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Neural networks have long been used to study linguistic phenomena spanning the

domains of phonology, morphology, syntax, and semantics. Of these domains, semantics

is somewhat unique in that there is little clarity concerning what a model needs to be

able to do in order to provide an account of how the meanings of complex linguistic

expressions, such as sentences, are understood. We argue that one thing such models

need to be able to do is generate predictions about which further sentences are likely

to follow from a given sentence; these define the sentence’s “inferential role.” We then

show that it is possible to train a tree-structured neural network model to generate very

simple examples of such inferential roles using the recently released Stanford Natural

Language Inference (SNLI) dataset. On an empirical front, we evaluate the performance

of this model by reporting entailment prediction accuracies on a set of test sentences not

present in the training data. We also report the results of a simple study that compares

human plausibility ratings for both human-generated and model-generated entailments

for a random selection of sentences in this test set. On a more theoretical front, we argue

in favor of a revision to some common assumptions about semantics: understanding

a linguistic expression is not only a matter of mapping it onto a representation that

somehow constitutes its meaning; rather, understanding a linguistic expression is mainly

a matter of being able to draw certain inferences. Inference should accordingly be at the

core of any model of semantic cognition.

Keywords: natural language inference, recursive neural networks, language comprehension, semantics

1. INTRODUCTION

By most accounts, linguistic comprehension is the result of cognitive processes that map between
sounds and mental representations of meaning (e.g., Smolensky and Legendre, 2006; Pickering
and Garrod, 2013; Christiansen and Chater, 2016). An obvious challenge for these accounts is to
provide a good theoretical characterization of the relevant representations. Numerous proposals
can be found in the literature, but there is no obvious consensus regarding their relative merits.

Arguably, the reason for this lack of consensus is that linguistic comprehension is itself
a somewhat vague and ill-defined phenomenon. In the context of efforts to model linguistic
comprehension, for instance, it is not entirely obvious what a model needs to be able to do in order
to provide an account of how people understand complex linguistic expressions such as phrases
and sentences.
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In this paper, we argue that one thing models of linguistic
comprehension need to be able to do is generate predictions
about what follows from a given sentence during a conversation.
For example, to understand the statement “The dancers parade
down the street,” one must be able recognize that the dancers
are outside, that they are not standing still, and that there
is likely a surrounding audience, along with various other
things. Comprehending a sentence therefore involves drawing
inferences that identify the expected consequences of the
occurrence of the sentence in the linguistic environment. And
since comprehending a sentence involves comprehending its
meaning, it follows that the meaning of an expression is at least
partly determined by the inferences it licenses (Sellars, 1953;
Brandom, 1994, 2000). The collections of inferences licensed
by a particular sentence, in turn, constitutes its inferential role
(Brandom, 1994).

Our approach can be thought of as an extension of two
important trends in previous research. On a technical front, the
explanatory successes of probabilistic and neural network models
in psycholinguistics have motivated the view that language
learning is a kind of skill acquisition, wherein a learner develops
the ability to process and use linguistic expressions correctly
(Elman, 1990, 1991; Seidenberg, 1997; Tomasello, 2003; Chater
and Manning, 2006; Christiansen and Chater, 2016). To explain
with an example, an artificial neural network learns a set of
parameters (i.e., connection weights) that approximate a function
defined by a set of input-output pairs. These pairs might map
words to collections of phonemes during a generation task, or
to collections of property concepts during an interpretation task
(see e.g., McClelland et al., 2010). Our work extends this research
to account for more sophisticated linguistic phenomena that
involve inferences defined with respect to complete sentences (cf.
St. John and McClelland, 1990; Rabovsky et al., in review).

On a more theoretical front, a considerable amount of
philosophical research has been directed toward explaining
the significance that attributions of “understanding” have for
semantic theory (Dennett, 1987, 1991; Brandom, 1994, 2000).
One lesson to draw from this prior work is that the meaning
of a linguistic expression is something that determines what
a person who understands the expression is likely to say and
do in various situations (Blouw, 2017). Or put another way,
meanings can be thought of as codifying implicit expectations
that people have regarding certain effects of language use. Our
work builds on these philosophical insights by working toward a
formal characterization of the role that linguistic expressions play
in licensing certain predictions when one adopts what Dennett
(1987, 1991) refers to as the “intentional stance.” To explain,
adopting the intentional stance involves making predictions
about a system’s behavior using linguistically specified mental
states attributions, such as “X understands Y,” where is X is
a system and Y is a sentence in a natural language. So, to
return to an earlier example, questions about the meaning of
a sentence like “The dancers parade down the street” can be
reformulated as questions about the predictions and inferences
that are licensed by the attribution of intentional states involving
this sentence. More specifically, attributions of understanding
license the prediction that certain questions (e.g., “Where are the

dancers?”) get responded to with certain answers (e.g., “They are
outside”)1.

To work toward formalizing these aspects of intentional
interpretation, we introduce a neural network model that learns
to generate sentences that are the inferential consequences of its
inputs. The model functions by first encoding a sentence into a
distributed representation, and then decoding this representation
to produce a new sentence. The encoding procedure involves
dynamically generating a tree-structured network layout of the
sort depicted in Figure 1. Once a sentence encoding is produced
using this network, it is fed through an “inverse” tree-structured
network to produce a predicted sentence. Interestingly, different
inverse or decoding networks can be used to generate different
sentences from a single encoding. To train the model parameters
(i.e., the network weights shared across different tree structures)
we use the Stanford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015). The goal of the model is to characterize
a very basic portion of the predictions that are licensed by uses
of the sentences it is provided as input. Currently, the model’s
predictions tend to favor the generation of sentences with roughly
the same meanings as its inputs, but it is also able to generate
more interesting predictions of the sort that are a necessary
precondition for linguistic comprehension.

In what follows, we first describe the model and then
empirically evaluate its ability to produce plausible entailments
for sentences unseen in the training data. We present
experimentally produced plausibility ratings for a random
collection of generated sentences, and from these ratings
conclude that the model captures something important about
the inferential relations amongst ordinary linguistic expressions.
We then perform a number of further analyses that illustrate
how the model is able generalize by “interpolating” between
familiar examples of inferential transitions. Finally, we discuss
the implications of this work for both the study of semantics and
the study of cognition more generally.

2. METHODS

2.1. Tree-Structured Neural Networks
To build our model, we take advantage of recently developed
techniques for using neural networks to define composition
functions that merge distributed representations of words into
distributed representations of phrases and sentences (Socher
et al., 2012, 2014). The core idea behind these techniques is
to produce a parse tree for a sentence, and then transform
the tree into a neural network by replacing its edges with
weights and its nodes with layers of artificial neurons. Activation
is then propagated up the tree by providing input to layers
that correspond to certain nodes, as shown in Figure 1. The
input at each node is typically a distributed representation or

1Note that the strategy of tying a theory of semantics to to a theory of intentional

interpretation does not imply a commitment to the existence of a language of

thought, or to the psychological reality of intentional states involving beliefs and

desires. Note also that recent machine learning efforts related to natural language

understanding (or NLU) seem to implicitly make use of the intentional stance

when they operationalize understanding in terms of providing expected answers

to particular questions (see e.g., Sukhbataar et al., 2015; Weston et al., 2015, 2016).

Frontiers in Psychology | www.frontiersin.org 2 January 2018 | Volume 8 | Article 2335

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Blouw and Eliasmith Inferential Roles

FIGURE 1 | Sentence encoding with a dependency tree recursive neural network (DT-RNN). A dependency parser is used to produce the computational graph for a

neural network, which is then used to produce a distributed representation of sentence by merging distributed representations of individual words. The layers marked

with x correspond to input word embeddings, while layers marked with h correspond to the tree’s encoding of these words. Figure adapted from Socher et al. (2014).

“embedding” corresponding to a single word (see e.g., Landauer
and Dumais, 1997; Jones andMewhort, 2007; Turney and Pantel,
2010; Mikolov et al., 2013).

It is possible to apply these methods using arbitrary tree
structures, and we adopt a dependency-based syntax in the
experiments described below. There are three reasons for this
choice (Socher et al., 2014). First, the assignment of different
network weights to different dependency relations allows for
the creation of networks that are more sensitive to syntactic
information. Second, the semantic role of an individual word can
often be read off of the dependency relation it bears to a head
word, which allows for the creation of networks that are also
sensitive to semantic information. Finally, dependency trees are
less sensitive to arbitrary differences in word order, which helps to
ensure that simple variations on a sentence get mapped to similar
distributed representations. The specific model we adapt—the
dependency-based tree-structured neural network (DT-RNN)—
is introduced in Socher et al. (2014).

Some formal details concerning the behavior of DT-RNNs are
helpful at this point. First, an input sentence s is converted into
a list of pairs, such that s = [(w1, x1), (w2, x2), ...(wn, xn)], where
w is a word and x is the corresponding word embedding (i.e.,
a distributed representation produced using word2vec). Next, a
dependency parser is used to produce a tree that orders the words
in the sentence in terms of parent-child relations. Each node in
this tree is then assigned an embedding in a two-step manner.
First, all of the leaf nodes in the tree (i.e., nodes that do not
depend on other nodes) are assigned embeddings by applying a
simple transformation to their underlying word embeddings:

hi = f (Wvxi + b) (1)

where hi is the embedding for some leaf node i in the tree, xi is
the embedding for the word corresponding to this node, Wv is
a matrix that transforms word representations, b is a bias term,
and f is an element-wise nonlinearity. Second, embeddings are

recursively assigned to all of the non-leaf nodes by composing
the embeddings of their children as follows:

hi = f (Wvxi +
∑

j∈C(i)

WR(i,j) · hj + b) (2)

where hi is again the embedding for some node i in the tree,
xi is the embedding for the word corresponding to this node,
j is an index that ranges over the children, C(i), of the node i,
and WR(i,j) is a matrix associated with the specific dependency
relation between node i and its jth child. hj is the embedding
corresponding to this child. So, in the example tree in Figure 1,
the embeddings for nodes 1, 4, and 6 would be computed first,
since these nodes have no children. Then, embeddings will be
computed for any nodes whose children now all have assigned
embeddings (in this case, nodes 2 and 7). And so on, until an
embedding is computed for every node.

Model training is done via backpropagation through structure
(Goller and Kuchler, 1996) and requires that a cost function be
defined for the sentence embeddings produced at the root of
each tree. The free parameters are the weights Wv and Wr∈R,
along with the bias term b. Word embeddings can also be fine-
tuned over the course of training. The number of dependency
relations, and hence the number of weight matrices in the model,
depends on the specific syntactic formalism that is used. In the
experiments described below, a standard set of 45 dependency
relations defines the syntax that is used by the model’s parser.

2.2. Cost Functions for Entailment
Generation
Choosing an appropriate cost function for a recursive neural
network can be difficult, since it is not always clear what makes
for a “good” sentence embedding. It is accordingly common to
see these networks applied to narrow classification tasks such
as the prediction of sentiment ratings (e.g., Socher et al., 2012).
Our goal is define an optimization objective that accounts for
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FIGURE 2 | Generating entailments with paired encoder and decoder DT-RNNs. The decoder network computes a probability distribution over words at each node,

conditioned on the sentence representation produced by the encoder. The parameters of both the encoder and decoder are trained via backpropagation through

structure using error derivatives supplied at each node in the decoding tree. The encoder and decoder trees are dynamically generated for each pair of sentences in

the training data.

the principle that understanding a linguistic expression involves
drawing inferences about what follows from it.

To accomplish this goal, we define a model composed
of two DT-RNNs, one that encodes an input sentence into
a distributed representation, and another that decodes this
representation into a new sentence that is entailed by the input
sentence. This model is inspired by Iyyer et al.’s (2014) work
using DT-RNNs analogously to autoencoders, but introduces
a decoding procedure that computes an appropriate response
to the input sentence, rather than merely reconstructing it.
It is then possible to iterate these encoding and decoding
procedures to produce chains of entailments, as proposed by
Kolesnyk et al. (2016), who use a sequence-based encoder
and decoder. It is also possible analyze the effect on the
decoding procedure of substituting individual words and
phrases into an input sentence, as shown in section 3.4
below.

The model is trained on pairs of sentences standing in
entailment relations. A dependency parser2 is again used to
produce a tree-structured network for each sentence, but the
network associated with the second sentence is run in reverse,
as shown in Figure 2. A word prediction is generated at each
node in this second tree using a softmax classifier, which allows
us to define a cross-entropy loss function over nodes and trees as
follows:

J(θ) = −
∑

i

∑

j

t
(i)
j log p(c

(i)
j |si) (3)

where t
(i)
j is the target probability (i.e., 1) for the correct word

at the jth node in the ith training example, p(c
(i)
j |si) is the

computed probability for this word given the input sentence
si, and θ is the set of combined parameters for the encoder
and decoder DT-RNNs. Intuitively, this cost function penalizes
model parameters that fail to assign a high joint probability

2We use the SpaCy python library, available at https://spacy.io

to the collection of word predictions in the decoder that
correspond to the correct entailment for a given input sentence.
More formally, the training objective is to maximize the log
probability of the example entailments provided in the training
data.

Learning is done via stochastic gradient descent by
backpropogating through both the decoder and encoder
tree for each training example. The result of training is a set
of weights associated with dependencies for both encoding
and decoding, a set of weights for predicting a distribution
over words from a node embedding for each dependency, a
set of biases (we allow dependency-specific biases), the input
transformation matrix Wv, and the softmax classifier weights.
When the trained model is used to perform inference using a
novel input sentence, the encoder DT-RNN is assembled into a
tree using the learned encoding weights. The decoder DT-RNN
is then also assembled into a tree using the learned decoding
weights, and activation is propagated through the encoder
and into the decoder to produce a probability distribution
over words at each tree node. The words with the highest
probability at each node are then used to construct the predicted
entailment for the input sentence. The tree structure for the
decoder can either be selected randomly or stipulated ahead
of time.

2.3. Training Data and Training Procedure
To train the encoder and decoder components of the model,
we use a subset of the SNLI corpus (Bowman et al., 2015).
This corpus is a recently released dataset consisting of 570,152
sentences pairs labeled with inferential relationships. The
first sentence in each pair is referred to as the premise,
while the second sentence is referred to as the hypothesis.
If the hypothesis follows from the premise, then the pair
is labeled as an example of entailment. If the hypothesis
is inconsistent with the premise, the pair is labeled as an
example of contradiction. And if the hypothesis might or might
not be true given the premise, then the pair is labeled as
neutral.
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Each sentence pair is generated by providing a human
annotator3 with an image caption (but not the corresponding
image), and then asking them to write three further captions: one
which is definitely also true of the image, one whichmight be true
of the image, and one which is definitely not true of the image.
To illustrate with an example, one initial caption is “Under a blue
sky with white clouds, a child reaches up to touch the propeller of
a plane standing parked on a field of grass,” and the annotator
produced the following three additional captions: “A child is
reaching to touch the propeller of a plane” (entailment), “A child
is reaching to touch the propeller out of curiosity” (neutral),
and “A child is playing with a ball” (contradiction). The use of
image captions is designed to eliminate ambiguities concerning
event and entity co-reference across the sentences in a given pair.
Approximately ten percent of the resulting pairs were subject
to a further validation step in which four additional annotators
assigned them one of the three relationship labels. The results
of this data validation suggest that inter-annotator agreement
is very high, with ∼98% of validated sentence pairs receiving a
consensus label (i.e., at least three of the five annotators are in
agreement).

Since our interest is in generating entailments, we only
consider pairs labeled with the entailment relation. To reduce the
amount of noise and complexity in the dataset, we also perform
some simple pre-processing. First, we screen for misspelled
words,4 and eliminate all sentence pairs containing a misspelling.
The resulting vocabulary for the model consists of 22,495
words. Second, we eliminate all sentence pairs containing a
sentence longer than 15 words in order to avoid fitting model
parameters to a small number of very long sentences that produce
highly complex dependency trees. After preprocessing, the data
consists of a 106,246-pair training set, a 1,700-pair development
set, and 1,666-pair test set. Within the training set, 89,458
premise sentences occur in a single training pair, while a further
3,998 sentences occur in multiple training pairs. The maximum
number of pairs a unique premise sentence occurs in is 11 (i.e.,
their are 11 pairs in the training set with the same premise
sentence), while the average number of pairs a premise sentence
occurs in is 1.14. These statistics indicate that the model generally
only has access to a single example of a correct inference for each
premise sentence in the training data.

Model training is in accordance with the procedure described
in the previous subsection. Specifically, for each pair of sentences
in the training data, activation is propagated through the
dynamically assembled encoder and decoder networks, so as to
produce a probability distribution over words at each node in the
decoder. An error signal determined by the difference between
this computed distribution and the target distribution at each
node is then used to compute a gradient for all of the parameters
in the model, which include: (1) word2vec embeddings for each
vocabulary item; (2) an encoding weight matrix, a decoding
weight matrix, and bias vector for each of the 45 syntactic

3These annotators were recruited through AmazonMechanical Turk. See Bowman

et al. (2015) for details.
4We use the PyEnchant python library, available at http://pythonhosted.org/

pyenchant/.

TABLE 1 | Examples of entailments generated from novel test sentences.

Input sentence Generated entailment

The 3 dogs are cruising down the street. The dogs are on the street.

Woman reading a book with a grocery tote. A woman reading with a book.

The man in colorful shorts is barefoot. The man wearing in the shorts.

A man laughing while at a restaurant. A man laughing at a restaurant.

Two individuals are using a photo kiosk. The people are at a kiosk.

A man pulling items on a cart. A man pulling on a cart.

Three people are riding a carriage pulled by

four horses.

A horses riding with a carriage.

dependencies used by the SpaCy parser; (3) the embedding
transformation matrix Wv; and (4) softmax classifier weights for
predicting words at nodes in the decoder. Prior to training, each
set of weights associated with a syntactic dependency is initialized
as a 300 × 300 identity matrix with mean-zero Gaussian noise
for both the encoder and decoder. The word transformation
matrix,Wv, is initialized in the same way. Biases are initialized as
the zero vector. Classifier weights are initialized using word2vec
embeddings. Hyper-parameters include the learning rate, the
annealing schedule, and the number of training iterations. These
parameters were minimally hand-tuned by using the measure
of entailment accuracy (described in the next section) on the
development set. After tuning, the initial learning rate was set to
6e-4, and then progressively halved upon processing 45, 60, and
80 random samples of 10,000 pairs of items from the training set.
Training was terminated after processing 100 samples of 10,000
pairs (i.e., roughly 10 passes through the training data).

As an initial illustration of the kind of model performance
this training results in, Table 1 provides some examples of
entailments produced for sentences drawn from the SNLI
test set. The same decoding tree is used to produce each of
these entailments, which suggests that the model is capable
of producing plausible entailments under fixed syntactic
constraints. It is also worth noting that each example here is
only the most probable entailment given the decoding tree. It is
therefore theoretically possible to compute ranked collections of
entailments with each tree. To provide an illustration, Table 2
indicates how word probabilities are assigned to each node in
a fixed decoding tree for a training sentence. As this example
shows, the model learns probabilistic relations that allow it to
go somewhat beyond the explicit meaning of the familiar input
sentence. For instance, given that officers are mentioned in the
input sentence, the model assigns a high probability to them
being uniformed, blue (i.e., police), or green (i.e., military).
Likewise, given that the officers are in a golf cart, the model
assigns a high probability to them being on a course, or being
with equipment (abbreviated as “equip” in Table 2). Given that
the input sentence is only paired with the entailment “Two people
in a golf cart” in the training data, these probabilistic relations
indicate that model is learning to meaningfully generalize
between example inferential transitions to some degree.5

5Note that the probabilities listed in Table 2 are rounded to two decimals, and so

may not sum exactly to 1 in all cases.
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TABLE 2 | Decoder word probabilities for the sentence “Two officers sitting in a golf cart.”

the 0.89 uniformed 0.18 and 1.0 blue 0.16 people 0.27 are 0.23 in 0.43 cart 0.68 with 0.6 a 0.89 course 0.34

a 0.09 blue 0.15 or 0.0 green 0.12 officers 0.24 sitting 0.14 on 0.22 course 0.12 of 0.28 the 0.11 golf 0.19

some 0.01 old 0.07 of 0.0 yellow 0.11 men 0.14 people 0.03 with 0.18 equip. 0.04 in 0.08 an 0.01 equip. 0.18

an 0.0 green 0.03 but 0.0 white 0.05 they 0.04 sit 0.02 near 0.06 golf 0.03 on 0.03 this 0.0 cart 0.15

these 0.0 military 0.03 plus 0.0 brown 0.05 workers 0.02 is 0.02 at 0.05 hole 0.01 near 0.01 each 0.0 glove 0.01

3. EXPERIMENTS

To evaluate the model, we perform a number of experiments
that illustrate how it generates entailments for arbitrary linguistic
expressions. The first experiment provides a quantitative
assessment of how well the model is able to learn from examples
of correct inferential transitions between sentences. Specifically,
for a set of novel test sentences, we measure the percentage
of correct word-level predictions relative to the entailments
for these test sentences present in the dataset. The second
experiment provides an empirical assessment of the plausibility
of entailments generated by the model for a random selection
of novel test sentences. Very roughly, human subjects are asked
to rate the likelihood that model-generated entailments are true
given that the sentences provided as inputs to the model are also
assumed to be true. Together, these two experiments provide
an initial quantitative measure of how well the model is able to
generate sentences that are the inferential consequences of its
inputs.

The remaining assessments of the model expand on these
initial measures. The third experiment, following Kolesnyk et al.
(2016), involves iterating the encoding-decoding procedure to
generate chains of entailments from a given input sentence.
Interestingly, this sort of iteration can be used to explicitly build
out inferential roles for arbitrary input sentences, as illustrated in
section 3.3 below. The fourth experiment involves substituting
individual words in an input sentence to identify whether the
model is able to “interpolate” between known examples of correct
inferential transitions to produce novel transitions that are
nonetheless correct. A further goal of this substitutional analysis
is to evaluate the extent to which the model is able to learn word-
level indirect inferential roles of the sort discussed by Brandom
(1994). To measure the sensitivity of the model’s predictions to
individual words, we collect human plausibility ratings for model
generated entailments that are produced by substituting nouns
into random collections of input sentences from the SNLI test
set. These ratings indicate the degree to which the model is able
to generate appropriate entailments from a range of sentences
that all contain a specific word. The final experiment is the most
speculative in nature, and is designed to condition the model’s
generation of an entailment on a further input such as a prompt
or a question. The goal of this experiment is to evaluate the extent
to which the model is able to selectively navigate the inferential
roles it assigns to particular sentences. If successful, this kind of
selective navigation provides a foundation for more complicated
forms of question-answering that many researchers take to be at
the core of intelligence (Weston et al., 2015, 2016).

3.1. Evaluating Entailment Accuracy
Within the SNLI corpus, recall, the first sentence in each pair
is referred to as the “premise” while the second sentence is
referred to as the “hypothesis.” In the procedure just described,
the model is essentially learning to predict the hypothesis paired
with each example premise in the training data. It is therefore
possible to measure how accurately the model performs this task.
Specifically, one can measure the proportion of nodes in the
model’s decoder for which the predicted word is the same as
the correct word in the relevant hypothesis sentence. A caveat is
that the tree for this sentence must be provided to the decoder,
such that input activities are propagated through paired trees
of the sort depicted in Figure 2, where the decoder tree is the
correct tree for the conclusion of the inferential transition being
considered.

When applied to the training set, this accuracy measure
indicates the extent to which the model has “memorized” the
example inferential transitions it was presented during learning.
When applied to the test set, the measure indicates whether
the model has learned something that allows it to correctly
predict specific inferential transitions in novel situations. It
is worth noting that this measure is not entirely ideal in
the case of the test set, since the model might generate a
plausible entailment from a premise sentence that is non-
identical to the specific entailment that is present in SNLI.
It is also worth noting that prior work involving SNLI has
almost uniformly focused on the problem of classifying sentence
pairs. As such, we cannot easily draw comparisons to earlier
work, since here we are tackling the more difficult problem
of generating a sentence, rather than classifying provided
sentences. The literature on “recognizing textual entailment”
similarly focuses on classification rather than generation (see e.g.,
Giampiccolo et al., 2007), and hence is not a suitable target for
comparison.

The results of computing entailment generation accuracies
on the both training and test sets are presented in Table 3. A
baseline accuracy of chance computed via a random initialization
of model parameters is also reported. The model performs
considerably better than chance, both because it has a large
number of free parameters and because it is able to use
syntactic information to condition its word predictions on part-
of-speech information implicit in the structure of a decoding
tree. For example, if the tree requires a particular word to be
a determiner, then the number of plausible candidate words
shrinks drastically, since there are only a handful of determiners
in English (e.g., “the,” “a,” etc.). The model also generalizes
reasonably well to novel test sentences, with a fairly limited drop
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TABLE 3 | Word-level accuracy for entailment generation.

Model Training set (%) Test set (%)

Chance 6.0 5.9

Encoder-Decoder 70.5 60.1

in accuracy.6 One point to note concerning this generalization
is that extremely high accuracies on the test set are not entirely
desirable, since they would indicate that the model has learned
to exclusively predict a specific inferential transition for each
input sentence. However, there are numerous examples of correct
inferential transitions involving such sentences, and the model
should ideally be learning to assign a high likelihood to all of
them.

Overall, the fact the model can generate the example
inferential transitions in the SNLI test set with a fairly high
degree of accuracy provides good initial evidence that it is able
to capture the inferential roles of certain ordinary linguistic
expressions. Examples of the sort listed in Table 1, moreover,
suggest that these inferential roles are often comprised of well-
formed sentences that a competent speaker of English could
readily understand.

3.2. Evaluating Entailment Plausibility
One limitation of the assessments just described is that they
do not provide a quantitative measure of how plausible or
comprehensible the sentences produced by the model are. We
therefore perform a simple study in which human subjects are
asked to evaluate the plausibility of model-generated sentences.
During the study, participants are shown a series of sentences
introduced as true captions of unseen images. For each caption,
the participants are shown an alternate caption and asked to
evaluate the likelihood that it is also true of the corresponding
image. Evaluations are recorded using a five point Likert scale
that ranges from “Extremely Unlikely” (1) to “Extremely Likely”
(5). The original caption in each case is the first sentence in a
pair randomly chosen from the SNLI test set, while the alternate
caption is either (a) model-generated, (b) the SNLI entailment,
(c) the SNLI contradiction, or (d) the SNLI neutral hypotheses.
An experimental design is used in which participants are all
shown the same main captions, but are randomly assigned to
see only one of (a-d) as the alternate caption. This ensures
both that each participant rates only one caption per premise
sentence (so as to avoid order effects), and that each participant
sees a mix of all the alternate caption types (so as to avoid
different participants implicitly adopting different rating scales).
All model-generated sentences were produced using a decoding
tree selected at random from the set of twenty decoding trees that
were the most frequently used during training.

Eighty participants from the United States were recruited
through Amazon’s Mechanical Turk. The main captions were
identical across conditions, and each participant was asked to
rate 20 caption pairs. Participants were paid $0.80 for their

6If the model were merely memorizing the example inferential transitions present

in the training data, then this drop would likely be much higher.

TABLE 4 | Plausibility ratings for inferential relations.

Source Status Mean likert rating (1–5) Confidence interval*

Human Entailment 4.38 [4.31, 4.47]

Model Entailment 3.59 [3.45, 3.73]

Human Neutral 3.71 [3.61, 3.81]

Human Contradiction 1.51 [1.42, 1.60]

*Margins are bootstrapped 95% confidence intervals.

time. Four participants failed to complete the study and did not
have their responses included in the results. Repeat participation
was blocked by screening Mechanical Turk worker IDs. The
study was approved by a University of Waterloo Research Ethics
Committee, and all participants provided informed consent prior
to participation.

The Likert ratings collected during the study are assessments
of the plausibility of the inferential transition from one sentence
(the main caption) to another (the alternate caption). The
transitions involving sentence pairs drawn directly from SNLI
offer a kind of gold standard for both good, bad, and neutral
transitions. The results shown in Table 4 indicate that model-
generated transitions are rated quite positively, and much closer
to the SNLI entailments than to the SNLI contradictions. The
SNLI neutral hypotheses are rated slightly higher than themodel-
generated entailments, but this may be due to the fact that these
hypotheses are often very likely though not guaranteed to be
true given the premise sentence. For example, one of the neutral
pairs used in the experiment involves an inference from “Child
getting ready to go down a slide” to “The child will go down the
slide.” Given these considerations, the study provides preliminary
evidence in support of the claim that the model is able to generate
sentences that are at the very least quite likely to follow from its
input.7

To provide a statistical measure of the difference between
model-generated entailments and SNLI entailments, we compute
Cohen’s d as measure of effect size. This measure indicates the
degree to which an experimental manipulation (e.g., shifting
from human-generated to model-generated sentences) alters
the distribution of responses. For a comparison of model-
generated and human-generated entailments, d = −0.703,
which indicates that roughly 76% of responses to “Model-
Entailment” items are below the mean response for “Human–
Entailment” items (Becker, 2000). For a comparison of model-
generated entailments and human-generated neutral hypotheses,
d = −0.101, which indicates that roughly 54% of responses
to “Model-Entailment” items are below the mean response for
“Human–Neutral” items (Becker, 2000). Given that 50% of
responses would be below the mean if these distributions were
identical, these quantitative results support our conclusion that

7Notice too that if a selected decoding tree requires producing an entailment that

is longer than the input sentence, then it is likely that new information will have to

be added that will prevent the predicted inferential transition from being strictly

truth-preserving (simply because more words are now present). Thus, anytime

the generated sentence is longer than the input sentence, the Neutral category of

sentence pairs might be the appropriate target of comparison.
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the model is able to generate sentences that are at the very least
quite likely to follow from its input.

3.3. Iteration Analysis
Once an input sentence has been passed through the model to
generate an entailment, it is possible to use this entailment as
a new input to the model. Repeated applications of the model
accordingly make it possible to chart out the inferential role of
particular starting sentence. Figure 3 presents a simple example
of an inferential role in which the sentence “Some kids are
wrestling on an inflatable raft” is mapped onto a number of its
inferential consequences. Figure 4 presents a slightly different
example in which various sentences describing men doing things
outdoors are eventually mapped onto the sentence “A man is
outside.” One advantage of using tree-structured rather than
recurrent networks in the model is that different decoding trees
can be applied to a single sentence encoding, allowing for the
generation of multiple entailments from the same sentence.

Two general points can be made here. First, iterative
applications of themodel can be used to either generate sentences
that are (a) increasingly specific, or (b) increasingly general
(Kolesnyk et al., 2016). If a predicted entailment is longer than the
input sentence, then it tends to describe a more specific situation.
For instance, the sentence “A bird is in a pond” can be used to
generate the sentence “A little bird is outside in a small pond” by
using a decoding tree with nodes for two additional adjectives and
an additional adverb. If a predicted entailment is shorter than an
input sentence, then it tends to describe a more general situation.
For instance, the sentence “A little bird is outside in a small pond”
can be used to generate the sentence “A bird is outside” by using
a simple decoding tree with four nodes.

Second, these capacities for specification and generalization
suggest that the inferential transitions codified by the model
can be either inductive or deductive in nature. For example, the

inference from “A bird is in a pond” to “A little bird is outside
in a small pond” is not strictly truth-preserving and therefore
inductive. The inference from “A little bird is outside in a small
pond” to “A bird is outside,” on the other hand, is strictly truth-
preserving and therefore deductive. Interestingly, none of these
inferences are formal in the sense that they are licensed strictly
by the structure of the input sentence. Rather, they are examples
of what Sellars (1953) and Brandom (1994) refer to as material
inferences, or inferences that are licensed solely by a linguistic
expression’s meaning.

The most important lesson to draw from this examination of
iterative prediction is that it illustrates how the model assigns
an inferential role to every possible expression that can be
formed from the words in its vocabulary. To explain, the model
maps each input sentence onto a set of predictions concerning
its inferential consequences. The model can then be used to
map each sentence in this set to produce further predictions
ad infinitum. As such, it is possible to use the model to
build networks of the sort shown in Figures 3 and 4 for all
possible input sentences. These networks, in turn, are explicit
representations of the inferential roles the model assigns to
particular sentences. Overall, since the model does not change as
it is used to create these networks, it is fair to say that it predicts
a network of entailments for every sentence that can be produced
from the model’s vocabulary.

Of course, nothing guarantees that these inferential roles are
appropriate for all of the sentences in a given language. It would
be rather miraculous if a simple model trained on one hundred
thousand entailment pairs managed to always generate plausible
inferential transitions in novel scenarios. There is nonetheless
some degree of fit between the inferential roles defined by this
model and the inferential roles that govern the use of ordinary
language. The goal of model development, then, is to steadily
improve this degree of fit.

FIGURE 3 | A model-generated inferential network around the sentence “Some kids are wrestling on an inflatable raft.” Each inferential transition is the result of

generating a predicted entailment after encoding the sentence at the beginning of each arrow. The entire network is generated starting with only the initial sentence at

the center of the diagram, which is drawn from the SNLI test set. Different decoding trees are used to generate the different entailments from the initial sentence.
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FIGURE 4 | A model-generated inferential network around the sentence “A man is outside.” Each inferential transition is the result of generating a predicted entailment

after encoding the sentence at the beginning of each arrow. The entire network is generated starting with only the four outermost sentences, which are drawn from

the SNLI test set.

3.4. Substitution Analysis
Proponents of inferential approaches to semantics typically
characterize the meanings of individual words in terms of
their effects on the inferential roles of the sentences in which
they occur (Block, 1986; Brandom, 1994, 2000). The “indirect”
inferential role associated with a particular word is then analyzed
by swapping it into and out of a variety of different sentences
to observe the resulting changes to the kinds of inferences that
are licensed by these sentences (Brandom, 1994). Interestingly,
the model introduced here can be used to perform this kind of
analysis. If individual words in the model’s input sentence are
replaced, it becomes possible to identify the impact these words
have on the inferential transitions that the model predicts. In
Table 6, for instance, the replacement of a subject noun or a main
verb in an input sentence can be seen to have significant effects on
the kinds of entailments that are generated by the model.

There are two ways to think about the significance of this
substitutional manipulation of the model’s behavior. On the one
hand, substitution can be used to assess how well the model is
able to “interpolate” between the example inferential transitions
it was trained on. To explain, any two sentences in the training
data can be treated as substitutional variants of one another,
provided that enough substitutions are made.8 For example,
the sentence “The dog chased after the cat” is a substitutional
variant of “The woman drove the car”—“dog” is swapped for
“woman,” “chased” is swapped for “drove,” “after” is swapped
for the empty string, and “cat” is swapped for “car.” If both
of these sentences are part of inferential transitions found in
the training data, then it is possible to evaluate how the model
generalizes beyond these transitions by testing it on inputs that
are the substitutional intermediaries of the original sentences. On
the other hand, substitutions can also be used to identify specific
inferential patterns that are associated with particular expression
types (e.g., pronouns, quantifiers, etc.).

To provide an assessment of how well the model learns to
accommodate the indirect inferential patterns associated with
particular words, we performed an additional experiment in
which subjects provide ratings of entailments generated from
collections of test sentences that have been modified to include

8We include insertions and deletions, which can be thought of as substitutions

involving the empty string.

a specific noun. To construct the input sentences used as main
captions in the experiment, the following procedure was used.
First, ten of the twenty most commonly occurring nouns in the
training data were selected at random. Next, for each of these
target nouns, twenty premise sentences were randomly chosen
from the SNLI test set, and the target noun is used to replace the
first occurrence of a noun in each sentence. After a set of twenty
sentences per noun is created in this way, we screen each set for
semantic anomalies by hand9 to produce a set of four novel input
sentences involving each target noun. For each input sentence
corresponding to a target noun, a model-generated entailment is
produced using a randomly selected decoding tree, as before.

Sixty participants from the United States were recruited
through Amazon’s Mechanical Turk and paid $0.50 for rating
ten items. The same experimental design was used, with captions
being randomly alternated between entailments generated by the
model, entailments from the SNLI test set, and contradictions
from the SNLI test set. The inclusion of these entailments and
contradictions from SNLI was done to ensure that participant’s
ratings of the generated subsitutional inferences of interest
were appropriately calibrated in relation to clear examples of
entailment and contradiction. Five participants failed to complete

the study and did not have their responses included in the results.

The results reported in Table 5 indicate that entailments

generated from substitutionally-derived input sentences are

rated as more similar to clear examples of entailment than to

clear examples of contradiction. However, these substitutional

entailments are rated somewhat more poorly than the basic

model-generated entailments used in the previous study. And

while comparisons across experiments are hazardous, it seems

reasonable to infer that participants here are using the same

rating scale as before, given that their ratings of SNLI entailments
and contradictions closely replicate the earlier results. To provide
a statistical measure of the difference between model-generated
entailments and SNLI entailments in this experiment, we again
compute Cohen’s d. For a comparison of model-generated and
human-generated entailments, d = −0.949, which indicates
that roughly 83% of responses to “Model-Entailment” items

9Simply replacing one noun in a sentence with another often yields infelicitous

results. For example: “Two girls wearing hats are running through person drifts

outside.”
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TABLE 5 | Plausibility ratings for substitution inferences.

Source Status Mean likert rating (1–5) Confidence interval*

Human Entailment 4.37 [4.21, 4.53]

Model Entailment 3.26 [3.11, 3.41]

Human Contradiction 1.46 [1.32, 1.63]

*Margins are bootstrapped 95% confidence intervals.

TABLE 6 | Substitution analysis for “A boy in a beige shirt is sleeping in a car.”

Input sentence Generated entailment

A boy in a beige shirt is sleeping in a car. A boy is sleeping in his car.

A girl in a beige shirt is sleeping in a car. A girl is sleeping in her car.

A man in a beige shirt is sleeping in a car. A man is sleeping in his car.

A woman in a beige shirt is sleeping in a car. A woman is sleeping in her car.

A man in a beige shirt is driving in a car. A man is driving a car.

A person in a beige shirt is selling a car. A person is selling a car.

Underlining indicates a substituted word.

are below the mean response for “Human–Entailment” items
(Becker, 2000). In all, these results suggest that while the model
is not able to always produce accurate entailments on the basis
of the inclusion of a specific word in a sentence, the use of word-
level substitutions does not drastically reduce the model’s ability
to generate plausible sentences (c.f. d = −0.703 above).

On a more theoretical level, the main benefit of identifying
indirect inferential roles is that many of the phenomena that
semanticists have traditionally analyzed in truth-conditional
terms can be re-analyzed in inferential terms. For example, one
can test whether the model generates appropriate entailments
for input sentences involving standard quantifiers like “some”
and “every.” Similarly, one can test whether the model
generates appropriate entailments for input sentences that
exhibit anaphoric relations involving pronouns that vary with
respect to gender and plurality (e.g., “he” vs. “she” vs. “they,”
etc.). Further tests involving expressions that vary with respect
to numerals (e.g., one, two, many, etc.) are also possible. It is
not reasonable to expect the model to pass all of these tests,
since there are relatively few examples of inferential transitions
in SNLI that are directly driven by quantification, anaphora, or
numerosity. Nonetheless, the model exhibits some promising
behavior with respect to these expression types.

In the case of quantifiers, the model is able to infer that
“some” and “many” require nouns within their scope to take
the plural form in an entailed sentence, as shown in Table 7.
The model is also able to infer that “some kids” entails “at least
two kids,” as shown in Figure 3. In the case of pronouns, the
model is sensitive to cues that determine the gender of a pronoun
in relation to its anaphoric antecedent. For example, the model
correctly infers that girls and women should be referred to with
female pronouns, while boys and men should be referred to with
male pronouns, as shown in Table 6. In the case of numerals,
the model exhibits an ability to infer appropriate quantities from
simple groupings and conjunctions. For instance, the model

TABLE 7 | Substitution analysis with quantifiers, numerals, and negations.

Input sentence Generated entailment

Some men in red shirts are waiting in a store. The men are in a store.

Many women in red shirts are waiting in a store. The women are in a store.

A boy and a girl are waiting inside a store. Two children are inside.

A boy and a girl are waiting inside a park. Two children are outside.

A boy is in a car. A boy is not outside.

A boy is in a store. A boy is not indoors.

generates a sentence containing the phrase “Two children...”
from a sentence containing the phrase “A boy and a girl...”
in Table 7. Finally, the model appears to have difficulty with
negations. In Table 7, for example, the model incorrectly infers
“A boy is not indoors” from “A boy is in a store.” While these
results are rather limited, it is worth emphasizing again that the
model was not designed or trained to account for phenomena
involving quantifiers, pronouns, and numerals specifically. So the
fact that the model’s predictions are appropriately sensitive to
these expressions in some cases suggests that it provides a solid
foundation for developing more sophisticated analyses of specific
linguistic constructions.

Overall, the extent to which this sort of substitutional
analysis can be used to characterize the meanings of individual
words is an open question. Words are typically only used
in the context of sentences, and sentences, we have argued,
have meanings insofar as they license certain inferences. It is
accordingly plausible that words have meanings insofar as they
help determine which inferences are licensed by the sentences
they occur in. Strictly speaking, we endorse this line of reasoning,
but it can be misleading if one only considers inferences that
relate linguistic expressions to one another, to the exclusion
of inferences that relate linguistic expressions to non-linguistic
perceptions and actions. In the case of a word like “crayon,”
for instance, it would be inadequate to postulate a meaning
that merely codifies inferential relations amongst crayon-related
sentences while saying nothing about how people identify and
use crayons. However, if one could identify all that follows
from something being a crayon (both linguistically and non-
linguistically speaking), it is difficult to contend that one does not
know what the word “crayon” means.

3.5. Conditioned Entailments
Up to this point, the association of particular inferential
roles with particular sentences has not lead to any concrete
explanations of facts concerning the use of these sentences.
To build toward such explanations, we briefly examine various
methods for conditioning the model’s predictions on additional
inputs. The idea is to selectively navigate the inferential role
associated with a particular sentence so as to provide appropriate
answers to specific questions about the sentence. To illustrate
with a hypothetical example, consider once more the sentence
“The dancers parade down the street.” Providing an answer to
a question such as “Are the dancers outside?” involves drawing
one inference amongst the many that are licensed by the original
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sentence. More generally, every answer to a question about this
particular sentence is simply a different sentence specified by its
inferential role.

There are two reasons why question answering is worth
exploring. First, the matter of whether a model can adequately
perform simple forms of question answering is highly relevant
to determining whether or not its behavior can be predicted
by adopting the intentional stance. Put simply, a system that
understands a particular linguistic expression will undoubtedly
be able to answer certain questions about it (St. John and
McClelland, 1990; Rabovsky et al., in review). Given our
supposition that the expectations set out by inferential roles
are what make intentional interpretation possible,10 it is
important to verify that the model can be subjected to such
interpretation. Second, an examination of question answering
allows for a clear connection to be drawn between the
inferential roles assigned to particular expressions and the
use of those expressions. For example, the assignment of
an inferential role to a sentence helps to explain, amongst
other things, how it gets used in simple question-and-answer
dialogues.

As an initial test of the model’s ability to generate conditioned
entailments, we supplement its input with simple prompts
consisting of single words. The resulting change to the encoding
procedure is quite minimal. First, an input sentence is converted
into an embedding using the usual tree-structured encoder.
Second, a word embedding corresponding to a prompt is added
to this embedding. The resulting sum is then passed through
the decoder to produce a predicted entailment. The effect of
this process is to subtly shift the input sentence embedding
toward the prompt embedding, with the expectation that this
shift will be reflected in the prediction of an entailment that is
appropriate to the prompt. Table 8 illustrates some examples of
the kinds of the entailments that the model predicts under these
conditions.

The natural next step is to use complete questions instead of
single word prompts to condition the model’s predictions. To
take this next step, we modify the encoding procedure to produce
two sentence embeddings using two separate encoding trees. The
first embedding corresponds to an input sentence, while second
embedding corresponds to a question. These embeddings are
then added together before being passed to the decoder network.
The idea, again, is that shifting the input embedding toward
the question embedding will force the decoder to predict an
entailment that is an answer to the question. An important caveat
is that the model was not trained to perform this task, so there is
little reason to suppose that it will produce appropriate answers.
As Table 9 indicates, the answers the model provides in response
to questions are often not particularly illuminating. Nonetheless,
these answers generally provide relevant information for the
question provided.

Tables 9 and 10 together illustrate that it is possible to
qualitatively examine the relative importance of queries and

10The idea, recall, is that intentional state attributions only license certain

behavioral predictions because the sentences invoked by these attributions have

particular inferential roles.

TABLE 8 | Prompts with “A man is steering his ship out at sea.”

Prompt Generated entailment

Water A man is in the water.

Fish A man fishes in the water.

Sails A boat sails in the sea.

Steering A man steering in the water.

Voyage A ship sailing in the sea.

Sea A sea sea in the sea.

TABLE 9 | Queries with “A mother and daughter walk along the side of a bridge.”

Query Generated entailment

How many people are walking? Two people are walking.

What are the people doing? A people are together on a water.

Where are the people? The people are on a water.

How fast are the people walking? A people walking very close.

What is the bridge over? The people is on a bridge.

input sentences. For example, if the input sentence is altered
while the queries are held constant,11 it is possible to isolate the
changes in the predicted answers that are due to properties of
the input sentence specifically (i.e., the queries and the decoding
trees are held constant). As is illustrated in these tables, the
inclusion of the word “bridge” in the input sentence seems to help
surface answers that highlight the proximity of water, while the
inclusion of the word “street” seems to help surface answers that
highlight being outside. Varying the queries further could help
to determine the range of sensitivity that generated entailments
have given a fixed input sentence and decoding tree. It may
be, however, that some of the observed variation is due to the
decoding tree rather than the query per se, and as such, it is not
yet entirely clear how inputs, queries, and the decoding structure
interact to produce a predicted entailment.12

Overall, these tests are merely suggestive, but they point
toward the development of more sophisticated models for which
performance on conditional inference tasks is incorporated
directly into the training objective. Developing such models
will undoubtedly require training data comprised of numerous
example question-answer pairs for each input sentence of
interest. There are currently a number of engineering-driven
efforts to build systems that learn to answer questions
about short collections of text (e.g., Sukhbataar et al., 2015;
Weston et al., 2015, 2016), but these efforts have not lead
to the creation of publicly available datasets of the required
sort.

11Barring the changes that are required to ensure the questions remain applicable

to the altered sentence. For example, the question “What is the bridge over?” is

changed to “What is the street over?” when the input sentence is changed from “A

mother and daughter walk along the side of a bridge” to “A mother and daughter

walk along the street.”
12Note that it is not possible to use the same decoding tree in all cases, since it

typically not possible to produce appropriate answers to different questions using

sentences that all share an identical syntax.
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TABLE 10 | The same queries with “A mother and daughter walk along the street.”

Query Generated entailment

How many people are walking? Two people are walking.

What are the people doing? A people are outside with the street.

Where are the people? The people are on the street.

How fast are the people walking? A people walking very present.

What is the street over? The people are down the street.

4. DISCUSSION

The primary purpose of this work is not to advance the technical
state-of-the-art in neural network modeling. Rather, its purpose
is to illustrate how neural networks can be used to formalize a
particular approach to thinking about the meaning of language.
This approach, again, involves treating linguistic expressions as
instruments of prediction that play a role in social practices
involving intentional interpretation. The meaning of a linguistic
expression, then, can be specified in terms of the predictions and
inferences it licenses in the context of intentional interpretation.
A key theoretical shift that results from this way of thinking is that
the meanings of linguistic expressions should be characterized
primarily in terms of their inferential relations to one another
(along with certain non-linguistic perceptions and actions),
rather than primarily in terms of the properties of underlying
representations. Or put another way, the job of characterizing an
expression’s meaning involves specifying the inferential relations
that it gets caught up in rather than specifying the features
of particular mental representations that get associated with
particular words and sentences. One of our main goals has been
to argue that neural networks are a promising tool for carrying
out this job (e.g., by allowing one to automatically generate
networks like those in Figures 3 and 4).

This inferentialist approach to semantics is related to a
number of strands of earlier research. On a technical level,
the idea of using neural networks to learn relations amongst
sentences has been developed in a body of work on modeling
story comprehension with RNNs (Golden and Rumelhart, 1993;
Frank et al., 2003, 2009). However, our encoder-decoder model
expands on this prior work in three important ways. First, there
is no hand coding of linguistic expressions or the constraints
that hold between them; everything is learned automatically
from real-world language data. Second, the model scales to
a realistic vocabulary size and a realistic range of sentence
types with sophisticated syntactic structures. Third, and perhaps
most importantly, we incorporate language generation into our
modeling framework.

On a more theoretical level, the inferentialist approach is
closely related to work on procedural semantics (Johnson-
Laird, 1977) and natural logic (Lakoff, 1970). In the case of
procedural semantics, our emphasis on processes of inference
rather than representational states is clearly in line with the
proceduralists’ call to consider “processes as well as structures”
in the development of a psychologically plausible semantic
theory (Johnson-Laird, 1977, p. 193). Our approach differs,
however, in both (a) characterizing the relevant processes in

terms to a theory of how linguistic expressions are used as
instruments of prediction in context of social interaction, and (b)
avoiding the assumption that comprehension involves building
up a representational structure that constitutes a “semantic
interpretation” of an input sentence (p. 195).13 In the case
of natural logic, our work shares an emphasis on producing
entailments without appeal to logical forms that deviate from a
sentence’s grammatical form. On the other hand, a significant
difference is that we do not introduce explicit inference rules that
can be used to produce a step-by-step derivation of an entailed
sentence from a starting sentence. Further work could profitably
explore the relationship between our inferentialist approach and
natural logic in more detail.

More broadly, if the inferentialist approach is on the right
track, then there are some important implications for the study
of the cognitive mechanisms that underlie language use. Again,
if understanding a linguistic expression involves forming certain
predictions and drawing certain inferences, then it is reasonable
to shift from thinking about representational states that encode
sentence meanings as structured objects to thinking about
inferential processes that determine the roles sentences play in an
individual’s behavioral economy. Two areas in which this shift is
of particular importance include (a) debates about the principle
of compositionality (Szabo, 2013), and (b) debates about the role
of syntax in language processing.

With respect to (a), our process-based approach to thinking
about language use and linguistic cognition is incompatible with
standard formulations of the principle of compositionality, on
which complex “meanings” are built up out of simpler ones
(Fodor and Lepore, 1991; Szabo, 2013). The approach is, however,
compatible with a procedural notion of compositionality on
which certain procedures get re-used when determining the
inferential consequences of novel linguistic expressions (Blouw,
2017), as in our model. Notice too that the main motivation for
postulating the principle of compositionality is to explain how
people are able to generalize from the use of familiar linguistic
expressions to the use of unfamiliar ones (Fodor and Pylyshyn,
1988; Fodor and Lepore, 2002; Szabo, 2012). But if so, then
debates about the principle are really about generalization rather
than semantic composition per se. Generalization, in turn, can be
achieved in many different ways, and it is not entirely clear that
language users generalize on the basis of structural rules of the
sort typically proposed by linguists (Tomasello, 2003). Moreover,
it is plausible that one way in which language users generalize is
by “interpolating” between familiar examples of good inferential
transitions, as illustrated in section 3.5.

With respect to (b), it is worth noting that our approach
fits well with the idea that a sentence’s syntactic structure
is akin to description of its processing history (Lupyan and
Clark, 2015; Christiansen and Chater, 2016). The encoder-
decoder model, to explain, never constructs explicit syntactic

13This latter assumption is actually somewhat odd, since it is in tension with the

claim that procedural semantics is actually an alternative to common denotational

semantics, since a denotation relation of some kind is presumably what permits

a representational structure to be interpreted in isolation. See Hadley (1989) for

discussion related to this point.
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representations of its inputs. Rather, the role of syntax in the
model is to guide the procedure by which word embeddings
are transformed into sentence embeddings, and vice versa. None
of these embeddings possess explicit constituent structure; a
sentence embedding, for instance, is not a syntactically structured
“whole” that is comprised of “parts” corresponding to individual
word embeddings (Eliasmith, 2013). An interesting consequence
of this observation is that embeddings cannot be manipulated
by purely formal inference rules, since such rules, by definition,
operate on structures comprised of parts and wholes (Fodor and
Pylyshyn, 1988; Marcus, 1998).

5. CONCLUSION

In summary, the point of this work is to motivate an approach
to semantics based on inferential relationships (Brandom, 1994).
The use of the encoder-decoder model is designed to illustrate
how very simple inferential roles can be learned for arbitrary
linguistic expressions from examples of how sentences are
distributed as tacit “premises” and “conclusions” in a space of
inferences. It is accordingly possible to characterize this work
as an extension to the well-known distributional approach to
semantics (Turney and Pantel, 2010), wherein the generic notion
of a linguistic context is replaced with the more fine-grained
notion of an inferential context.

As with most natural language generation systems, many of
the sentences produced by the model are defective in some
way. As can be seen in the examples in Tables 8 and 9,
model-generated entailments are almost always thematically
appropriate, but sometimes contain agreement errors or
misplaced words that render the entailment as a whole ill-
formed. And, not infrequently, the model produces entailments
that are more or less incomprehensible. There are two ways
to address these problems. The first involves the use of
increased amounts of training data to provide the model with
a more points in the “space of inferences” to interpolate
between. The second involves the use of more sophisticated
network architectures that help the model to learn to more
selectively make use of only the input information that is
most relevant to generating a good entailment. Tree-structured

architectures such as the Tree LSTM (Tai et al., 2015; Zhu
et al., 2015), the Recursive Neural Tensor Network (Socher et al.,
2013), or the lifted matrix-space model (Chung and Bowman,
2017) can potentially provide improvements on this second
front.

Finally, an important limitation of this work is that it does not
directly consider the relationship between linguistic expressions
and the non-linguistic world. A natural way to account for
this relationship is to suppose that a sentence’s occurrence in
the linguistic environment licenses certain expectations about
what can be seen, heard, or otherwise perceived. To return
to our initial example, if one understands the statement “The
dancers parade down the street,” one will expect to see and
hear dancers upon going to the relevant street. We accordingly
suggest that if an individual can adequately infer all that follows
from a given linguistic expression, both linguistically and non-
linguistically, then there is nothing further they need to be
able to do to count as understanding what the expression
means.

CODE AND DATA

All of the experiments described in this paper were implemented
using a neural network library written by the first author,
available at https://github.com/pblouw/pysem. Code for running
simulations, along with data from the studies described in
Sections 3.2 and 3.4, is available at https://github.com/pblouw/
frontiers2018.
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