
(z)
ik

r̄ik − r̄
(z)
ik

r̄ik

uj =0 f̄
(z)
ik

− r̄
(z)
ik

0

Marginal of uj f̄
(z)
ik

r̄ik − r̄
(z)
ik

f̄ik

can infer that r̄
ik
− r̄

(Z)
ik

+ f̄
(Z)
ik

across all is equivalent to the total
number of examinees N, namely,

q
∑

k=1

f̄ik =

q
∑

k=1

(r̄ik − r̄
(Z)
ik

+ f̄
(Z)
ik

) = N. (19)

After the E-step and calculation of the artificial data, the next
steps are computing the first and second derivatives of Equation
(15) with respect to each item parameter.

3.2. Maximization Step-1 for the c

Parameter
Setting the first derivative equals to 0 and solving for ci:

0 = λci =
∂ lnE [L]

∂ci

≈

N
∑

j=1

q
∑

k=1









uij(1− E(zij|uij,Xk, ξ ))

ci

−
E(zij|uij,Xk, ξ )

1− ci









P
(

Xk|uj, zj, τ , ξ
)

=

∑q

k=1

(

r̄
ik
− r̄

(Z)
ik

)

ci
−

∑q

k=1
f̄
(Z)
ik

1− ci
,

(20)

and surprisingly, a closed solution for ci can be available as:

⇒

∑q

k=1

(

r̄
ik
− r̄

(Z)
ik

)

ci
=

∑q

k=1
f̄
(Z)
ik

1− ci

⇒ ci =

∑q

k=1

(

r̄
ik
− r̄

(Z)
ik

)

∑q

k=1

(

f̄
(Z)
ik

+ r̄
ik
− r̄

(Z)
ik

) =

∑q

k=1

(

r̄
ik
− r̄

(Z)
ik

)

N

or ci = 1−

∑q

k=1
f̄
(Z)
ik

N
.

(21)

There is a nice interpretation for the estimate of the guessing
parameter. From the description of the artificial data, it is

easy to note that
∑q

k=1
(r̄
ik
− r̄

(Z)
ik

) is the expected number of
examinees who can answer item i correctly using the guessing
strategy and thus, the estimate is exactly the proportion of these
examinees in the total sample. This interpretation presents a
strong mixture modeling flavor, drastically different from the
traditional interpretation, the lower bound for the probability
with which a person solves the item correctly.

3.3. Maximization Step-2 for a and b

Parameters
The secondMaximization step is to execute the Newton-Raphson
procedure to obtain estimates for ai and bi. The required first
derivatives for ai and bi are

λai =
∂ lnE [L]

∂ai
= D

∑q

k=1
[(r̄

(Z)
ik

− f̄
(Z)
ik

× P∗i (Xk))(Xk − bi)],

λbi =
∂ lnE [L]

∂bi
= −Dai

∑q

k=1
[r̄
(Z)
ik

− f̄
(Z)
ik

× P∗i (Xk)].

(22)
One may also set the derivatives to zero, but there is no analytical
solution to them and thus Newton-Raphson method have to
be used. In order to implement Newton-Raphson, the second
derivatives are derived as

λaai =
∂2 lnE [L]

∂ai∂ai
= −D2

∑q

k=1
(Xk − bi)

2W∗
ik × f̄

(Z)
ik

,

λbbi =
∂2 lnE [L]

∂bi∂bi
= −D2a2i

∑q

k=1
W∗

ik × f̄
(Z)
ik

,

λabi =
∂2 lnE [L]

∂ai∂bi
=
∑q

k=1





D2ai(Xk − bi)W
∗
ik
× f̄

(Z)
ik

−D
(

r̄
(Z)
ik

− f̄
(Z)
ik

× P∗i
(

θj
)

)



,

(23)
where

W∗
ik = P∗i (Xk)× (1− P∗i (Xk)), (24)

So, the estimates can be obtained using the Newton-Raphson
iteratively:

[

a
(t+1)
i

b
(t+1)
i

]

=

[

a
(t)
i

b
(t)
i

]

−

[

λaai λabi
λ
abi

λ
bbi

]−1
[

λai
λ
bi

]

. (25)

3.4. Standard Errors (SEs) of Parameter
Estimation in EMM
One of the important indices to assess the estimation quality
is the standard errors. One of the major criticisms of EM is,
however, that parameter estimate SEs are not a natural product
of the algorithm and some other methods have to be devised
(McLachlan and Krishnan, 2007). EMM, as a member of EM
algorithms, does not provide parameter estimate SEs either. In
general, the inverse of the negative expected value of thematrix of
second derivatives of a log likelihood is the asymptotic variance-
covariance matrix of the estimates (McLachlan and Krishnan,
1968). The square roots of the diagonal elements of the inverse
are the asymptotic standard errors of the parameters. This part
will present a theoretical argument on why EMM works better
than MMLE/EM for 3PLM. In the original MMLE/EM, the
expected second derivative matrix can generically be written as





laa lab lac
lab lbb lbc
lac lbc lcc



 ,

in which lcc is the expected second derivatives of the log
likelihood with respect to the guessing parameter, lac and lbc are
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the elements for two expected second partial derivatives. The
convergence issue of the MMLE/EM for 3PLM is caused by this
matrix being non-positive-definite or ill-conditioned (Baker and
Kim, 2004). To solve this problem, several researchers suggested
that the guessing parameter can usually set to be reciprocal of the
number of the alternatives in the item (Hutchinson, 1991; Han,
2012; McDonald, 2013), which essentially mounted to set lac and
lbc to be zeros and then the 3PLM could be estimated. This option
is available in several IRT programs, such as NOHARM (Fraser
andMcdonald, 1988), but an obvious limitation of this practice is
that the guessing parameter is, in fact, not estimated, but a rather
rough “guess” and does not seem to be a reasonable assumption
(San Martín et al., 2006). In contrast, this matrix is different in
EMM because EMM amounts to a divide-and-conquer strategy.
The challenge of estimating item parameters is intelligently
partitioned into two smaller estimation problems: estimation of
the guessing parameter as the mixing proportion parameter in
mixing modeling and that of the 2PL model. Interestingly, the
two smaller problems happen to have been fully investigated in
statistics and IRT. Conceptually, EMM can be perceived as a
combination of these two mature techniques in statics and IRT.
The prominent advantage of EMM comes from the separation
of estimation of the guessing parameter from the other two and,
thus, any instability in estimating the guessing parameter will not
negatively affect that of the other two parameters, or otherwise.
Such a setup statistically implies that the covariance between the
guessing estimate and the other two are zeros. Onemay ensemble
the expected second derivative matrix in generic form as





E
(

−λaa|uij
)

E
(

−λab|uij
)

0

E
(

−λab|uij
)

E
(

−λbb|uij
)

0

0 0 E
(

−λcc|uij
)



 .

EMM provides a scientific alternative to the practice of fixing the
guessing parameter estimate as the reciprocal of the number of
the alternatives in the item. It can not only eliminate undesirable
fluctuation in estimating the guessing parameter, but also make
estimation of the guessing parameter possible. For the sake of
completeness, the second derivatives of the log likelihood with
respect to the guessing parameter is given as

λcci =
∂2 lnE [L]

∂2c2i
= −

∑q

k=1

(

r̄
ik
− r̄

(Z)
ik

c2i
+

f̄
(Z)
ik

(1− ci)
2

)

(26)

As a consequence of the separation setup, the calculation does
not involve any terms related to the difficulty and discrimination
parameters. The detailed derivation of the SEs for EMM is
provided in Appendix B (Supplementary Material).

4. SIMULATION STUDY

A simulation study was done to demonstrate the feasibility of
the new method, compared to the Bayesian EM in BILOG-MG
(Zimowski et al., 2003). The parameters for 10 or 20 items were
generated from independent normal distribution as in Mislevy
(1986): for ln a, the mean and variance were 0 and 0.5; for b, 0.5
and 1.0; for logit c,−1.39 and 0.16.

Three sample sizes of examinees (1,000, 1,500, and
2,000) were generated from standard normal distribution.
50 replications were run for each condition in the fully crossed
2(EMM vs. BILOG-MG) × 3(1, 000 vs. 1,500 vs. 2,000) ×

2(10 vs. 20) design. The evaluation criteria are the bias and
RMSE. In order to further demonstrate the performance of
EMM, the EMM and Bayes solutions respectively, against
generating values of the quantity b − 2/a, a heuristic index
based on the observation that less information is obtained about
c as items become easier or less reliable (Lord, 1975). Results.
The detailed results for the simulation study are presented in
tables and figures in Appendix C (Supplementary Material).
Only the results for the condition of 1,000 examinees and 10
items are summarized and presented here (Figures 1, 2) since
others are very similar. This is the most unfavorable condition
for MLE since the sample size is moderately small and the test
length is relatively short. But even under this condition, the
EMM is comparable to or better than Bayesian EM in terms of
bias and RMSE. In contrast, the traditional MMLE EM usually
fails to converge with such a small sample size. As a MLE
algorithm EMM is as flexible as the Bayesian EM implemented in
BILOG-MG to deal with 3PL modeling in most practical testing
situations.

The plots for the heuristic index comparing the EMM and
Bayes solutions respectively, against generating values of the
quantity b−2/a, echo the results in terms of bias and RMSE. The
figures for the 1,000-examinee-10-item condition are presented
here. In general, both solutions for items with high values in the
index are satisfactory, but the Bayes estimates for some items with
low values were rather biased while the EMM estimates were very
stable.

5. TWO EMPIRICAL EXAMPLES

In order to further demonstrate the performance of the new
algorithm, the authors apply EMM to two real data sets from
BILOG-MG (Zimowski et al., 2003) and flexMIRT (Houts and
Cai, 2015), and compare the item estimates to those from the
two commercial programs. Specifically, the two data sets are the
Example 1 in the BILOG-MG and Example 2 in flexMIRT. The
BILOG-MG data set consists of 1,000 examinees’ responses to
15 items and the one for flexMIRT consists of 2,844 examinees’
responses to 12 items. Please refer to the manuals for the details.
Both programs adopt different priors for the guessing parameter:
BILOG-MG uses the default setting, a beta distribution with
parameters of 4 and 16, namely, c ∼ Beta(4, 16), and flexMIRT,
c ∼ Beta(1, 4). Please note that due to different parameterization
in BILOG-MG technical document, the specification for the prior
parameters are 5 and 17 which correspond to 4 and 16 in the
standard beta distribution parameterization. The two priors have
identical means, but the variance for flexMIRT prior is smaller
which indicates that it is less informative. An additional analysis
of flexMIRT data using the BILOG-MG default setting for the
guessing parameter in flexMIRT [the c ∼ Beta(1, 4) solution] is
also run. In order to further facilitate the comparison of SEs, the
authors employ supplemented EM (SEM) to obtain SEs for EMM
(Meng and Rubin, 1991) in the real-data analysis below and SEM
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FIGURE 1 | RMSE for item parameter estimates with 1,000 examinees and 10 items.

FIGURE 2 | Generating and estimated values of c, against generating b− 2/a with 1,000 examinees and 10 items.

has been applied for various IRT models (Cai, 2008; Cai and Lee,
2009; Tian et al., 2013).

The specific results are summarized in the tables and figures
in Appendix D (Supplementary Material) and only figures
(Figure 3 for BILOG-MG data and Figure 4 for flexMIRT data)
are presented here. Both Figures 3, 4 indicates that, for both
real data sets, the point estimates (the upper part of the figures)
for item parameters from EMM are comparable to those from
BILOG-MG and flexMIRT, but SEs (the lower part of the figures)
are smaller. Smaller SEs means that one may ascertain point
estimates with greater confidence.

The advantage of EMM can be further confirmed by the
difference between the c ∼ Beta(1, 4) solution and the
c ∼ Beta(4, 16) solution to the point estimate for the
guessing parameters for flexMIRT data. The EMM point
estimates of the guessing parameters coincide with the c ∼

Beta(4, 16) solution, with smaller SEs while those from the
c ∼ Beta(4, 16) solution present nontrivial differences. The
authors may reasonably conclude that the difference between the
solutions from flexMIRT calibration since the only difference in

the specification is the prior setting for the guessing parameter.
This difference is not a surprise at all because assigning proper
priors is a common burden shared by the Bayesian approach. In
the case of 3PLM calibration, however, different priors exert an
undesirable negative effect of the point estimation and SEs. To
exclude the possible difference in software implementation in the
two programs, the authors also replicated the same analysis in
BILOG-MG and the results corroborate the claim. Furthermore,
as expected, the SEs in the c ∼ Beta(1, 4) solution are bigger
than those in the c ∼ Beta(4, 16) solution which is another piece
of evidence that priors in Bayesian methods lead to different SE
estimates.

6. DISCUSSION AND FUTURE
DIRECTIONS

In summary, the EMM essentially is a member of EM family for
3PLM. The fundamental difference between the EMM and the
original EM is that the old complete data setup (U, θ) is expanded
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FIGURE 3 | BILOG-MG data for item parameter estimate and SE with 1,000 examinees and 15 items.

FIGURE 4 | flexMIRT data for item parameter estimate and SE with 2,844 examinees and 12 items.
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into (U, θ ,Z). This change enables the algorithm to explore the
likelihood function curve more thoroughly. More specifically,
the challenge of estimating item parameters is intelligently
partitioned into two smaller estimation problems: estimation of
the guessing parameter as the mixing proportion parameter in
mixing modeling and that of the 2PL model, which happen to be
fully investigated in statistics and IRT. The benefit of this strategy
is that the estimation error in the two problems does not exert
any negative effect on each other and thus both of them are more
stable.Moreover, for the guessing parameter, there is an analytical
solution for the score function and thus the NR and the second
derivatives are not necessary.

The EMM is a feasible algorithm to obtain MLE for 3PLM
with modest sample size. It has several theoretical and practical
implications. First, the mixture modeling approach to 3PLM is an
interesting novel perspective on 3PLM. Second, this new method
provides a feasible alternative for practitioners, enabling them to
obtain MLE for 3PLM with modest sample size. This paper is
not to advocate to eliminate use of Bayesian estimation methods.
This can be used to check with the Bayesian solution with other
IRT programs in practice. Due to the high complexity in real-
world 3PLM data, a combination of EMM and Bayesian methods
might lead to a more sophisticated and nuanced understanding
of data.

Another important feature of EMM is that the EMM stopping
criterion serves as a self-checking/correcting mechanism for the
independence assumption. The stopping criterion is calculated
through the original 3PLM likelihood function, although the E
and M steps are built with the approximation of the likelihood
function of the reformulated model. That is to say, the EMM
would not converge until the difference between the values of the
original 3PLM likelihood function evaluated at the current and
last-cycle item estimates becomes negligible. If the independence
assumption is severely violated and thus the approximation is not
accurate enough, the convergence of the algorithm will suffer.
In this sense, the EMM algorithm has provided a data-driven
validation method for this assumption.

Several research questions deserve further attention. Firstly,
there are two different interpretation of 3PLM (Hutchinson,
1991; San Martín et al., 2006; von Davier, 2009) and this
paper chose one of them. The derivation of an EMM for
the other interpretation will be very similar to this paper,
but it needs to provoke different assumptions, so it would

be interesting to compare the performance of two versions
in terms of estimate and interpretation for the guessing
parameter, numerical stability, etc. Secondly, a Bayesian EMM
can be investigated. EMM is a more powerful MMLE method
comparable to Bayesian EM, but the simulation studies indicate
that there might be some inflation in item estimates in EMM
which points to the possibility of improvement. A natural
alternative is to combining the Bayesian approach and EMM.
Bayesian EMM will solve the issue of estimate inflation while
taking advantage of the EMM exploring the likelihood function.
Thirdly, the mixture modeling approach and EMM can be
naturally extended to 4PLM (Barton and Lord, 1981), which is
a generalization of 3PLM and includes an upper asymptote for
the probability of a correct response. There is a renewed interest

in 4PLM (Rulison and Loken, 2009; Loken and Rulison, 2010;
Liao et al., 2012; Ogasawara, 2012; Feuerstahler andWaller, 2014;
Culpepper, 2016) for its usefulness in measuring psychological
constructs. But, just as in the case of 3PLM, one consistent
discussion point regarding 4PL pertains to the difficulty in
estimating item parameters. The method proposed in this paper
is a promising way for 4PLM.
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