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Pictorial stimuli can vary on many dimensions, several aspects of which are captured
by the term ‘visual complexity.” Visual complexity can be described as, “a picture
of a few objects, colors, or structures would be less complex than a very colorful
picture of many objects that is composed of several components.” Prior studies have
reported a relationship between affect and visual complexity, where complex pictures
are rated as more pleasant and arousing. However, a relationship in the opposite
direction, an effect of affect on visual complexity, is also possible; emotional arousal and
valence are known to influence selective attention and visual processing. In a series of
experiments, we found that ratings of visual complexity correlated with affective ratings,
and independently also with computational measures of visual complexity. These
computational measures did not correlate with affect, suggesting that complexity ratings
are separately related to distinct factors. We investigated the relationship between
affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a
robust phenomenon. Moreover, we found this bias could be attenuated when explicitly
indicated but did not correlate with inter-individual difference measures of affective
processing, and was largely unrelated to cognitive and eyetracking measures. Taken
together, the arousal-complexity bias seems to be caused by a relationship between
arousal and visual processing as it has been described for the greater vividness of
arousing pictures. The described arousal-complexity bias is also of relevance from an
experimental perspective because visual complexity is often considered a variable to
control for when using pictorial stimuli.

Keywords: visual complexity, affect, arousal, valence, eyetracking, emotion

INTRODUCTION

Berlyne (1958) described visual complexity as being influenced by a variety of factors, including
number of the comprising elements, as well as their heterogeneity (e.g., a single shape repeated vs.
multiple distinct shapes), their regularity (e.g., simple polygons vs. more abstract shapes) and the
regularity of the arrangement of elements (e.g., symmetry, distribution characteristics) (see Figure 1
of Berlyne, 1958). More recently, Pieters et al. (2010) provided a similar list of complexity factors,
along with example advertisements that highlight these differences (Oliva et al., 2004; see Figure 2
of Pieters et al., 2010). Research into visual complexity has recently become a multidisciplinary
topic, involving researchers in fields ranging from marketing (Pieters et al., 2010; Braun et al., 2013)
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to computer science (Itti et al., 1998), and from esthetics (Nadal
et al.,, 2010) to human-computer interaction (Tuch et al., 2009)
as well as psychology (Donderi, 2006; Cassarino and Setti, 2015,
2016). This approach to examining visual complexity in pictures
that are clearly and consciously viewed, and judged based on the
number of objects and their aggregate structure, is the focus of
the current work.

Many studies have observed a relationship between visual
complexity and affect (e.g., pleasantness). This relationship has
been observed dating back to the early 1970s (e.g., Kaplan
et al., 1972; Aitken, 1974; Aitken and Hutt, 1974) and this idea
has re-emerged more recently (e.g., Stamps, 2002; Marin and
Leder, 2013, 2016; Schlochtermeier et al., 2013; Machado et al,,
2015; Marin et al,, 2016). Importantly, these studies suggest
that more complex pictures are perceived as more pleasant
than less complex pictures, a hypothesis supported by earlier
work where pleasantness and physiological arousal have been
found to be higher for more complex abstract shapes (e.g.,
Berlyne et al., 1963, 1968; Vitz, 1964; Day, 1967). At particularly
high levels of complexity, pleasantness decreases, however,
following an inverted-U shaped function (“Wundt curve,
Berlyne, 1970). Importantly, in these studies, the directionality
of this relationship between complexity and affect is always
discussed as complexity influencing affect. However, there might
be also an effect in the opposite direction, i.e., affect influencing
perceived visual complexity.

This hypothesis seems plausible because emotionally arousing
stimuli attract bottom-up attention, are processed with priority
as well as a higher signal-to-noise ratio and are perceived more
vividly (Pourtois et al., 2013; Markovic et al., 2014; Mather
et al., 2016). The relationship between arousal and perception
is reflected in greater activity in visual regions as well as in
different eye movement patterns (Pessoa and Adolphs, 2010;
Bradley et al., 2011; Ni et al, 2011). This difference in visual
processing activity has primarily been attributed to autonomic
activity and motivational salience. In addition, emotionally
arousing stimuli possess certain cognitive characteristics that
might influence experienced complexity. First, emotionally
arousing stimuli are more distinctive relative to prior experiences
(Schmidt, 1991). Second, they are semantically related, i.e.,
often belong to the same scripts such as disease, poverty, or
crime (Talmi and McGarry, 2012). During processing of such
a stimuli the associated script might more easily get activated
and influence experienced complexity. Taken together, from a
basic science perspective there is good evidence to hypothesize
that emotionally arousing stimuli are perceived as more complex
(Marin and Leder, 2013).

From an experimental approach, visual complexity is often
considered a variable to control for when using pictorial stimuli
to investigate affective (e.g., Ochsner, 2000; Talmi et al., 2007;
Sakaki et al., 2012) or memory processes (e.g., Snodgrass and
Vanderwart, 1980; Berman et al., 1989; Isola et al., 2014; Nguyen
and McDaniel, 2015). As we were particularly interested in
potential top-down effects of affect within studies of affect or
memory, we presented pictures for several seconds, as opposed
to other studies where pictures may only be presented briefly
(e.g., 50-200 ms) along with visual masks. Importantly, visual

complexity is often measured through ratings provided by
participants in initial norming studies. However, while many
studies have matched stimuli using visual complexity ratings,
these studies did not consider that ratings of visual complexity
may themselves be correlated with affective ratings (i.e., arousal
and valence), and thus controlling for ratings of visual complexity
might bias the affective quality of the stimulus material.

Computational Measures of Visual
Complexity

To measure visual complexity, computational approaches can
also be used. One of the simplest and most prevalent methods
used to computationally measure visual complexity is to simply
use the picture’s file size after using JPEG compression. The
general idea behind this approach is that more complex pictures,
given the same picture dimensions, can be compressed to a
lesser degree than less complex pictures and thus more complex
pictures have larger file sizes. Using this rationale, a number
of studies and review articles have suggested the use of JPEG
file size as a computational measure of visual complexity (e.g.,
Machado and Cardoso, 1998; Székely and Bates, 2000; Donderi,
2006; Forsythe et al., 2008, 2011; Martinovic et al., 2008; Forsythe,
2009; Tuch et al., 2009; Pieters et al., 2010; Stickel et al., 2010;
Purchase et al., 2012; Marin and Leder, 2013; Schlochtermeier
et al., 2013; Simola et al., 2013; Machado et al., 2015). While the
JPEG file size does correlate with visual complexity, for scientific
research it seems more appropriate to use a method designed
to be similar to the computational processes that occur in early
visual cortices. Nonetheless, here we will also evaluate the efficacy
of JPEG file size as a computational measure of visual complexity.

One such computational process is edge detection, which is
the identification of boundaries within a picture. Though several
edge detection algorithms have been developed (for reviews, see
Nadernejad et al., 2008; Juneja and Sandhu, 2009; Maini and
Aggarwal, 2009), Canny’s (1986) algorithm has been found to
generally be better able to detect edges (Nadernejad et al., 2008;
Juneja and Sandhu, 2009; Maini and Aggarwal, 2009; Machado
et al, 2015) and has been used in behavioral research (e.g.,
Rosenholtz et al., 2007; Forsythe et al., 2008; Ptak et al., 2009;
Sakaki et al., 2012; Machado et al, 2015). See Figures 1C,D
for examples of edge detection applied to naturalistic pictures'.
Edge detection can be summarized as ‘edge density, where
an edge detection map is averaged to calculate a single value
corresponding to the proportion of the map was identified as an
edge.

Based on prior work developing computational approaches
to measure visual complexity (Rosenholtz et al., 2007), we
additionally used two other computational measures: feature
congestion and subband entropy. Feature congestion quantifies
how ‘cluttered’ a picture is and incorporates color, luminance
contrast, and orientation. See Figures 1E,F for examples
of Rosenholtz et al’s (2007) feature congestion algorithm

'Here we converted the pictures to CIELab 1976 color space (designed to mimic
the responses of the human eye) and then computed the Canny edge detection on
the L* dimension using the lower and upper thresholds suggested by Rosenholtz
etal. (2007), 0.11 and 0.27, respectively.
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two pictures. (E,F) lllustrate the feature congestion of the two pictures.

FIGURE 1 | Example pictures shown to participants as exemplars of (A) low visual complexity and (B) high visual complexity. (C,D) lllustrate the edge density of the

applied to naturalistic pictures. Subband entropy quantifies the
‘organization’ within the picture, through Shannon’s entropy
in spatial repetitions of hue, luminance, and size (i.e., spatial
frequency). Rosenholtz et al. (2007) found that all three
measures (edge density, feature congestion, and subband
entropy) correlated with response time in a visual search task,
demonstrating that these three computational measures relate to
behavior.

It is worth considering, however, that the computational
measures of visual complexity described here are limited
to low-level visual features. As such, they would provide
similar complexity values for a picture of dozens of leaves
as for a picture of dozens of unique toys—whereas a viewer
may know that the toys represent characters from different
cartoon shows and are associated with more varied semantic
information. Ratings of visual complexity are based on both
low-level features in addition to high-level features such as
object information. Nonetheless, higher-level visual features are
difficult to systematically characterize (i.e., using computational
algorithms and without subjective biases) and the current work
focused on the relationships between computational measures
of visual complexity and affective measures with ratings of
complexity.

In sum, visual complex stimuli are perceived as more
(positive) emotionally arousing. Further, it is well established
that emotionally arousing stimuli attract selective attention,
alter sensory processing and are reported as having higher
vividness which might translate into higher experienced visual
complexity (Marin and Leder, 2013). Such a greater visual
complexity of emotionally arousing stimuli might also be
supported by differences in cognitive processing, i.e., their
higher distinctiveness and semantic relatedness. Based on these
considerations we aimed to characterize the relationship between
emotional arousal and perceived visual complexity in the current
study.

The hypothesized relationship between emotional arousal
and experienced visual complexity is also relevant from an

experimental perspective because ratings are widely used to
generate equally complex picture sets that differ only with
respect to arousal and valence. Therefore, we investigated the
relationship between affective properties of scenic stimuli, arousal
and valence, and computational measures of visual complexity
on experienced visual complexity (i.e., participant ratings). In
doing so, the four most often proposed computational measures
of visual complexity were compared as a secondary outcome.
Admittedly, here we did not manipulate the pictures themselves
and investigated the correlational relationship between affect and
perceived visual complexity, rather than attempting to causally
influence this relationship.

In a series of experiments, we examined the contributions
of affective processes and computational measures of visual
complexity to visual complexity ratings in naturalistic pictures.
After establishing this effect across different subsets of stimuli,
rating procedures, and presentation times (Experiments 1-2)
we further explored how ratings of visual complexity related to
measures of cognition, eye-tracking, emotion-related traits and
deliberate control (Experiments 3-5).

EXPERIMENT 1

In Experiment 1, we first tested for relationships between
affective and visual complexity ratings, as well as for relationships
with the computational measures of visual complexity, across
a large set of 720 pictures. In addition, the four computational
measure of visual complexity—edge density, feature congestion,
sub band entropy, and JPEG file size—were formally compared
with respect to the shared variance with the ratings of visual
complexity.

Methods
Participants
As prior studies have indicated that there are likely sex
differences in affective processing (Cahill et al, 2001; Canli
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FIGURE 2 | Examples of the experimental methods. (A) Example pictures used in the experiments. (B) Scale used for the valence, arousal, and visual complexity
ratings. The valence and arousal scales are adapted from the self-assessment manikin (SAM) developed by Bradley and Lang (1994).

et al., 2002; Sergerie et al., 2008; Schneider et al., 2011; Brown
and Macefield, 2014), we only recruited female participants
in all experiments. In addition, we restricted the sample to
female volunteers to improve inter-rate consistency, particularly
since some positively valenced, arousing stimuli were erotic
in nature. A total of 35 female volunteers (ages 18-40)
with normal or corrected-to-normal vision participated. In all
experiments, volunteers were recruited through an advertisement
on the homepage of the University of Hamburg, gave informed
written consent, and received monetary reimbursement (10€
per hour) for their participation. No volunteer participated
in more than one experiment. The research was approved
by the local ethics board (Board of Physicians, Hamburg,
Germany).

Materials

A total of 720 pictures were used in the experiment: 239 pictures
were selected from the International Affective Picture System
(IAPS; Lang et al, 2008) database, and were supplemented

by an additional 481 pictures found on the Internet that
were thematically similar to pictures in the IAPS (and were
adjusted to have the same picture dimensions as the IAPS
pictures).

Pictures were chosen such that the picture set was
approximately one-third each of positive, negative, and neutral
pictures. Importantly, pictures were chosen such that pictures
were distributed across six categories with different numbers
of primary objects in the foreground (objects, animals, faces,
one-person scenes, two-person scenes, multi-person scenes).
Pictures in each topic category were evenly distributed across the
three valences.

Procedure

Participants were told that they will be shown emotional pictures
and be asked to rate these pictures on three scales: valence,
arousal, and visual complexity. Participants were provided with
instructions describing each measure. For the valence and
arousal ratings, instructions were identical to those used by
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Lang et al. (2008) and participants rated the pictures using the 9-
point Self-Assessment Manikin (SAM; Bradley and Lang, 1994).
For the visual complexity rating, participants were instructed
that: “A picture of a few objects, colors, or structures would
be less complex than a very colorful picture of many objects
that is composed of several components.” To further orient
participants to this type of rating, participants were provided
two example pictures: one low-complexity picture (Figure 1A)
and one high-complexity picture (Figure 1B). A 9-point Likert
scale, shown in Figure 2, was used for complexity ratings.
For ratings of complexity and arousal, the left-most options
corresponded to higher ratings of complexity and arousal,
respectively. For valence, left-most options corresponded with
higher ratings of pleasantness, lower ratings corresponded with
unpleasantness.

On each trial, participants were first shown a picture for
2000 ms, followed by the rating screen, which persisted until all
three ratings were given using the computer mouse. The order
of ratings was constant across all trials and participants: valence,
arousal, visual complexity.

Over two consecutive days, participants rated all 720 pictures
for valence, arousal, and visual complexity (360 pictures per day;
1 h per day). An additional 5 ‘buffer’ pictures were presented as
the first trials on the first day, to allow participants to become
accustomed to the task.

Data Analysis

Effects were considered significant based on an alpha level of 0.05.
Ratings of visual complexity, valence and arousal were computed
as averages across participants to obtain normative ratings for
each picture, as some of the experiments only involved a subset
of the rating scales.

To examine the relative relationships of the examined
measures with ratings of visual complexity, we conducted a
hierarchical regression. In this regression, we first evaluated
regression models that included only individual measures.
Next, we evaluated models that had either affective ratings or
computational measures. Finally, we evaluated a ‘full’ model
that contained both sets of measures. The list of models
considered and their respective model fitness measures are
reported in Table 1. In subsequent experiments, we used
subsets of the 720 pictures, with either 360 or 144 pictures;
to demonstrate the robustness of the observed findings, model
fitness indices are reported for these subsets as well. All subsets
had an equal number of images from each category. Mean
ratings/scores for each measure, for each category, are reported
in Table 2.

For each regression model, we report both R?, with ratings
of visual complexity as the dependent measure, and ABIC.
This second fitness index is the Bayesian Information Criterion
(BIC), which includes a penalty based on the number of free
parameters. Smaller BIC values correspond to better model fits.
By convention, two models are considered equivalent if ABIC < 2
(Burnham and Anderson, 2004). As BIC values are based on the
relevant dependent variable, ABIC values are reported relative
to the best-performing model (i.e., ABIC = 0 for the best
model).

Results and Discussion

Individual Regression Models

Arousal and valence

As shown in Figure 3 and Table 1, arousal was more related to
ratings of visual complexity than valence [arousal: R* = 0.294;
valence: R*> = 0.06].

Computational measures of visual complexity

Visual complexity was computationally measured using
edge density, feature congestion, and subband entropy.
The three measures of visual complexity were significantly
correlated with each other [edge density <> feature
congestion: r(718) = 0.78, p < 0.001; edge density <> subband
entropy: r(718) = 0.60, p < 0.001; feature congestion <> subband
entropy: r(718) = 0.65, p < 0.001]. Here we additionally included
JPEG file size to test if these three more formal measures of visual
complexity are able to account for the variance explained by the
JPEG file size (Figure 3F).

As shown in Table 1, these computational measures were able
to explain significant portions of variability in visual complexity
ratings, particularly feature congestion [R? = 0.199]. However, all
of the R? values were still lower than ratings of arousal.

As an additional test for the utility in operationalizing
visual complexity as JPEG file size, we conducted correlations
between it and the other three computational measures of
visual complexity. JPEG file size correlated highly with all
three measures [edge density: r(718) = 0.78, p < 0.001;
feature congestion: r(718) = 0.82, p < 0.001; subband entropy:
r(718) = 0.64, p < 0.001].

Multiple Regression Models
To better characterize the relationships between these seven
measures (arousal, valence, edge density, feature congestion,
subband entropy, JPEG file size) on ratings of visual complexity,
we conducted a series of multiple regression models within the
hierarchical regression framework.

In the first model, we included only affective ratings (arousal,
valence) and found that together they accounted for a sizeable
portion of the variance in rated visual complexity [R*> = 0.298].
In the second model, we included only the computational
measures of visual complexity (edge density, feature congestion,
subband entropy, JPEG file size) and found that together
they yielded adjusted R?> = 0.235. Excluding JPEG file size
had a minimal effect on the amount of variance explained
(decrease in adjusted R? from 0.235 to 0.233). Given this
lack of additional variance explained, and the correlations
reported above, JPEG file size was excluded from further
analyses.

In the last model we included six measures, two of affect
ratings (arousal, valence) and three of computational measures
of visual complexity (edge density, feature congestion, subband
entropy). Here we found that the combined model explained
half of the variance in visual complexity ratings [R?> = 0.524].
Given this incremental approach, it is clear that the affective
ratings and computational visual complexity measures each
explain unique portions of variance in visual complexity
ratings. Nonetheless, we further tested for associations between
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TABLE 2 | Mean (SD) values for each of the rating and computational measures, for each picture category, from the full set of 720 pictures.

Picture category

Measure Objects Animals Faces One person Two person Multi-person
Number of Pictures (out of 720) 120 120 120 120 120 120
Ratings
Visual complexity 3.74 (1.11) 3.92 (0.76) 3.52 (0.43) 4.18 (0.71) 4.63 (0.7) 5.95 (0.72)
Arousal 3.96 (1.11) 4.48 (1.08) 3.8 (0.73) 4.47 (1.31) 5.07 (1.41) 4.77 (1.04)
Valence 4.79 (1.32) 5.24 (1.5) 4.96 (0.96) 4.87 (1.54) 4.66 (1.61) 4.84 (1.45)

Computational visual complexity
Edge density 0.0405 (0.0253)
3.31 (0.90)

3.63 (0.37)

0.0532 (0.0340)
3.52 (1.18)
3.68 (0.45)

Feature congestion
Subband entropy

0.0208 (0.0119)
2.35 (0.52)
3.18 (0.41)

0.0268 (0.0211)
2.75 (0.64)
3.43 (0.3)

0.0329 (0.0242)
3.07 (1.00)
3.48 (0.39)

0.0581 (0.0241)
4.24 (1.32)
3.62 (0.34)
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FIGURE 3 | Scatter plots based on the ratings obtained in Experiment 1. Relationship between visual complexity and affect ratings: (A) arousal and (B) valence.
Relationship between visual complexity ratings and computational measures: (C) edge density, (D) feature congestion, (E) subband entropy, and (F) JPEG file size.
Each dot represents an individual picture (720 in total); lines represent linear regressions.
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affective ratings and computational visual complexity measures,
and all were found to be non-significant [all rs < 0.1;
p’s > 0.05].

Taken together, the results of Experiment 1 demonstrated that
despite the ratings indicating the contrary, emotional pictures
were not more complex when evaluated using computational
measures. This implies that complex pictures may not be higher
in positive-valenced arousal as suggested in earlier studies (e.g.,
Berlyne et al., 1963, 1968; Vitz, 1964; Day, 1967; Kaplan et al,,
1972; Aitken, 1974; Aitken and Hutt, 1974; Nadal et al., 2010;
Forsythe et al., 2011). One potential explanation could be the
nature of the employed visual stimuli, e.g., paintings or abstract
pictures vs. natural scenes.

Importantly, Experiment 1 shows clearly that the affective
factors, arousal and valence, relate to visual complexity
ratings independent of the computational measures, where
the effect of arousal is much more pronounced, i.e., explains

substantially more unique variance. Mechanisms regarding how
emotional arousal might enhance not only perception and
related experienced vividness (Todd et al., 2012), but also
perceived complexity, will be discussed in the general discussion.
Nonetheless, as arousal was more strongly related to this bias in
ratings of visual complexity than valence; thus, hereafter we will
refer to this effect as the ‘arousal-complexity bias.’

EXPERIMENT 2

In Experiment 1, participants were presented with the pictures
for a short duration (2000 ms). During this relatively brief
period, participants needed to sample the information necessary
to evaluate the pictures for arousal, valence, and visual
complexity. Under time pressure, searching for potentially
relevant picture characteristics is a demanding, goal-directed
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task under top-down control. It is known that emotionally
arousing stimuli preferentially recruit attentional resources, such
as in dual-task conditions, resulting in even greater memory
advantages relative to neutral stimuli (Kensinger and Corkin,
2004; MacKay et al., 2004; Mather and Sutherland, 2011; Kang
etal., 2014; Madan et al., 2017). Therefore, it may be possible that
the greater experienced visual complexity for arousing stimuli in
Experiment 1 was partly driven by the preferential recruitment
of attentional resources. To test this hypothesis, we presented the
pictures for 5 s in Experiment 2 to potentially attenuate any such
effect.

Additionally, given that participants in Experiment 1 made
their ratings in a fixed order, with the affective ratings always
preceding the visual complexity rating, it is possible that
we unintentionally induced an effect of affect on ratings of
visual complexity. In Experiment 2A, we changed the rating
procedure such that the ratings were made sequentially, rather
than presenting all three rating scales simultaneously (as in
Experiment 1). In Experiment 2B, participants were only asked to
make visual complexity ratings, removing potential confounding
effects of being asked to attend to the emotional features of
the picture before the complexity rating as well as lowering
the demands on information sampling during processing of the
pictures.

To evaluate the influence of these potentially confounding
factors, we correlated the ratings obtained in each of
these experiment, for each picture, with those obtained in
Experiment 1. We also report the mean absolute difference
between ratings to evaluate the absolute agreement between the
experimental procedures.

Since presentation time was increased, we decreased the
picture set to prevent the experiment from becoming too long.
This was done by randomly selecting 360 pictures from the full
set of 720 pictures used in Experiment 1. To ensure that this
picture set was representative, we re-calculated the correlations
from Experiment 1 using only this picture subset. As shown in
Table 1, correlations for this subset were comparable to the full
stimulus set.

Methods

Participants

A total of 38 female volunteers with normal or corrected-to-
normal vision participated (Experiment 2A: N = 20; Experiment
2B: N = 18). Consent and reimbursement procedures were
identical to Experiment 1.

Materials
A subset of 360 pictures was chosen from Experiment 1, such that
the pictures were equally distributed across the valence and topic
categories.

Procedure

Participants were given the same instructions as in Experiment
1. On each trial, participants were presented with a fixation-cross
overlaid on a mean luminance picture (i.e., the average luminance
of the 360 pictures) for 1000 ms. This was done to keep the
stimulus presentation identical for the remaining experiments,

and in particular for eye-tracking (Experiment 3) where the
fixation-cross was necessary. The fixation-cross was followed by
the presentation of a picture for 5000 ms. Next, participants were
sequentially shown the rating scales for valence, arousal, and
visual complexity (in a fixed order), with a 500 ms delay between
the presentation between each ratings screen. A 1000 ms inter-
trial interval separated the trials. A total of 9 buffer pictures were
presented at the beginning of the task. The entire experimental
session took approximately 2 h to complete.

The procedure used in Experiment 2B was identical to that
of Experiment 2A, except that participants only made visual
complexity ratings.

Results and Discussion

In Experiment 2A, all three measures (ratings of visual
complexity, arousal, and valence) were highly correlated with the
ratings obtained in Experiment 1 [ratings of visual complexity:
r = 0.96, Mgy = 0.33; arousal: r = 0.94, M,y = 0.35; valence:
r = 0.95, Mgy = 0.85]. In Experiment 2B, visual complexity
was also highly correlated with the ratings from Experiment 1
[r=0.95, My = 0.49]. Furthermore, correlations between visual
complexity and affective ratings and computational measures of
visual complexity were markedly similar (Table 3).

Taken together, both of these results suggest that the ratings
from Experiment 1 are valid and were not confounded by
properties of the task design and provide evidence that the
complexity ratings generalize across presentation times. In
particular, Experiment 2 showed that the arousal-complexity
bias is a robust phenomenon that was not caused by
preferential processing of emotional arousing stimuli during
limited presentation times or by a transfer from the preceding
arousal and valence ratings.

EXPERIMENT 3

In Experiment 1 we found that affective features, in particular
emotional arousal, related to ratings of visual complexity beyond
what could be explained by computational measures of visual
complexity. While Experiment 2 replicated this result and ruled
out important potential confounds, it did not shed any light on
the mechanism by which this relationship with affect occurs.
To further investigate the arousal-complexity bias, we chose to
collect additional potentially mediating variables, i.e., cognitive
and eye-tracking measures. Specifically, based on the higher
semantic relatedness of emotionally arousing stimuli (Talmi and
McGarry, 2012), we hypothesized that affective factors may
increase the number of semantic concepts evoked when viewing
a picture. For instance, a picture of a drug addict might evoke
strong associations with concepts of disease, poverty, or crime,
among other associations. These concepts may in turn inflate
the experienced complexity which, might be falsely attributed
then to visual complexity (also see Marin and Leder, 2013).
We additionally hypothesized that affective factors may increase
the number of eye fixations made when viewing the picture
and the total fixation duration on the picture (Bradley et al,
2011; Ni et al., 2011). Furthermore, affective picture quality
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Computational visual complexity

0.34%** 0.32%** 0.471%**
40*** 46***

0.39***

3.88"*(1)

0.39*** 0.46*** 0.52%**

AEH*

0.41%**

Edge density

0.33***

0.44%*

3.86™*(1)
2.07%(1)

0.59***
25***

0.53**

0.47%**

Feature congestion

0.19%**

0.10* 0.11*

0.14**

0.21#*

0.16%**

0.20%**

Subband entropy

For Experiment 4, Z is the statistical test of the difference in dependent correlations (Steiger, 1980). Tp < 0.10; *p < 0.05; **p < 0.01; **p < 0.001.

might increase the scan-path length (i.e., cumulative distance
between fixations), which all in turn may inflate visual complexity
ratings. To explicitly test for the mediator role of these additional
variables we further conducted a path analysis as a means of
directly describing the depending among the examined variables.
This approach was done to holistically examine how each of
the considered variables related to ratings of visual complexity
for the pictures presented, and allowed us to isolate the more
prominent relationships. For instance, if (a) feature congestion
relates to the number of fixations and (b) both feature congestion
and the number of fixations relate to visual complexity ratings,
it is unclear how these each uniquely relate to ratings of visual
complexity. Path analysis is appropriate for testing questions such
as this (Norman and Streiner, 2003; Hooper et al., 2008; Shipley,
2016).

As trial length was further increased, by providing 30 s after
each picture for generating semantic associates, we selected a
random subset of 144 pictures from the previous 360 pictures
used in Experiment 2. We again ensured that correlations
between affective ratings, computational visual complexity, and
visual complexity ratings were comparable to the whole stimulus
set used in Experiment 1 (see Table 1).

Methods

Participants

A total of 19 female volunteers with normal or corrected-
to-normal vision participated. Consent and reimbursement
procedures were identical to Experiment 1.

Materials

A subset of only 144 pictures from those used in Experiment 2
was selected. Again, pictures were selected randomly, but were
based on the valence and topic categories to maximize coverage
of the affective and visual complexity dimensions.

Apparatus

Stimuli were displayed on a 20-inch LCD monitor (Samsung
SyncMaster 204B; display dimension = 40.64 cm x 30.48 cmy;
resolution = 1600 x 1200 pixels; refresh rate = 60 Hz).
The eye-to-screen distance amounted to approximately 60 cm.
Picture size was 900 x 600 pixels, thus amounting to a visual
angle of 21.6° x 14.5°. An EyeLink 1000 eye-tracking system
(SR Research Ltd., Ottawa, ON, Canada) was used to record
eye movements. Monocular eye position data were sampled at
1000 Hz. Subjects’ heads were immobilized by a chin-rest. After
blink detection, eye movement data were parsed into saccades
and fixations using EyeLink’s standard parser configuration,
which classifies an eye movement as a saccade when it exceeds
30°/s velocity or 8000°/s* acceleration. Time intervals between
saccades were defined as fixation.

Procedure

Participants were told that they would need to list the
ideas/concepts that came to mind after viewing each picture,
hereafter referred to as “semantic associates.” On each trial,
participants were presented with a fixation-cross overlaid on the
mean luminance picture (i.e., the average of the 144 pictures
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across the RGB color dimensions) for 1000 ms, followed by the
presentation of a picture for 5000 ms. Eye movements were also
measured during this period of 6000 ms. Next, participants were
presented with a blank screen with the number 0 on it, and
told to press the “spacebar” key on the keyboard once for each
semantic associate and to say the word out loud. Vocal responses
were recorded using a computer microphone. The number on
the computer screen incremented when the participant pressed
the spacebar, to allow for visual feedback that the response
had been recorded. Participants were given 30 s to list all
of the associates. A 1000 ms inter-trial interval separated the
trials.

The experiment consisted of 8 blocks of 18 pictures each,
preceded by a buffer block of 9 pictures. The eye-tracker
was calibrated prior to each block using a 9-point calibration
procedure. The entire experimental session took approximately
two and a half hours to complete.

Data Analysis

The number of semantic associates provided by each participant
for each picture was scored as the number of “spacebar”
presses. This key press measure was used, instead of the
audio recordings, as the recordings were not audible for
all participants (i.e., mumbling). Nonetheless, for participants
who had usable audio recordings (N = 13), we conducted
within-subject correlations and averaged them using Fisher’s Z
transformation (Fisher, 1921; Corey et al., 1998) which we then
refer to as rpep. The simplest expression of this transformation
is Z = arctanh(r); see Corey et al. (1998) for a detailed
discussion.

The key-press and scored-audio-recording measures were
highly correlated [rp0,(142, N = 13) = 0.92, p < 0.001, Fishers
Z =3.23] and yielded the same number of responses in 83% of the
trials. When these measures disagreed, the key-press measure was
more often the larger value [Myorekey = 14%; Mptorevocal = 3%
t(12) = 8.60, p < 0.001].

From the eye-tracking recordings, we quantified the number
of fixations and the total fixation duration on each picture.
Only fixations within the picture were counted and fixation
coordinates were drift corrected relative to the initial fixation
cross that preceded the picture onset. Furthermore, we calculated
the scan-path length as the sum of all distances between
individual fixations on each picture.

Path analysis

The path analysis was conducted to examine the relative
relationships ~ between  affective ratings, computational
measures, eyetracking measures, and semantic associates
measure with ratings of visual complexity. Path analysis
can be viewed as a specific type of structural equation
modeling and is sometimes referred to as an analysis of
covariance structures. In path analysis, several variables
are designated as input variables for the path analysis,
termed ‘exogenous’ variables. These are then used to explain
covariances in other (endogenous) variables based on a
theoretically defined structure of relationships between the
variables.

In the analysis we began with several underlying assumptions:
(1) Our dependent measure is ratings of visual complexity;
models with any other variable as the final outcome
measure were not considered. (2) The affective ratings and
computational measures were our input (exogenous) measures.
(3) The eyetracking and semantic associates measures were
intermediate (endogenous) measures. (4) We considered all
direct relationships between each measure and ratings of visual
complexity. (5) We considered all indirect paths between each of
the input and intermediate measures. (6) Eyetracking measures
could also input the semantic associates measure. This initial
structure is shown in Figure 4A and represents a fully ‘saturated’
model.

We first constructed the saturated path model using both
affective ratings (arousal and valence) and all three computational
measures (edge density, feature congestion, subband entropy)
as observed, exogenous variables (Figure 4A). The additional
measures obtained in Experiment 3 (number of semantic
associates, number of fixations, fixation duration, and scanpath
length) were observed; endogenous variables included as
intermediate variables between the exogenous variables and
the visual complexity rating. In this first, saturated model, all
covariances between exogenous variables were included, and
all paths, both direct and indirect, were included between the
exogenous variables and visual complexity ratings. Unobserved,
exogenous error terms were also included for all observed,
endogenous variables. For the three rating measures (arousal,
valence, and visual complexity), mean ratings were used from
Experiment 1, as these were thought to be more representative
as the pictures had been presented within the context of a large
number of other pictures. Nonetheless, ratings from Experiments
2A and 2B were highly consistent with these ratings (see Table 3).
The path analyses were conducted using IBM SPSS AMOS
(Armonk, NY, United States).

After calculating this first model we removed covariances
that were not found to be significant based on obtained critical
ratios (covariance estimate/standard error; C.R. > 1.96).
This procedure was then iteratively conducted to remove
non-significant regression weights. Model fits at each
iteration were also calculated through three measures: x?2
(“badness-of-fit”; difference between observed data and model
predictions), RMSEA (root mean square error of approximation),
and AGFI (adjusted goodness-of-fit index) (see Hooper et al.,
2008). Variables that were no longer connected to the other
variables through covariances or regression weights were
removed from the model.

Results and Discussion

Correlation and Multiple Regression Analyses

All correlations are reported in Table 4. The number of
semantic associates reported was highly correlated with ratings
of visual complexity and arousal (based on ratings obtained
in Experiment 1) and with two of the computational visual
complexity measures (edge density and feature congestion).
To test if the number of semantic associates reported was
correlated to ratings of visual complexity beyond any effects
that could be explained by the three computational measures of
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FIGURE 4 | Path model used in Experiment 3. (A) Initial saturated path model. (B) Final path model. Variables shown in blue were coded as observed, exogenous
variables; orange were observed, endogenous variables; gray were unobserved, exogenous variables (not shown in A). tp < 0.1; *p < 0.05; **p < 0.01;
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visual complexity, we conducted a partial correlation. Indeed,
more semantic associates were reported for pictures that were
rated higher in visual complexity [r,(139) = 0.48, p < 0.001].
This relationship of the higher number of evoked semantic
associations and visual complexity ratings for arousing pictures
supports the hypothesis that participant’s complexity ratings are
inflated by associations triggered by arousing pictures.

From the eye movement measures, both the number of
fixations and scan-path length were correlated with visual
complexity ratings. None of the eye movement measures
correlated with subband entropy, but this is unsurprisingly
considering the nature of subband entropy (i.e., it does
not correspond to a spatial map, unlike edge density and
feature congestion). Again we tested if these correlations with
visual complexity ratings explained variability beyond that
explained by the computational visual complexity measures. This
partial correlation was significant for the number of fixations
[rp(139) = 0.41, p < 0.001], but not the scan-path length
[5(139) = 0.12, p > 0.1]. However, as arousal was not correlated
with the number of fixations and only negatively with scan
path length these data suggest that arousal itself did not trigger
a pattern of eye movements that results in higher complexity
ratings.

Taken together, it appears that these additional measures,
i.e.,, evoked semantic concepts and number of fixations, index
processes that may serve as intermediates between basic visual
processing (i.e., computational measures of visual complexity)
and the ratings of visual complexity. To quantify how these

additional variables improve our ability to explain variance in
visual complexity ratings, we computed two additional multiple
regression analyses: Our first model is identical to the last
model from Experiment 1, but only included the subset of 144
pictures used in Experiment 3. As expected, this model performed
similarly to the previous model, and was able to account for
over half of the variance in visual complexity ratings [adjusted
R? = 0.58]. In our second model, we included only our four new
measures (number of semantic associates, number of fixations,
fixation duration, scan-path length) and were able to account for
a large degree of variance [adjusted R* = 0.46]. In our last model
we included both sets of measures and obtained an adjusted R? of
0.71.

Given the high number of correlations, we then sought to
determine which variables contributed unique variance, and
tested the causality of these relationships, using a path analysis.
This analysis was conducted across all 144 pictures and a
mediation structure was hypothesized between all of the variables
of interest.

Path Analysis

We initial (saturated) path model is shown in Figure 4A, with
relationships and variables iteratively removed if they were found
to not significantly relate to the visual complexity ratings. After
several iterations, we converged on the path analysis model
shown in Figure 4B. All regression weights are significant, and
the model as a whole was found to be a good fit to the data by all
measures used [x2(2,N = 144) = 0.21, p > 0.5; RMSEA < 0.001;

TABLE 4 | Correlations of measures obtained in Experiment 3 with ratings from Experiment 1 and computational visual complexity measures Tp < 0.10; *p < 0.05;

**p < 0.01; **p < 0.001.

Ratings Computational visual complexity
Measure Visual complexity Arousal Valence Edge density Feature congestion Subband entropy
No. of semantic associates 0.59*** 0.36™** 0.08 0.28*** Q.41+ 0.16"
Eye movements
No. of fixations 0.51%** 0.03 —0.02 29 *xx 0.32%** 0.12
Fixation duration 0.03 —-0.21* 0.20* 0.07 0.18* 0.09
Scan-path length 0.24** —0.19* 0.18* 0.15t 0.21* 0.038
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AGFI = 0.996]. This final path model explained 68% of the
variance in visual complexity ratings, nearly as much as the most
complete multiple regression model [adjusted R* = 0.71].

The only observed, exogenous variables retained were arousal
and feature congestion, both of which had direct effects on
visual complexity ratings, with standardized regression weights
of 0.43 and 0.29, respectively. Both exogenous variables also had
indirect effects on visual complexity ratings as well, 0.07 and 0.24,
respectively. Of the indirect effects, feature congestion was found
to significantly relate to both the number of semantic associates
produced and the number of eye fixations, such that a picture
that was more congested led to more associates and fixations.
However, it is also important to consider that the measured eye
movements were in response to a semantic associates instruction
and have limited generalizability in relation to ratings of visual
complexity or other instructions (e.g., see Yarbus, 1967). In
particular, the task in this experiment differed substantially from
the other experiments conducted here, which were based on
ratings of visual complexity (and affective factors). Instead, the
task of listing semantic associates is much more related to
semantic memory and language processing, rather than visual
processing. As such, participants likely engaged in this engaged in
this task considerably differently than in the other experiments,
e.g., participants likely scanned the pictures for cues to prompt
semantic associations.

Taken together, as predicted arousing stimuli evoke more
semantic associates and inflate visual complexity ratings partly
via those. However, we found that arousing stimuli did not elicit
more fixations, but rather were associated with shorter fixation
durations and scan-path length. Additionally, the correlation
between valence and eye movement measures suggests that
subjects avoided looking on the highly arousing negative pictures.
The number of fixations was correlated not only with visual
complexity ratings but also with computational measures. In
particular, feature congestion, but not edge density, led via
more fixations to greater subject visual complexity. This suggests
that finer details of the pictures led to a greater number
of fixations and culminated in increased ratings of visual
complexity; whereas edge density is a relatively more coarse
index of picture’s computational visual complexity (e.g., see
Rosenholtz et al., 2007). Importantly, the path model indicates
a relatively strong, direct relationship between arousal and visual
complexity ratings that was not mediated by semantic associates
or fixations.

EXPERIMENT 4

We have found robust evidence that affect has a direct
relationship with visual complexity ratings. Specifically,
Experiment 3 demonstrated that emotional arousal biases visual
complexity ratings, without being mediated by factors such as
semantic associates and number of fixations. This led us to two
follow-up questions: (1) If made aware of this arousal-complexity
bias, can participants consciously attenuate it? In other words,
is the effect of arousal on perceived visual complexity accessible
to introspection and cognitive control? (2) Does the magnitude

of this arousal-complexity bias correlate with inter-individual
differences in affect-related personality traits?

To test if people can consciously attenuate this arousal-
complexity bias, in this experiment we had participants make
two sets of visual complexity ratings. In the first set, participants
were given the same instructions as in Experiments 1 and 2. In
the second set, participants were informed that people’s ratings
of visual complexity are also related to emotional properties of
the pictures. The participants were then asked to try and focus
on only the visual properties of the pictures when making their
ratings. The primary analysis of interest was to examine how this
instructional manipulation would influence the magnitude of the
arousal-complexity relationship. Specifically, this was a test of the
difference between two dependent correlations with one variable
in common, which can be conducted as Z-test, following from
Steiger (1980). As a validity check, ratings were also compared
relative to those obtained in Experiment 1.

For this experiment, we recruited participants who had
previously participated in a battery of questionnaires (see below).
Of these questionnaires, we were interested in the trait anxiety
measure from the Spielberger State-Trait Anxiety Inventory
(STAI-T; Spielberger et al., 1983) and the Positive and Negative
Affect Schedule (PANAS; Watson et al., 1988) as they are both
commonly used as indexes of inter-individual differences in
affective processing.

Methods

Participants

A total of 40 female volunteers with normal or corrected-
to-normal vision participated. Consent and reimbursement
procedures were identical to Experiment 1.

In contrast to the prior and subsequent experiments, these
volunteers had previously participated in a study that served the
purpose to provide well-phenotyped participants for subsequent
studies (for details see Kuhn et al., 2015). Briefly, participants
were screened for psychiatric disorders (MINI diagnostic
interview; Sheehan et al., 1998) prior to inclusion in the study,
provided blood samples for genotyping, completed a battery of
anxiety-related questionnaires, and agreed to be contacted for
further imaging (fMRI) and behavioral studies. Our sample of
40 volunteers was randomly selected from this larger sample,
though still had similar distribution characteristics (e.g., mean
STAI-T in our sample was 36.2, mean in the Haaker et al,
2015, normative sample was 37.1). Prior to participation in
this experiment, 30 of the participants had participated before
at least in one fMRI study related to fear conditioning but
had no experience to the pictorial stimuli used in the current
experiment (Scharfenort and Lonsdorf, 2015; Kuhn et al,
2016).

Materials
The same subset of 360 pictures was used as in Experiment 2.

Procedure

The experiment consisted of three phases: (1) valence and arousal
ratings, (2) visual complexity ratings, and (3) bias-aware visual
complexity ratings. Before each phase, participants were given
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instructions explaining the task. The entire experimental session
took approximately 2.5 h to complete.

Phase 1

Participants were presented with pictures, each followed by
valence and arousal rating scales. Participants were given the
same instructions as described in Experiment 1. On each
trial, participants were presented with a fixation-cross overlaid
on a mean luminance picture for 1000 ms, followed by the
presentation of a picture for 5000 ms. Next, participants were
sequentially shown the rating scales for valence and arousal (in
a fixed order), with a 500 ms delay between the presentation of
each rating screen. A 1000 ms inter-trial interval separated the
trials. This was repeated for 360 trials. A block of 9 practice trials
preceded the 360 trials, to familiarize participants to the task
procedure, and were not included in the analyses.

Phase 2

Participants were presented pictures, each followed by a visual
complexity rating scale (naive instructions). The same sequence
of presentations and timings were used as in the first phase apart
from the instructions and scale. This was repeated for 180 trials,
which were preceded by 9 practice trials.

Phase 3

Participants were told: “Sometimes people’s ratings of visual
complexity are also related to the emotional properties of the
picture. For this next set of ratings, try and focus on only
the visual properties of the pictures, such as the number
of edges, objects, symmetry, etc.” (bias-aware instructions).
The importance of following this instruction was explicitly
emphasized. To improve compliance with the instruction,
and remind participants of this instructional manipulation,
participants were additionally told: “Every so often, we will ask
you how well you were able to follow the instructions. Here
you will be asked to choose an option from the following
scale: [Displayed a 9-point Likert scale with ‘1’ corresponding
to ‘easy’ and ‘9 corresponding to ‘hard’].” This compliance
question, that assessed introspective and metacognitive abilities
of the participants, was presented after every 30th trial. Apart
from these additional instructions and compliance question, the
procedure was identical to Phase 2.

Of the 360 pictures shown in Phase 1, 180 pictures were
presented in Phase 2, and the remaining 180 pictures were
presented in Phase 3. Across pairs of participants, pictures were
pseudorandomly assigned to Phase 2 vs. Phase 3 such that
pictures one participant saw in Phase 2, the other saw in Phase
3 (and vice versa).

Results and Discussion

Can People Deliberately Attenuate the
Arousal-Complexity Bias?

To test if our bias-aware instructions were able to attenuate the
relationship between affect and visual complexity ratings, we
correlated the visual complexity rating for each picture obtained
with each instruction, with (a) the visual complexity ratings
from Experiment 1, (b) the arousal and valence ratings from
Phase 1 (of the current experiment), and (c) the computational

measures of visual complexity previously calculated. While all
of these correlations were significant (see Table 3), we also
observe that the bias-aware correlations are attenuated for
the affective ratings, but are increased for the computational
measures of visual complexity. To directly compare these sets
of correlations, we conducted Z tests that accounted for the
dependent properties of these two correlations (see Steiger,
1980). As an additional confirmatory analysis, we calculated
correlation and mean absolute difference for the arousal and
valence ratings of from Phase 1 of the current experiment with the
corresponding ratings of Experiment 1 [arousal: r(358) = 0.88,
p < 0.001, Mgy = 0.57; valence r(358) = 0.96, p < 0.001,
Mg = 0.34].

Using the self-report compliance ratings as a measure of
the participants’ metacognitive abilities regarding the bias-aware
instruction, we found a large amount of inter-individual variance,
where the participant with the lowest mean response on the
9-point Likert scale was 1.17, and the highest was 6 [M(SD) = 3.38
(1.28)]. Of the six compliance questions, we did not observe a
change in responses given in the earlier trials vs. the later trials
[t(39) =0.31, p = 0.76].

To obtain a measure of the within-subject effect of the
instructional manipulation, we calculated the slope of the
relationship between the visual complexity and arousal ratings,
for both instructions. Specifically, while a within-subject
correlation is affected by both the slope and the spread of the data,
we were particularly interested if the instructional manipulation
modulated the coupling (slope) between the affective and
complexity ratings. Indeed, the instructional manipulation (naive
vs. bias-aware instruction) did result in an attenuation of this
slope [t(39) = 2.37, p = 0.02].

These results indicate that participants were able to
deliberately attenuate the relationship between affect and
visual complexity ratings (reduction in arousal-complexity bias).
However, the large inter-individual variability in the compliance
ratings suggests that participants differed substantially in this
ability—at least subjectively—which will be discussed below.
Importantly, the attenuation of the arousal-complexity bias
was only nominal in magnitude and the correlation of arousal
and visual complexity ratings was still significant under the
bias-aware instruction. This suggests that the effect of arousal
on visual complexity ratings is not fully within the domain of
cognitive control; however, a limitation of this experiment is
there may be an order effect, where people’s responses shift over
the course of the experiment.

In an attempt to evaluate the potential influence of time
or experience on the relationship between arousal and visual
complexity ratings, we re-calculated the arousal-complexity
correlation from Experiment 1, which occurred over two
consecutive days, as four sequential segments of ratings: Day 1,
first half; Day 1, second half; Day 2, first half; and Day 2,
second half. Each of these segments consisted of 180 trials per
participant. The arousal-complexity correlation for these four
segments were [r(718) = 0.51, 0.50, 0.43, 0.44], respectively; in
aggregate we observed r = 0.54 in Experiment 1. As such, we
think it is likely that this relationship is relatively consistent
within an experimental session, though there are several
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differences in the procedure between the current experiment and
Experiment 1.

Surprisingly, however, the correlation between arousal and
visual complexity—in the original, naive instruction—was
substantially lower in this experiment than in Experiments 1 and
2A, which we followed up in Experiment 5.

Relationship between Affective Processing and
Personality Traits on Arousal-Complexity Bias
To test for a relationship between the measures of inter-
individual differences in affective processing and personality
traits, we conducted correlations using the slopes from the first
set of ratings (naive instructions). We found a non-significant
correlations for the STAI-T [r(38) = 0.29, p = 0.07] and with both
the positive and negative scales of the PANAS [both p’s > 0.1].
Taken together, the results of this experiment suggest that
people are able to attenuate their bias in visual complexity ratings
if they are made aware of it but only to a certain degree. In other
words, a substantial part of the effect of arousal on experienced
visual complexity is not accessible to introspection and cognitive
control.

EXPERIMENT 5

In all samples where both arousal and visual complexity ratings
were obtained, we have observed significant positive correlations
between the arousal and visual complexity ratings measures.
In Experiments 1 and 2A, these correlations were strong [r’s
of 0.54 and 0.55, respectively] (see Tables 1, 3); however, in
Experiment 4, this correlation was noticeably weaker, though
still statistically significant [r = 0.27] (see Table 3). Interestingly,
this occurred despite arousal and visual complexity ratings being
highly consistent across experiments [all s > 0.9] (see Table 3).
In Experiments 5A and 5B we aimed to test two hypothetical
explanations of this lower correlation.

EXPERIMENT 5A

One potential account of this reduced correlation is that in
Experiment 4, the arousal and visual complexity ratings are
separated by a delay (Phases 1 and 2), while in Experiments 1 and
2A the ratings are made sequentially. However, if this was critical,
the visual complexity ratings from other participants with slightly
different procedures (i.e., previous experiments reported in this
paper) should also correlate more weakly with the arousal ratings
made in Experiment 4, which was not the case [visual complexity
ratings from Experiments 1, 2A, and 2B with arousal ratings from
Experiment 4: all r’s between 0.46 and 0.50]. A second potential
account for this reduced correlation is that unlike the prior
experiments reported here, all pictures were presented twice in
Experiment 4, once in Phase 1 (valence and arousal ratings) and
then again in either Phase 2 or 3 (visual complexity ratings: naive
and bias-aware instructions, respectively). Thus, it is possible
that this relationship between affect and visual complexity ratings
may be related by the initial impact of the picture, and that re-
presenting the picture attenuates this effect (e.g., habituation).

Alternatively, people might rate visual complexity differently
after they have processed the pictures previously because the
pictures continued to be processed after the rating was made.
Finally, the local context, e.g., the preceding pictures, may
have had a carry-over effect, influencing the visual complexity
ratings, but would have differed between the two presentations.
This may have been particularly true if a picture was relatively
dissimilar to its local context, such as presenting a negative
picture within a set of neutral pictures. To test this possibility,
here we manipulated whether participants either made ratings for
the affective measures and visual complexity together, or if the
ratings were made in separate blocks.

If this re-presentation is important, we additionally wondered
how this effect may relate to explicit memory of the pictures.
In other words, does this attenuation only occur if participants
are able to remember seeing the picture previously in the
experiment? This idea of a relationship between visual complexity
and memory was suggested by Snodgrass and Vanderwart (1980),
in regards to a potential relationship between visual complexity
and stimulus recognition/novelty.

Methods

Participants

A total of 22 female volunteers with normal or corrected-
to-normal vision participated. Consent and reimbursement
procedures were identical to Experiment 1.

Materials
The same subset of 360 pictures was used as in Experiment 2
and 4.

Procedure
The task consisted of four phases, completed sequentially.

Phase 1

Participants made valence and arousal ratings for 180 pictures.
On each trial, participants were presented with a fixation-cross
overlaid on a mean luminance picture for 1000 ms, followed by
the presentation of a picture for 5000 ms. Next, participants were
sequentially shown the rating scales for valence and arousal (in a
fixed order), with a 500 ms delay between the presentation of each
ratings screen. A 1000 ms inter-trial interval separated the trials.
Therefore, this phase was equivalent to Phase 1 of Experiment 4.

Phase 2

Participants made valence, arousal, and visual complexity ratings
for 90 additional pictures. Apart from the changes to the rating
scales used, all phases had the same trial timings as in Phase 1.
This phase was identical to the procedure used in Experiment 1
(apart from differences in the presentation duration and use of
sequential ratings screens) and 2B.

Phase 3

Participants made visual complexity ratings for 90 pictures that
were previously presented in Phase 1. This phase was matched to
Phase 2 (naive instruction) of Experiment 4.
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Phase 4

Participants made visual complexity ratings, followed by a
6-point old/new-confidence rating for 180 pictures, 90 of which
were from Phase 1 (i.e., the ‘old’ items). Ratings of 1 corresponded
to ‘sure old’; ratings of 6 corresponded to ‘sure new.’

Results and Discussion

As expected, arousal and valence were significantly correlated
[Phase 1: r(358) = —0.47, p < 0.001; Phase 2: r(358) = —0.48,
p < 0.001]. For comparison, this arousal-valence correlation from
Experiment 2B was r = —0.53 for the same 360 pictures.

The correlation between arousal and visual complexity ratings
was consistent with the prior experiments [Phase 2: r(358) = 0.45,
p < 0.001]. For comparison, this arousal-complexity correlation
from Experiment 2B was r = 0.55 for the same 360 pictures.
Critically, this arousal-complexity correlation was not attenuated
despite the pictures being presented for a second time for this
visual complexity rating [Phase 3: r(358) = 0.48, p < 0.001; Phase
4 (old items): r(358) = 0.44, p < 0.001]. For comparison, this
arousal-complexity correlation from Exp. 4 (naive instructions)
was r = 0.27 from the same 360 pictures. Thus, we did not observe
an attenuated correlation due to the second presentation. (See
Table 3 for additional correlation measures.)

The memory responses indicate that participants did
remember the earlier presentation of the picture. Of the old
trials, 82.3% were rated as ‘sure old’; for the new trials, 64.8%
were rated as ‘sure new’ (92.1% were any level of ‘new’ [rating
of 3-6]). Thus, it appears that participants’ memory for the
pictures was relatively good, despite the memory test being
incidental. Calculating the arousal-complexity correlation
for only the pictures correctly identified as ‘sure old’ did not
indicate any difference in the strength of this relationship
[r(358) = 0.42, p < 0.001]. Therefore, it does not appear
that the visual complexity rating was differentially related
to high confidently recognized and only familiar pictures.
Moreover, this provides clear evidence that participants were
able to episodically remember the initial presentation of the
pictures.

In sum, it appears that our first alternative account that
the attenuated correlations in Experiment 4 were due to the
re-presentation of the picture did not bear out. However,
Experiment 5A showed again how robust the effect of arousal on
visual complexity ratings is as it was not reduced by the delay and
repeated presentations.

EXPERIMENT 5B

While the results of Experiment 5A provided a further replication
of the relationship between affective and visual complexity
ratings, they do not explain the attenuated correlations observed
in Experiment 4. To explore this further, we sought finally to
replicate the findings of Experiment 4 with a new sample of
participants, based on the hypothesis that the participants of the
former sample were self-selected to participate in studies related
to emotional and aversive stimuli, as they had all participated
in the previously described screening procedure and 75% of

them also participated in at least in one fMRI study on fear
conditioning (Scharfenort and Lonsdorf, 2015; Kuhn et al., 2016).

Methods

Participants

A total of 12 female volunteers with normal or corrected-
to-normal vision participated. Consent and reimbursement
procedures were identical to Experiment 1. Only 12 volunteers
were recruited because the main research question, i.e., the
ability to consciously attenuate the arousal-complexity bias as
well as the correlation with personality traits, had been assessed
in Experiment 4. Experiment 5B was only intended to replicate
the main finding, a higher correlation for arousal and visual
complexity ratings than observed in Experiment 4.

Materials

The same subset of 360 pictures was used as in Experiments 2, 4,
and 5.

Procedure
The procedure was identical to Experiment 4.

Results and Discussion

We observed the correlation between arousal and visual
complexity ratings to be significant with both instructions
[naive: r(358) = 0.50, p < 0.001; bias-aware: r(358) = 0.40,
p < 0.001]. Though the correlation was attenuated with the
bias-aware instructions, this effect was not significant [Z = 0.42,
p = 0.67]. (See Table 3 for additional correlation measures.)
Nonetheless, the arousal-complexity relationship here was in-
line with those found in our earlier experiments, and the change
due to the different instructions was comparable to that of
Experiment 4. While it is unclear why the effect was weaker
overall in Experiment 4, this may be related to the high degree of
familiarity with experimental settings and in particular aversive
stimuli (e.g., electric shocks) of the volunteers that participated in
Experiment 4.

GENERAL DISCUSSION

Across five experiments we found consistent evidence that
ratings of visual complexity are related to affective properties
of the stimuli. In particular, arousal, more than the valence,
is related to higher ratings of visual complexity. On the
contrary, various computational measures of visual complexity
consistently indicate that there is no relationship between
affective characteristics and computational measures of visual
complexity, indicating a crucial difference in the stimuli
properties captured by these ratings and computational
measures. Importantly, these findings were robust across all
experiments and were obtained using a large set of pictures.
Motivated by this initial finding, we conducted a number
of successive follow-up experiments: In Experiment 2, we
have shown that neither providing sufficient processing time
to account for the preferential processing of arousing stimuli
nor eliminating potential transfer effects form the preceding
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arousal rating reduces the correlation. Furthermore, Experiment
3 provided insight into the cognitive mechanisms of this effect,
where we did find the number of semantic associates evoked
by pictures to mediate this effect, i.e., arousing pictures evoke
more semantic associates that in turn inflate the complexity
rating. Importantly, this cognitive mechanisms explains only a
rather small part of the arousal-complexity bias. In addition, we
showed in Experiment 3 that arousal did not affect complexity
ratings via influencing eye-movement patterns, as those were
only related to computational measures of visual complexity.
Critically, the path analysis is compatible with a relatively
strong, direct relationship between arousal and visual complexity
ratings. In Experiment 4, we showed that the arousal-complexity
bias could be attenuated if volunteers are made aware of this
bias. Experiment 5A rejected a potential mediatory role of
habituation or other effect of repeated presentations and explicit
memory on the arousal-complexity bias. Finally, Experiment 5B
suggested that volunteers that are very familiar with experimental
paradigms involving highly aversive stimuli, as fear conditioning,
may show a reduced arousal-complexity bias due to these
prior experiences, though further research into inter-individual
differences is necessary (e.g., see Bies et al., 2016; Gugliitirk
et al., 2016; Street et al., 2016). In sum, the arousal-complexity
bias is a robust phenomenon, which is consciously accessible
only to a small, anxiety-related degree. Arousal relates to visual
complexity ratings only weakly via the cognitive factor evoked
semantic associations and not via inducing differences in visual
exploration.

This leads to the question: how does arousal affect visual
complexity ratings? Ratings of visual complexity are based
on visual features present in the object but are influenced
also by our knowledge, experience, and understanding of the
visual object (Machado et al., 2015). In addition, rating the
perceived visual complexity of a picture on a Likert scale is
a meta-cognitive process where volunteers must reflect on the
quality of their perception. As the ratings were always made
only after the picture presentation, and in some experiments
only after preceding arousal and valance ratings, volunteers
either need to sample the necessary information for the rating
and keep them in working memory until the rating was
done, or keep the picture in visual working memory and
base the rating on this mnemonic representation. Therefore,
arousal may directly bias visual processes, bias perceived
complexity via cognitive—for instance, prior knowledge based—
processes that influence the perception, or affect meta-cognitive
processes of the rating itself. Future research may need to
manipulate the pictures themselves to explicitly test the causal
directionality of this affect-complexity relationship. Systematic
manipulation of picture stimuli needs to be done with
careful consideration, as changing colors, blurring, or otherwise
processing the pictures may make them less ecologically
valid.

The assessment of the evoked semantic associates in
Experiment 3 as well as the bias-aware instruction in Experiment
4 were attempts to address potential effects of arousal on
the higher cognitive, constructive processes of perception and
meta-cognition. The results of both experiments suggest a

limited role of incidental triggered semantic associations and
(meta-) cognitive process that are consciously accessible. This
does not rule out that perceiving arousing pictures might differ
with respect to other cognitive processes which influences are
difficult to control. For instance, arousing pictures could be
more effectively activate prior knowledge in terms of schemata
or scripts that could be in addition more detailed and more
complex (Ghosh et al., 2014). Such activated schemata may
influence the perceived complexity and would not necessarily
be fully captured by the assessment of semantic associates.
However, in the Deese-Roediger-McDermott (DRM) illusion
or false memory paradigm that is sometimes used to address
schema activation arousal results in fewer errors in addition
to better memory for details but not gist (Storbeck, 2013;
Van Damme, 2013). Somehow related, arousal might also
increase the amount of inference and hypotheses triggered
by a picture in order to understand its meaning which is
part of the perceptual process (Machado et al, 2015). These
additional cognitive processes could be misattributed during
the rating to reflect higher ratings of visual complexity.
However, one would expect that both, stronger activation
of more detailed and complex schemata and evoking more
complex hypotheses, would be reflected also in the semantic
associations which we assessed in Experiment 3. Taken together,
the current experiments do not provide evidence that arousal
relates to visual complexity ratings mainly via acting on
(meta-)cognitive processes related to perception or the rating
procedure.

On the other hand, it is well known that emotional arousal
relates to basic visual processes (Pourtois et al., 2013; Markovic
et al,, 2014; Mather et al., 2016). In particular, it has been argued
that arousal enhances the signal-to-noise ratio and vividness
of perception, emotional arousing stimuli attract more selective
attention and are preferential processed (Mather et al., 2016).
In addition, emotional arousing pictures are perceived and
remembered more vividly (Markovic et al., 2014). Consistent
with these effects of arousal on visual processing, a number
of fMRI and EEG studies have found greater brain activity
in the visual cortex for affective pictures (e.g., Schupp et al,
2003; Bradley et al., 2007; Herrmann et al, 2008; Olofsson
et al., 2008; Todd et al., 2012; Simola et al., 2013). These
literature would be consistent with the interpretation that the
relationship between arousal and the meta-cognitive visual
complexity ratings is based on its effects on visual processing and
perception.

Finally, the described arousal-complexity bias may also
have practical implications. When studying the influence of
affect on cognitive processes such as attention and memory,
it is important to control for other stimulus properties that
may confound the manipulation of interest. Visual complexity
is one such picture property, however, studies that have
matched picture sets for complexity have often relied on
ratings to assess a pictures complexity. The results of the
experiments presented here clearly indicate that ratings
of visual complexity are not only indexing computational
characteristics of pictorial stimuli, but are also related
to affective factors. The current data demonstrates that
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the distinction between ratings and computational measures of
visual complexity is critical and must be carefully considered
when it is appropriate to use either approach. Specifically,
when the research question is, for instance, related to basic
processing of arousal or valence, the researcher should control
for computational visual complexity to remove this feature as
a potential confound of brain activity and eye movements. The
results of Experiment 1 show that the combination of the three
formal measures of computational measures used here (edge
density, feature congestion, subband entropy) provide distinct
estimates of visual complexity (though other computational
measures may also be useful, e.g., see Braun et al., 2013). However,
if the researcher is interested in other stimulus properties (e.g.,
category membership such as faces vs. houses), it may instead
be preferred to match the picture sets for differences in visual
complexity ratings as these also incorporate affective factors to
some degree. Recently it was suggested that in such a situation
a combination of computational measures can replace the time
consuming normative rating of visual complexity (Machado et al.,
2015). Our data show that this can be only done when the
stimulus material is neutral with respect to valence and arousal.
In other cases, the researcher may want to deliberately manipulate
visual complexity across conditions (e.g., Nguyen and McDaniel,
2015), and care should be taken to ensure that the resulting
picture sets are different based on only the dimension desired to
be manipulated, visual complexity.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Board of Physicians, Hamburg,
REFERENCES

Aitken, P. P. (1974). Judgments of pleasingness and interestingness as functions of
visual complexity. J. Exp. Psychol. 103, 240-244. doi: 10.1037/h0036787

Aitken, P. P., and Hutt, C. (1974). Do children find complex patterns interesting or
pleasing? Child Dev. 45, 425-431. doi: 10.2307/1127964

Berlyne, D. E. (1958). The influence of complexity and novelty in visual figures on
orienting responses. J. Exp. Psychol. 55, 289-296. doi: 10.1037/h0043555

Berlyne, D. E. (1970). Novelty, complexity, and hedonic value. Atten. Percept.
Psychophys. 8, 279-286. doi: 10.3758/BF03212593

Berlyne, D. E., Craw, M. A., Salapatek, P. H., and Lewis, J. L. (1963). Novelty,
complexity, incongruity, extrinsic motivation, and the GSR. J. Exp. Psychol. 66,
560-567. doi: 10.1037/h0045767

Berlyne, D. E., Ogilive, J. C., and Parham, L. C. C. (1968). The dimensionality
of visual complexity, interestingness, and pleasingness. Can. J. Psychol. 22,
376-387. doi: 10.1037/h0082777

Berman, S., Friedman, D., Hamberger, M., and Snodgras, J. G. (1989).
Developmental picture norms: relationships between name agreement,
familiarity, and visual complexity for child and adult ratings of two sets of line
drawings. Behav. Res. Methods Instrum. Comput. 21, 371-382. doi: 10.3758/
BF03202800

Bies, A. J., Blanc-Goldhammer, D. R., Boydston, C. R, Taylor, R. P., and
Sereno, M. E. (2016). Aesthetic responses to exact fractals driven by
physical complexity. Front. Hum. Neurosci. 10:210. doi: 10.3389/fnhum.2016.
00210

Bradley, M. M., Hamby, S., Low, A., and Lang, P. J. (2007). Brain potentials in
perception: picture complexity and emotional arousal. Psychophysiology 44,
364-373. doi: 10.1111/§.1469-8986.2007.00520.x

Germany with written informed consent from all
subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol

was approved by the Board of Physicians, Hamburg,
Germany.
AUTHOR CONTRIBUTIONS

CM and TS conceived the overall study design. All authors
contributed to the experimental design and manuscript writing.
CM and JB programmed the experiments. CM analyzed the
data.

FUNDING

This research was supported by a grant from German Research
Foundation [DFG SO 952/6-1] to TS, partly (Experiment 4)
supported by the TR-CRC 58 “Fear, Anxiety, Anxiety Disorders”
(subproject Z02), and by scholarships from the DAAD
(German Academic Exchange Service) and Natural Sciences
and Engineering Research Council (NSERC) of Canada
to CM.

ACKNOWLEDGMENT

We would like to thank Pia Bandurski, Frederike Pohlentz,
Miriam Wolff, and Romy Schréter for assistance with data
collection.

Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., and Lang, P. J.
(2011). Scan patterns when viewing natural scenes: emotion, complexity,
and repetition. Psychophysiology 48, 1544-1553. doi: 10.1111/j.1469-8986.2011.
01223.x

Bradley, M. M., and Lang, P. J. (1994). Measuring emotion: the self-assessment
manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49-59.
doi: 10.1016/0005-7916(94)90063-9

Braun, J., Amirshahi, S. A., Denzler, J., and Redies, C. (2013). Statistical image
properties if print advertisements, visual artworks and images of architecture.
Front. Psychol. 4:808. doi: 10.3389/fpsyg.2013.00808

Brown, R., and Macefield, V. G. (2014). Skin sympathetic nerve activity in humans
during exposure to emotionally-charged images: sex differences. Front. Physiol.
5:111. doi: 10.3389/fphys.2014.00111

Burnham, K. E., and Anderson, D. R. (2004). Multimodel inference: understanding
AIC and BIC in model selection. Sociol. Methods Res. 33, 261-304. doi: 10.1177/
0049124104268644

Cahill, L., Haier, R. J., White, N. S., Fallon, J., Kilpatrick, L., Lawrence, C.,
et al. (2001). Sex-related difference in amygdala activity during emotionally
influenced memory storage. Neurobiol. Learn. Mem. 75, 1-9. doi: 10.1006/nlme.
2000.3999

Canli, T., Desmond, J. E., Zhao, Z., and Gabrieli, J. D. (2002). Sex differences
in the neural basis of emotional memories. Proc. Natl. Acad. Sci. U.S.A. 99,
10789-10794. doi: 10.1073/pnas.162356599

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. 6, 679-698. doi: 10.1109/TPAMI.1986.4767851

Cassarino, M., and Setti, A. (2015). Environment as ‘Brain Training: a review of
geographical and physical environmental influences on cognitive ageing. Ageing
Res. Rev. 23, 167-182. doi: 10.1016/j.arr.2015.06.003

Frontiers in Psychology | www.frontiersin.org

January 2018 | Volume 8 | Article 2368


https://doi.org/10.1037/h0036787
https://doi.org/10.2307/1127964
https://doi.org/10.1037/h0043555
https://doi.org/10.3758/BF03212593
https://doi.org/10.1037/h0045767
https://doi.org/10.1037/h0082777
https://doi.org/10.3758/BF03202800
https://doi.org/10.3758/BF03202800
https://doi.org/10.3389/fnhum.2016.00210
https://doi.org/10.3389/fnhum.2016.00210
https://doi.org/10.1111/j.1469-8986.2007.00520.x
https://doi.org/10.1111/j.1469-8986.2011.01223.x
https://doi.org/10.1111/j.1469-8986.2011.01223.x
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.3389/fpsyg.2013.00808
https://doi.org/10.3389/fphys.2014.00111
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1006/nlme.2000.3999
https://doi.org/10.1006/nlme.2000.3999
https://doi.org/10.1073/pnas.162356599
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.arr.2015.06.003
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Madan et al.

Visual Complexity and Affect

Cassarino, M., and Setti, A. (2016). Complexity as key to designing cognitive-
friendly environments for older people. Front. Psychol. 7:1329. doi: 10.3389/
fpsyg.2016.01329

Corey, D. M., Dunlap, W. P., and Burke, M. J. (1998). Averaging correlations:
expected values and bias in combined Pearson rs and Fishers Z
transformations. J. Gen. Psychol. 125, 245-261. doi: 10.1080/002213098095
95548

Day, H. (1967). Evaluations of subjective complexity, pleasingness and
interestingness for a series of random polygons varying in complexity.
Percept. Psychophys. 2, 281-286. doi: 10.3758/BF03211042

Donderi, D. C. (2006). Visual complexity: a review. Psychol. Bull. 132, 73-97.
doi: 10.1037/0033-2909.132.1.73

Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced
from a small sample. Metron 1, 3-32.

Forsythe, A. (2009). “Visual complexity: is that all there is?” in Proceedings of the 8th
International Conference on Engineering Psychology and Cognitive Ergonomics.
(Berlin: Springer-Verlag), 158-166.

Forsythe, A., Mulhern, G., and Sawey, M. (2008). Confounds in pictorial sets: the
role of complexity and familiarity in basic-level picture processing. Behav. Res.
Methods 40, 116-129. doi: 10.3758/BRM.40.1.116

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C. J., and Sawey, M. (2011).
Predicting beauty: fractal dimension and visual complexity in art. Br. J. Psychol.
102, 49-70. doi: 10.1348/000712610X498958

Ghosh, V. E., Moscovitch, M., Melo Colella, B., and Gilboa, A. (2014). Schema
representation in patients with ventromedial PFC lesions. J. Neurosci. 34,
12057-12070. doi: 10.1523/JNEUROSCI.0740-14.2014

Gigliitiirk, Y., Jacobs, R. H. A. H., and van Lier, R. (2016). Liking versus complexity:
decomposing the inverted U-curve. Front. Hum. Neurosci. 10:112. doi: 10.3389/
fnhum.2016.00112

Haaker, J., Lonsdorf, T. B., Schiimann, D., Menz, M., Brassen, S., Bunzeck, N., et al.
(2015). Deficient inhibitory processing in trait anxiety: evidence from context-
dependent fear learning, extinction recall and renewal. Biol. Psychiatry 111,
65-72. doi: 10.1016/j.biopsycho.2015.07.010

Herrmann, M. J., Huter, T., Plichta, M. M., Ehlis, A.-C., Alpers, G. W,
Miihlberger, A., et al. (2008). Enhancement of activity of the primary visual
cortex during processing of emotional stimuli as measured with event-related
functional near-infrared spectroscopy and event-related potentials. Hum. Brain
Mapp. 29, 28-35. doi: 10.1002/hbm.20368

Hooper, D., Coughlan, J., and Mullen, M. R. (2008). Structural equation modelling:
guidelines for determining model fit. Electron. J. Bus. Res. Methods 6,
53-60.

Isola, P., Xiao, J., Parikh, D., Torralba, A., and Oliva, A. (2014). What makes a
photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell. 36, 1469-1482.
doi: 10.1109/TPAMI.2013.200

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254-1259.
doi: 10.1109/34.730558

Juneja, M., and Sandhu, P. S. (2009). Performance evaluation of edge detection
techniques for images in spatial domain. Int. J. Comput. Theory Eng. 1,614-621.
doi: 10.7763/IJCTE.2009.V1.100

Kang, C., Wang, Z., Surina, A., and Lii, W. (2014). Immediate emotion-enhanced
memory dependent on arousal and valence: the role of automatic and
controlled processing. Acta Psychol. 150, 153-160. doi: 10.1016/j.actpsy.2014.
05.008

Kaplan, S., Kaplan, R., and Wendst, J. S. (1972). Rated preference and complexity
for natural and urban visual material. Percept. Psychophys. 12, 354-356.
doi: 10.3758/BF03207221

Kensinger, E. A., and Corkin, S. (2004). Two routes to emotional memory: distinct
neural processes for valence and arousal. Proc. Natl. Acad. Sci. U.S.A. 101,
3310-3315. doi: 10.1073/pnas.0306408101

Kuhn, M., Haaker, J., Glotzbach-Schoon, E., Schiimann, D., Andreatta, M.,
Mechias, M.-L., et al. (2016). Converging evidence for an impact of a functional
NOS gene variation on anxiety-related processes. Soc. Cogn. Affect. Neurosci. 11,
803-812. doi: 10.1093/scan/nsv151

Kuhn, M., Scharfenort, R., Schiimann, D., Schiele, M. A., Minsterkétter, A. L.,
Deckert, J., et al. (2015). Mismatch or allostatic load? Timing of life-adversity
differentially shapes gray matter volume and anxious-temperament. Soc. Cogn.
Affect. Neurosci. 11, 537-547. doi: 10.1093/scan/nsv137

Lang, P. J.,, Bradley, M. M., and Cuthbert, B. N. (2008). International Affective
Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual.
Technical Report A-8. Gainesville, FL: University of Florida.

Machado, P., and Cardoso, A. (1998). “Computing aesthetics,” in XIVth Brazilian
Symposium on Artificial Intelligence SBIA'98. LNAI Series, ed. F. Oliveira (Porto
Alegre: Springer), 219-229.

Machado, P., Romero, J., Nadal, M., Santos, A., Correia, J., and Carballal, A.
(2015). Computerized measures of visual complexity. Acta Psychol. 160, 43-57.
doi: 10.1016/j.actpsy.2015.06.005

MacKay, D. G., Shafto, M., Taylor, J. K., Marian, D. E., Abrams, L., and Dyer,
J. R. (2004). Relations between emotion, memory, and attention: evidence from
taboo Stroop, lexical decision, and immediate memory tasks. Mem. Cogn. 32,
474-488. doi: 10.3758/BF03195840

Madan, C. R, Shafer, A. T., Chan, M. and Singhal, A. (2017). Shock
and awe: distinct effects of taboo words on lexical decision and free
recall. Q. J. Exp. Psychol. 70, 793-810. doi: 10.1080/17470218.2016.116
7925

Maini, R., and Aggarwal, H. (2009). Study and comparison of various image edge
detection techniques. Int. J. Image Process. 3, 1-12.

Marin, M. M., Lampatz, A., Wandl, M., and Leder, H. (2016). Berlyne revisited:
evidence for the multifaceted nature of hedonic tone in the appreciation of
paintings and music. Front. Hum. Neurosci. 10:536. doi: 10.3389/fnhum.2016.
00536

Marin, M. M., and Leder, H. (2013). Examining complexity across domains:
relating subjective and objective measures of affective environmental scenes,
paintings and music. PLOS ONE 8:¢72412. doi: 10.1371/journal.pone.007
2412

Marin, M. M., and Leder, H. (2016). Effects of presentation duration on measures
of complexity in affective environmental scenes and representational paintings.
Acta Psychol. 163, 38-58. doi: 10.1016/j.actpsy.2015.10.002

Markovig, J., Anderson, A. K., and Todd, R. M. (2014). Tuning to the significant:
neural and genetic processes underlying affective enhancement of visual
perception and memory. Behav. Brain Res. 259, 229-241. doi: 10.1016/j.bbr.
2013.11.018

Martinovic, J., Gruber, T., and Miiller, M. M. (2008). Coding of visual object
features and feature conjunctions in the human brain. PLOS ONE 3:e3781.
doi: 10.1371/journal.pone.0003781

Mather, M., Clewett, D., Sakaki, M., and Harley, C. W. (2016). Norepinephrine
ignites local hotspots of neuronal excitation: How arousal amplifies selectivity
in perception and memory. Behav. Brain Sci. 39:¢200. doi: 10.1017/
50140525X15000667

Mather, M., and Sutherland, M. R. (2011). Arousal-biased competition in
perception and memory. Perspect. Psychol. Sci. 6, 114-133. doi: 10.1177/
1745691611400234

Nadal, M., Munar, E., Marty, G., and Cela-Conde, C. J. (2010). Visual complexity
and beauty appreciation: explaining the divergence of results. Empir. Stud. Arts
28,173-191. doi: 10.2190/EM.28.2.d

Nadernejad, E., Sharifzadeh, S., and Hassanpour, H. (2008). Edge detection
techniques: evaluations and comparisons. Appl. Math. Sci. 2, 1507-1520.

Nguyen, K., and McDaniel, M. A. (2015). The picture complexity effect: another
list composition paradox. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1026-1037.
doi: 10.1037/xIlm0000071

Ni, J., Jiang, H., Jin, Y., Chen, N., Wang, J., Wang, Z., et al. (2011). Dissociable
modulation of overt visual attention in valence and arousal revealed by
topology of scan path. PLOS ONE 6:¢18262. doi: 10.1371/journal.pone.001
8262

Norman, G. R., and Streiner, D. L. (2003). PDQ Statistics, 3rd Edn. Hamilton, ON:
BC Decker Inc.

Ochsner, K. N. (2000). Are affective events richly recollected or simply familiar?
The experience and process of recognizing feelings past. J. Exp. Psychol. Gen.
129, 242-261. doi: 10.1037/0096-3445.129.2.242

Oliva, A., Mack, M. L., Shrestha, M., and Peeper, A. (2004). “Identifying the
perceptual dimensions of visual complexity of scenes,” in Proceedings of the
Annual Cognitive Science Society, eds K. Forbus, D. Gentner, and T. Regier
(Austin, TX: Cognitive Science Society), 1041-1046.

Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J. (2008). Affective picture
processing: an integrative review of ERP findings. Biol. Psychol. 77, 247-265.
doi: 10.1016/j.biopsycho.2007.11.006

Frontiers in Psychology | www.frontiersin.org

January 2018 | Volume 8 | Article 2368


https://doi.org/10.3389/fpsyg.2016.01329
https://doi.org/10.3389/fpsyg.2016.01329
https://doi.org/10.1080/00221309809595548
https://doi.org/10.1080/00221309809595548
https://doi.org/10.3758/BF03211042
https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.3758/BRM.40.1.116
https://doi.org/10.1348/000712610X498958
https://doi.org/10.1523/JNEUROSCI.0740-14.2014
https://doi.org/10.3389/fnhum.2016.00112
https://doi.org/10.3389/fnhum.2016.00112
https://doi.org/10.1016/j.biopsycho.2015.07.010
https://doi.org/10.1002/hbm.20368
https://doi.org/10.1109/TPAMI.2013.200
https://doi.org/10.1109/34.730558
https://doi.org/10.7763/IJCTE.2009.V1.100
https://doi.org/10.1016/j.actpsy.2014.05.008
https://doi.org/10.1016/j.actpsy.2014.05.008
https://doi.org/10.3758/BF03207221
https://doi.org/10.1073/pnas.0306408101
https://doi.org/10.1093/scan/nsv151
https://doi.org/10.1093/scan/nsv137
https://doi.org/10.1016/j.actpsy.2015.06.005
https://doi.org/10.3758/BF03195840
https://doi.org/10.1080/17470218.2016.1167925
https://doi.org/10.1080/17470218.2016.1167925
https://doi.org/10.3389/fnhum.2016.00536
https://doi.org/10.3389/fnhum.2016.00536
https://doi.org/10.1371/journal.pone.0072412
https://doi.org/10.1371/journal.pone.0072412
https://doi.org/10.1016/j.actpsy.2015.10.002
https://doi.org/10.1016/j.bbr.2013.11.018
https://doi.org/10.1016/j.bbr.2013.11.018
https://doi.org/10.1371/journal.pone.0003781
https://doi.org/10.1017/S0140525X15000667
https://doi.org/10.1017/S0140525X15000667
https://doi.org/10.1177/1745691611400234
https://doi.org/10.1177/1745691611400234
https://doi.org/10.2190/EM.28.2.d
https://doi.org/10.1037/xlm0000071
https://doi.org/10.1371/journal.pone.0018262
https://doi.org/10.1371/journal.pone.0018262
https://doi.org/10.1037/0096-3445.129.2.242
https://doi.org/10.1016/j.biopsycho.2007.11.006
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Madan et al.

Visual Complexity and Affect

Pessoa, L., and Adolphs, R. (2010). Emotion processing and the amygdala: from
a low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev.
Neurosci. 11, 773-783. doi: 10.1038/nrn2920

Pieters, R., Wedel, M., and Batra, R. (2010). The stopping power of advertising:
measures and effects of visual complexity. J. Mark. 74, 48-60. doi: 10.1509/jmkg.
74.5.48

Pourtois, G., Schettino, A., and Vuilleumier, P. (2013). Brain mechanisms
for emotional influences on perception and attention: What is magic
and what is not. Biol. Psychol. 92, 492-512. doi: 10.1016/j.biopsycho.2012.
02.007

Ptak, R., Golay, L., Miiri, R. M., and Schneider, A. (2009). Looking left with left
neglect: the role of spatial attention when active vision selects local image
features for fixation. Cortex 45, 1156-1166. doi: 10.1016/j.cortex.2008.10.001

Purchase, H. C., Freeman, E., and Hamer, J. (2012). An exploration of visual
complexity. Proceedings of the 7th International Diagrams Conference. Berlin:
Springer-Verlag, 200-213. doi: 10.1007/978-3-642-31223-6_22

Rosenholtz, R., Li, Y., and Nakano, L. (2007). Measuring visual clutter. J. Vis. 7,
17.1-22. doi: 10.1167/7.2.17

Sakaki, M., Niki, K., and Mather, M. (2012). Beyond arousal and valence: the
importance of the biological versus social relevance of emotional stimuli. Cogn.
Affect. Behav. Neurosci. 12, 115-139. doi: 10.3758/s13415-011-0062-x

Scharfenort, R., and Lonsdorf, T. B. (2015). Neural correlates of and processes
underlying generalized and differential return of fear. Soc. Cogn. Affect.
Neurosci. 11, 612-620. doi: 10.1093/scan/nsv142

Schlochtermeier, L. H., Kuchinke, L., Pehrs, C., Urton, K., Kappelhoff, H., and
Jacobs, A. M. (2013). Emotional picture and word processing: an fMRI study
of effects on stimulus complexity. PLOS ONE 8:e55619. doi: 10.1371/journal.
pone.0055619

Schmidt, S. R. (1991). Can we have a distinctive theory of memory? Mem. Cogn. 19,
523-542.

Schneider, S., Peters, J., Bromberg, U., Brassen, S., Menz, M. M., Mied], S. F,,
et al. (2011). Boys do it the right way: sex-dependent amygdala lateralization
during face processing in adolescents. NeuroImage 56, 1847-1853. doi: 10.1016/
j.neuroimage.2011.02.019

Schupp, H. T., Junghéfer, M., Weike, A. L., and Hamm, A. O. (2003). Emotional
facilitation of sensory processing in the visual cortex. Psychol. Sci. 14, 7-13.
doi: 10.1111/1467-9280.01411

Sergerie, K., Chochol, C., and Armony, J. L. (2008). The role of the amygdala in
emotional processing: a quantitative meta-analysis of functional neuroimaging
studies. Neurosci. Biobehav. Rev. 32, 811-830. doi: 10.1016/j.neubiorev.2007.
12.002

Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E.,
et al. (1998). The mini-international neuropsychiatric interview (M.LN.I): the
development and validation of a structured diagnostic psychiatric interview for
DSM-1V and ICD-10. J. Clin. Psychiatry 59(Suppl. 20), 22-33.

Shipley, B. (2016). Cause and Correlation in Biology, 2nd Edn. Cambridge:
Cambridge University Press.

Simola, J., Torniainen, J., Moisala, M., Kivikangas, M., and Krause, C. M. (2013).
Eye movement related brain responses to emotional scenes during free viewing.
Front. Syst. Neurosci. 7:41. doi: 10.3389/fnsys.2013.00041

Snodgrass, J. G., and Vanderwart, M. (1980). A standardized set of 260
pictures: norms for name agreement, image agreement, familiarity, and visual
complexity. J. Exp. Psychol. Hum. Learn. Mem. 6, 174-215. doi: 10.1037/0278-
7393.6.2.174

Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R,, and Jacobs, G. A.
(1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting
Psychologists Press.

Stamps, A. E. (2002). Entropy, visual diversity, and preference. J. Gen. Psychol. 129,
300-320. doi: 10.1080/00221300209602100

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychol.
Bull. 87, 245-251. doi: 10.1037/0033-2909.87.2.245

Stickel, C., Ebner, M., and Holzinger, A. (2010). “The XAOS metric: understanding
visual complexity as measure of usability,” in Proceedings of the 6th International
Conference on HCI in Work and Learning, Life and Leisure, (Berlin: Springer-
Verlag), 278-290. doi: 10.1007/978-3-642-16607-5_18

Storbeck, J. (2013). Negative affect promotes encoding of and memory for details
at the expense of the gist: affect, encoding, and false memories. Cogn. Emot. 27,
800-819. doi: 10.1080/02699931.2012.741060

Street, N., Forsythe, A. M., Reilly, R., Taylor, R., and Helmy, M. S. (2016). A complex
story: universal preference vs. individual differences shaping aesthetic response
to fractal patterns. Front. Hum. Neurosci. 10:213. doi: 10.3389/fnhum.2016.
00213

Székely, A., and Bates, E. (2000). Objective visual complexity as a variable in studies
of picture naming. Newsl. Cent. Res. Lang. 12, 3-33.

Talmi, D., Luk, B. T. C, McGarry, L. M., and Moscovitch, M. (2007).
The contribution of relatedness and distinctiveness to emotionally-
enhanced memory. J. Mem. Lang. 56, 555-574. doi: 10.1016/j.jml.2007.
01.002

Talmi, D., and McGarry, L. M. (2012). Accounting for immediate emotional
memory enhancement. J. Mem. Lang. 66, 93-108. doi: 10.1016/j.jml.2011.
07.009

Todd, R. M., Talmi, D., Schmitz, T. W., Susskind, J., and Anderson, A. K.
(2012). Psychophysical and neural evidence for emotion-enhanced perceptual
vividness. J. Neurosci. 32, 11201-11212. doi: 10.1523/JNEUROSCI.0155-12.
2012

Tuch, A. N., Bargas-Avila, J. A., Opwis, K., and Wilhelm, F. H. (2009). Visual
complexity of websites: effects on users” experience, physiology, performance,
and memory. Int. J. Hum. Comput. Stud. 67, 703-715. doi: 10.1016/j.ijhcs.2009.
04.002

Van Damme, I. (2013). Mood and the DRM paradigm: an investigation of
the effects of valence and arousal on false memory. Q. J. Exp. Psychol. 66,
1060-1081. doi: 10.1080/17470218.2012.727837

Vitz, P. C. (1964). Preference for different amounts of visual complexity. Behav. Sci.
11, 105-114. doi: 10.1002/bs.3830110204

Watson, D., Clark, L. A, and Tellegan, A. (1988). Development and
validation of brief measures of positive and negative affect: the PANAS
scales. J. Pers. Soc. Psychol. 54, 1063-1070. doi: 10.1037/0022-3514.54.6.
1063

Yarbus, A. L. (1967). Eye Movements and Vision. New York, NY: Plenum Press.
doi: 10.1007/978-1-4899-5379-7

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer AC and handling Editor declared their shared affiliation.

Copyright © 2018 Madan, Bayer, Gamer, Lonsdorf and Sommer. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Psychology | www.frontiersin.org

January 2018 | Volume 8 | Article 2368


https://doi.org/10.1038/nrn2920
https://doi.org/10.1509/jmkg.74.5.48
https://doi.org/10.1509/jmkg.74.5.48
https://doi.org/10.1016/j.biopsycho.2012.02.007
https://doi.org/10.1016/j.biopsycho.2012.02.007
https://doi.org/10.1016/j.cortex.2008.10.001
https://doi.org/10.1007/978-3-642-31223-6_22
https://doi.org/10.1167/7.2.17
https://doi.org/10.3758/s13415-011-0062-x
https://doi.org/10.1093/scan/nsv142
https://doi.org/10.1371/journal.pone.0055619
https://doi.org/10.1371/journal.pone.0055619
https://doi.org/10.1016/j.neuroimage.2011.02.019
https://doi.org/10.1016/j.neuroimage.2011.02.019
https://doi.org/10.1111/1467-9280.01411
https://doi.org/10.1016/j.neubiorev.2007.12.002
https://doi.org/10.1016/j.neubiorev.2007.12.002
https://doi.org/10.3389/fnsys.2013.00041
https://doi.org/10.1037/0278-7393.6.2.174
https://doi.org/10.1037/0278-7393.6.2.174
https://doi.org/10.1080/00221300209602100
https://doi.org/10.1037/0033-2909.87.2.245
https://doi.org/10.1007/978-3-642-16607-5_18
https://doi.org/10.1080/02699931.2012.741060
https://doi.org/10.3389/fnhum.2016.00213
https://doi.org/10.3389/fnhum.2016.00213
https://doi.org/10.1016/j.jml.2007.01.002
https://doi.org/10.1016/j.jml.2007.01.002
https://doi.org/10.1016/j.jml.2011.07.009
https://doi.org/10.1016/j.jml.2011.07.009
https://doi.org/10.1523/JNEUROSCI.0155-12.2012
https://doi.org/10.1523/JNEUROSCI.0155-12.2012
https://doi.org/10.1016/j.ijhcs.2009.04.002
https://doi.org/10.1016/j.ijhcs.2009.04.002
https://doi.org/10.1080/17470218.2012.727837
https://doi.org/10.1002/bs.3830110204
https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1007/978-1-4899-5379-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye
	Introduction
	Computational Measures of Visual Complexity

	Experiment 1
	Methods
	Participants
	Materials
	Procedure
	Data Analysis

	Results and Discussion
	Individual Regression Models
	Arousal and valence
	Computational measures of visual complexity

	Multiple Regression Models


	Experiment 2
	Methods
	Participants
	Materials
	Procedure

	Results and Discussion

	Experiment 3
	Methods
	Participants
	Materials
	Apparatus

	Procedure
	Data Analysis
	Path analysis


	Results and Discussion
	Correlation and Multiple Regression Analyses
	Path Analysis


	Experiment 4
	Methods
	Participants
	Materials
	Procedure
	Phase 1
	Phase 2
	Phase 3


	Results and Discussion
	Can People Deliberately Attenuate the Arousal-Complexity Bias?
	Relationship between Affective Processing and Personality Traits on Arousal-Complexity Bias


	Experiment 5
	Experiment 5A
	Methods
	Participants
	Materials
	Procedure
	Phase 1
	Phase 2
	Phase 3
	Phase 4


	Results and Discussion

	Experiment 5B
	Methods
	Participants
	Materials
	Procedure

	Results and Discussion

	General Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgment
	References


