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Cross-situational learning and social pragmatic theories are prominent mechanisms for

learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement

is investigated for early word-learning by an artificial agent. When exposed to a group of

speakers, the agent comes to understand an initial set of vocabulary items belonging to

the language used by the group. Both cross-situational learning and social pragmatic

theory are taken into account. As social cues, joint attention and prosodic cues in

caregiver’s speech are considered. During agent-caregiver interaction, the agent selects

a word from the caregiver’s utterance and learns the relations between that word and the

objects in its visual environment. The “novel words to novel objects” language-specific

constraint is assumed for computing rewards. The models are learned by maximizing the

expected reward using reinforcement learning algorithms [i.e., table-based algorithms:

Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for

neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)].

Neural network-based reinforcement learning models are chosen over table-based

models for better generalization and quicker convergence. Simulations are carried

out using mother-infant interaction CHILDES dataset for learning word-object pairings.

Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention

(Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic

models). Attentional-prosodic models manifest superior performance to Attentional

ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing

word-learning models for the same task.

Keywords: cross-situational learning, deep reinforcement learning, Q-learning, neural network, joint attention,

prosodic cue

1. INTRODUCTION

Infants face many complex learning problems, one of the most challenging of which is learning
a language. It is nothing short of a scientific miracle how quickly and effortlessly they learn a
language. The process of language acquisition is multisensory that involves hearing utterances,
seeing objects in the environment, and touching and pointing toward them. The ability to map
words onto concepts/referents/objects is at the core of language acquisition. The mapping between
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words and their referents is fundamentally ambiguous as
illustrated by Quine using the “Gavagai” problem (Quine et al.,
2013). In this problem, the word “Gavagai” is uttered while
pointing toward a rabbit in a field; therefore, corresponding
referents can be the rabbit, the field or the color of the rabbit.
Solving this problem involves a number of challenging tasks:
segmenting continuous speech into words, determining a set
of objects/referents/concepts that are present in the immediate
environment, and finding a way to correlate the heard words with
the seen objects. In reality, solving the problem becomes harder
because: (1) the infants hear continuous speech consisting of a
train of words instead of an isolated word, (2) an object might
be mentioned that is absent in the immediate environment, (3)
not all words refer to objects, such as verbs and function words,
and (4) the referent object is not always touched or pointed to.
Thus, there are multiple possibilities in both spaces, language and
referent, and learning the mapping between them is a non-trivial
problem.

One of the prominent solutions to this problem is cross-
situational learning (Gleitman, 1990; Plunkett, 1997; Akhtar
and Montague, 1999; Bloom, 2000; Saffran, 2003; Smith et al.,
2011; Pinker, 2013) which hypothesizes that co-occurrences
of spoken words and their possible referents/objects/events
help the infants to learn word meanings across multiple
communicative contexts. Each individual interactive situation
may be referentially ambiguous. Co-occurrence statistics over
many such situations gradually resolve the ambiguity (Räsänen
and Rasilo, 2015). Developmental researchers claim that social-
interaction cues play a major role in guiding infants’ learning and
in developing the link between words and objects in the world
(Baldwin, 1993; Tomasello and Akhtar, 1995). It is suggested
that attention on objects does not necessarily establish the word-
referent link unless it is within a task to achieve a goal (Rohlfing
et al., 2016). When both the child and caregiver, involved in an
interaction, attend to an event to accomplish a goal (such as to
learn the name of an object), the situation is called pragmatically-
framed. The social-pragmatic account of language acquisition
hypothesizes that social-cognitive skill (i.e., the ability to infer
the speaker’s intention during an interaction) is the key to
language acquisition (Baldwin, 1993; Bloom, 2000; Bowerman
and Levinson, 2001). In support of this theory, it has been
shown that 9–10 month old infants failed to learn phonetics from
digital videos due to the absence of a live person who could
provide social cues and referential information (Kuhl et al., 2003).
Behavioral experiments on 18 month old show that they track the
speaker’s attention and infer the speaker’s intention to determine
the novel word-referent pairs (Baldwin, 1993; Bowerman and
Levinson, 2001).

1.1. Review of Computational Models of
Word-Learning
Computational modeling of word-learning has been a powerful
tool for unraveling the underlying factors and mechanisms of
word-learning in infants. It helps to examine psycholinguistic
theories of word-learning. In developmental robotics, it plays
an important role in the design of a robot’s behavioral and

cognitive capabilities (Lungarella et al., 2003; Cangelosi and Riga,
2006). Several computational models of word-learning have been
proposed, a taxonomy tree of which is shown in Figure 1.

One of the first models for learning word meanings is rule-
based (Siskind, 1996). It is capable of learning word meanings
from multiple words and multiple meanings in ambiguous
context, as in the real world. A synthetic dataset of utterances
paired with conceptual expressions are generated where the
concepts are considered as utterance meanings. In this model,
synthetic representation of utterances and meanings does not fit
the distributional properties of the input received by a child. This
model does not revise the meaning of a word once it is learned
which makes the model incapable of handling highly noisy or
ambiguous data.

In Yu and Ballard (2007), a unified model is proposed for
learning words-referent pairs by integrating cross-situational
evidence and social cues. The speaker’s visual attention and
prosodic cues in infant-directed speech are considered as
social cues. The input data (or observation) consists of
utterances (mother’s speech) represented as bags of words and
meanings represented by manually identifying objects present
in the immediate environment. The model uses expectation
maximization (EM) to learn correct mappings. Four models
are trained: (1) the baseline model using the cross-situational
information, (2) the model integrating visual attentional cues
with statistical information, (3) the model integrating prosodic
cues with statistical information, and (4) the model integrating
both kinds of social cues with statistical information. It is
found that the model using both visual attention and prosodic
cues outperforms the other three models. But it lacks cognitive
plausibility because of its non-incremental and intensive batch-
processing learning procedure.

In Frank et al. (2008), a Bayesian framework for modeling
word-learning is proposed. Using the mother-infant interaction
CHILDES dataset the speaker’s intent is modeled as a subset
of the objects observed when an utterance is formed. Certain
properties of word-learning in children, such as the mutual
exclusivity bias and fast mapping, are observed in the model.
The choice of prior enforces smaller lexicon learning; learning
all existing word-object pairs is not a priority. Equally-likely
assumption on all intentions indicates that the framework
is not incorporating a fully elaborate model of the speaker’s
communicative intentions.

An incremental, associative model that learns words from
context is proposed in Kachergis et al. (2012a). The association
score of a word-object pair increases if the pair has co-occurred
before or if the referent object is not associated with other
words. Empirical evaluations show that associative models match
human behavior more closely (Kachergis et al., 2012b; Kachergis
and Yu, 2014). One of the drawbacks of the associative model
in Kachergis et al. (2012a) is that it uses several parameters with
different values without explaining the intuition behind them.

In Kievit-Kylar et al. (2013), a combination of semantic space
models is used to learn word-concept pairings. A generalized
technique transforms a semantic space model into a word-
concept learning model. There are two phases: learning and
prediction. In the learning phase, the model is applied to
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FIGURE 1 | A taxonomy tree of existing word-learning models, including the models proposed in this paper.

utterances consisting of words. The word tokens and concept
tokens are concatenated into a single concept sensory episode. In
the prediction phase, an object/concept token is assigned to each
word token. Hybrid models that combine some of the existing
semantic models outperform each of them. In this model, no
social cues are considered.

In Lazaridou et al. (2016), a distributed word-learning model
is proposed that works with realistic visual scenes. Distributed
linguistic and visual information is used with Multimodal Skip-
Gram (MSG) model (Lazaridou et al., 2015) for cross-situational
learning. Social cues, such as eye gaze, gestures, and body posture,
are used in multimodal learning. Besides learning word-object
mapping, the model simultaneously learns word representations
that help to infer the appearance of the objects, group concepts
into categories, and represent both abstract and concrete words
in the same space. Their visual perception is sensory while the
audio perception is symbolic. Thus, it ignores the effect of non-
linguistic aspects of the caregiver’s speech.

In Fontanari et al. (2009), biologically-plausible Neural
Modeling Fields is proposed to solve the word-learning problem
on a synthetic dataset. The original problem is that of online
learning which is relaxed to a batch learning problem. Incorrect
associations are removed automatically by a clutter-detection
model. The two mechanisms, batch learning and clutter

detection, allow the neural modeling fields to infer correct word-
object pairings. However, the model assumes that the speech is
segmented and the words are represented symbolically.

The continuous nature of speech and visual data are taken
into account in Roy and Pentland (2002) and Räsänen and Rasilo
(2015). The CELL model (Roy and Pentland, 2002) considers
the shape of single objects as the visual input which bypasses
referential uncertainty. In Roy and Pentland (2002) and Räsänen
and Rasilo (2015), the contextual noise and ambiguity in visual
data is considerably less than that experienced by children. CELL
was later followed by the model of Yu and Ballard (2004).
Phoneme sequences co-occurring with the same objects are
grouped together. The common structure of these phoneme
sequences across multiple occurrences of the same context are
taken as word candidates. Expectation-maximization is used to
learn word meanings. It is found that word segmentation can be
facilitated by analyzing the acoustic input across communicative
contexts instead of modeling speech patterns in isolation
(Roy and Pentland, 2002; Yu and Ballard, 2004). However, to
make the learning problem simpler, the speech is converted
into phoneme-like sequences using pre-trained neural network
classifiers before further processing. Though the model uses
realistic representation of audio and visual data, none of them
consider social cues.
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In Mangin and Oudeyer (2013), it is hypothesized that
word meanings are learned through multimodal correlation.
For finding multimodal association, two types of dataset are
used: motion and audio. A non-negative matrix factorization
(NMF)-based multimodal unsupervised learning approach is
proposed that is able to discover elementary gestures performed
by a human and their names in subsymbolic audio and motion
streams. In Chen and Filliat (2015), NMF is utilized to learn
noun and adjective in cross-situational scenario. In this model,
a statistical filtering is used to remove noise from speech, a
phoneme recognizer is used to convert continuous speech to
symbolic representation, and finally NMF is used to discover
word meanings in the visual domain.

The model in Frank et al. (2008, 2009) exhibits language-
learning phenomena with mutual exclusivity and fast-mapping
as consequences of the structure of the model. Kachergis et al.
(2012a) considers mutual exclusivity as a built-in bias in their
single-hypothesis model. An associative memory noisily stores
everything the model sees. Alishahi (2010) observes, some other
associative models (Plunkett et al., 1992; Schafer and Mareschal,
2001; Regier, 2005) show a pattern of vocabulary spurt, similar
to that observed in children, where the input data consists of
distributed representation of both words and referents. Alishahi
(2010) further observes that the incremental clustering-based
associative model in (Li et al., 2004, 2007) simulate vocabulary
spurt. Other competition-based models (MacWhinney, 1989,
1999) determine the activation of a feature set of the referent
for each chosen word. The activation is computed as the sum
of the associations of the individual features previously seen
with each word. These competition-based models exhibit mutual
exclusivity. All these models, both associative and competition-
based, use toy datasets. Other models neither incorporate these
phenomena nor exhibit any of them which makes them less
biologically-plausible.

Social cues and cross-situational learning play a crucial
role in learning word meanings (Gleitman, 1990; Baldwin,
1993; Tomasello and Akhtar, 1995; Pinker, 2013). To the best
of our knowledge, no model that uses subsymbolic sensory
representation of audio and visual data (e.g., Roy and Pentland,
2002; Yu and Ballard, 2004; Mangin and Oudeyer, 2013; Chen
and Filliat, 2015; Räsänen and Rasilo, 2015) integrates social cues
with cross-situational learning. Among symbolic audio-visual
models (e.g., Yu and Ballard, 2007; Frank et al., 2008; Fontanari
et al., 2009; Kachergis et al., 2012a; Kievit-Kylar et al., 2013), only
Yu and Ballard (2007) has taken social pragmatic theory into
account. The model in Lazaridou et al. (2016) considers visual
attention and ignores prosodic information as it uses subsymbolic
visual but symbolic audio representation. The symbolic data-
based hybrid model in Kievit-Kylar et al. (2013) provides state-
of-the-art F-score for object-referent learning; however, it does
not consider any language-learning mechanism or social cues.
Word-referent learning is still considered an open problem.

1.2. Contributions
The strong connection between reinforcement and the brain,
particularly memory, is widely known (Schultz, 1998; Kirsch
et al., 2003). It is proposed in recent theoretical models that

integration of emerging language-learning mechanisms with
phylogenetically older subcortical reward systems reinforce
human motivation to learn a new language (Syal and Finlay,
2011; Ripollés et al., 2014). It is suggested from behavioral and
imaging experiments that the anticipation of reward can have
a beneficial effect on word-learning based on reward-induced
anxiety (Callan and Schweighofer, 2008). In Longano and Greer
(2015), behavioral data analysis suggests that acquisition of
conditioned reinforcers for both visual and auditory stimuli
provide the foundation for the naming capability. They proposed
that visual and auditory stimuli may have reinforcing properties
independently. But to learn naming, both stimuli must act at
the same time to select the observing reactions of looking and
listening. fMRI studies in Ripollés et al. (2014, 2016) found
that adult participants exhibited robust fMRI activation in the
core brain region [ventral striatum (VS)] for reward processing
while learning new words. Similar activation is observed for VS
recruitment when participants are engaged in an independent
reward task. From these results it can be demonstrated that
self-monitoring of correct performance triggers intrinsic
reward-related signals. These reward signals help to store
new information into long-term memory of the midbrain
(Ripollés et al., 2014). From a computational viewpoint,
reinforcement learning provides an alternative solution to
supervised learning models. An agent can discover the ground
truth through reward and punishment in an interactive
setting.

The effort of an agent for obtaining a reward can be measured
as a value using a value system (Schultz, 2000). Value system
is one of the important components of developmental cognitive
systems which promotes the “brain” to establish a link between
behavioral responses and external event (Begum and Karray,
2009; Merrick, 2017). Value system is defined in Merrick (2017)
as follows: A value system permits a biological brain to increase
the likelihood of neural responses to selected external phenomena.
A number of machine learning algorithms capture the necessity
of this learning process. Computational value systems include
reinforcement-based artificial neural networks (Merrick, 2017)
where each environmental state-action pair is associated with a
value. In Najnin and Banerjee (2016, 2017), a value system based
on internal reinforcement is used for motor skill acquisition in
speech production. Unfortunately, such systems have never been
used for the speech perception task of word-learning.

In this paper, we extend the reinforcement learning framework
for word-learning. Both table-based algorithms (Q-learning,
SARSA, SARSA-λ) and neural network-based algorithms (Q-NN,
NFQ, DQN) (Sutton and Barto, 1998; Riedmiller, 2005; Mnih
et al., 2015) are experimented with. Cross-situational learning
and social cues are taken into account. The advantage of using
neural networks over table-based methods is that the former
regulates reinforcement learning with superior generalization
and convergence in real-world applications (Sutton and Barto,
1998; Shiraga et al., 2002). Social cues are extracted from joint
attention and prosodic cues from the caregiver’s speech. When
only joint attention is used, the models are named as Attentional
Q-learning, SARSA, SARSA-λ, Q-NN, NFQ, DQN. When both
joint attention and prosodic cues are taken into account, they
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are named as Attentional-prosodic Q-learning, etc. The mother-
infant interaction-based CHILDES dataset (MacWhinney, 2000)
is used for experimentation. Evaluation of the proposed models
follow similar procedures as in Frank et al. (2008), Kievit-Kylar
et al. (2013), and Lazaridou et al. (2016).

Our experimental results show that reinforcement learning
models are well-suited for word-learning. In particular, we show
that:

• Word-object pairs can be learned using reinforcement.
• Attentional Q-NN, NFQ, DQN and their attentional-prosodic

counterparts can select referent objects with high accuracy for
given target words.
• Attentional-prosodicQ-NN,NFQ, andDQNoutperform their

attentional counterparts in terms of F-score, precision and
recall.
• Attentional-prosodic DQN outperforms some of the

prominent existing models in terms of F-score.

The rest of this paper is organized as follows. Section 2 covers how
reinforcement learning can be extended for word-learning. The
dataset and its complexity are described in Section 3. Section 4
details the experimental results. Finally, the paper ends with
concluding remarks.

2. LEARNINGWORD-OBJECT PAIRS
THROUGHREINFORCEMENT

The proposed solution to the computational problem of learning
word meanings rests on recent advances in reinforcement
learning algorithms. An agent interacts with its environment via
perception and action, as shown in Figure 2 (Kaelbling et al.,
1996). At any instant, it receives a stimulus (s), some indication
of the current state (senυ ) of the environment. It then chooses an
action (a) to change the state of the environment. It receives a
reward (r) based on the state transition. The agent is required to
learn a policy (π) in order to choose a sequence of actions that is
expected to maximize long-term sum of rewards.

Let X = {x1, x2, ..., xN} be a word set that constitutes a
vocabulary, and O = {o1, o2, ..., oM} be a object/meaning set,
where N is the number of acoustic words and M is the number
of objects. In a caregiver-agent interactive scenario, each spoken
utterance and the corresponding visual context formed one
learning situation (Yu and Ballard, 2007). Extra-linguistic context
includes objects present in the scene and social cues. The entire
dataset contains multiple instances of such learning situations.
Let S be the set of learning situations. In the i-th learning situation,
the utterance U i consists of d acoustic words, {ui1, u

i
2, ..., u

i
d
}, the

meaning can be any of the l presented objects in the scene, oi =
{oiυ1 , o

i
υ2
, ..., oiυl}, υj ∈ {1, 2, ...,M} ∀j. The attended object in the

scenario is oi
k
, k ∈ {υ1, υ2, ..., υl}, υj ∈ {1, 2, ...,M} where υj

is the index of the object. So all word-object pairs are in a set
S = {U i, oi}, and all word-attended-object pairs are in a set SA =
{U i, oi

k
}, i ∈ {1, 2, ..., P}, P is the number of learning situations.

For learning word meanings, the proposed agent is assumed
to be embedded in an environment consisting of audio and
visual stimuli. In any situation, the agent hears the caregiver’s
utterance (consisting of words) and sees the objects present in

its immediate environment. In this paper, each state consists
of spoken utterance and attended object in a situation. At
current situation (Si), the agent perceives the current state of
the environment (si) and selects an action (ai) that chooses a
word from the utterance for the attended object (oi

k
) in the

environment. In standard reinforcement learning, the agent acts
externally on the environment, observes the next state and
receives an external reward based on the state transition. The
caregiver’s utterances in any situation is independent of the agent’s
external action. That is, the agent’s external action is not changing
the environment. Choosing a word is the internal action of the
agent that generates an internal reward for the agent.

Computation of the internal reward is a non-trivial problem.
The intuition behind this reward function is borrowed from
language-specific constraints to restrict large hypothesis spaces;
this facilitates cross-situational learning. These language-specific
constraints help the infant to learn word-object mappings during
early language development (Markman, 1992). According to the
principle of mutual exclusivity (Markman and Wachtel, 1988),
every object has only one label. Principle of contrast states that
infants resort to fill-the-gap bias whereby they find a word
for an object with no known word (Clark, 1987). Moreover,
the novel name-nameless category principle states that novel
words link to novel objects (Golinkoff et al., 1994). In Tilles and
Fontanari (2013), an adaptive learning algorithm is proposed
that contains two parameters: (1) to regulate the associative
reinforcement between concurrent words and referents based
on confidence values of past trials, and (2) to regulate the non-
associative inference process that handles mutual exclusivity
bias and information of past learning events. In the proposed
computational agent, reward computation follows the novel
name-nameless category principle. If an object is changed from
one situation to the next, the agent will receive a reward if it
chooses different words for the two objects. In the same vein, the
agent will be rewarded if it chooses the same word for the same
objects in two consecutive situations.

Based on the above principle, the proposed agent perceives
the next situation (Si+1), selects action (ai+1) and receives reward
(ri+1) based on state transition and action. The reward function is:

ri+1 =

{

1, if (oi
k
= oi+1

k
∧ ai = ai+1) ∨ (oi

k
6= oi+1

k
∧ ai 6= ai+1)

−1, otherwise
(1)

The agent’s objective is to compute a policy, π , that maps from
state (si) to action (ai) by maximizing some long-termmeasure of
reinforcement. The following example illustrates the interaction
between the agent and its environment using two consecutive
situations, S1 and S2.
Situation S1:
Utterance: “ahhah look we can read books david”
Objects present in the immediate environment: {<book>, <bird>,
<rattle>, <face>}
Attended object in the immediate environment: <book>
Environment: The caregiver utters a sentence consisting of seven
words. So the agent has seven possible actions to choose a word
that corresponds to the attended object.
Agent: Takes action 6 (which is choosing the word “book”) as the
meaning of the attended object.
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FIGURE 2 | Agent-environment interaction in reinforcement learning. Here, fpr indicate environment state (senv ) is perceived by the agent as s through some

process fpr and Rpr represents the process of reward computation.

Situation S2:
Utterance: “its a look and see book”
Objects present in the immediate environment: {<book>, <bird>,
<rattle>, <face>}
Attended object in the immediate environment: <book>
Environment: The caregiver utters a sentence (state) consisting of
six words. So the agent has six possible actions to choose from.
Agent: Let us consider two possible cases. Case 1: Takes action
6 (“book”) as the meaning of the attended object. Case 2: Takes
action 2 (“a”) as the meaning of the attended object.
Reward: Case 1: Receives a reward of 1 unit. Case 2: Receives a
reward of −1 unit.

The above formulation reduces the problem to a finiteMarkov
decision process (MDP) where each situation is a distinct state.
Hence, standard reinforcement learning methods for MDPs can
be deployed by assuming si as the state representation at the i-th
situation. The goal of the agent is to select actions in a way that
maximizes future rewards. Future rewards are discounted by a
factor of γ per situation. The future discounted reward at the i-th
situation is defined as Sutton and Barto (1998):

Ri =

P
∑

j=i

γ j−irj (2)

For the task of learning word-object pairs, both table-based
and neural network-based reinforcement learning methods will
be investigated in this paper. Table-based methods include Q-
learning, SARSA, and SARSA-λ. The neural network-based
methods, namely Q-NN, NFQ, and DQN, will be extended for
the word-learning task. Our formulation of these methods for the
task is described in the following sections.

2.1. Q-Learning
A number of reinforcement learning methods estimate the
action-value function using the Bellman equation (Sutton and
Barto, 1998). The optimal action-value function Q∗(s, a) is

defined as Kaelbling et al. (1996):

Q∗(s, a) = maxπ E[Ri|si = s, ai = a,π] (3)

where Q∗(s, a) is the maximum expected reward achievable by
any strategy on perceiving situation s and then taking action a. π
is a policy mapping states to actions.

The optimal action-value function obeys Bellman equation. If
the optimal value Q∗(s′, a′) of the sequence s′ at the next time-
step is known for all possible actions a′, the optimal strategy is to
select the action thatmaximizes the expected value of r+Q∗(s′, a′)
(Kaelbling et al., 1996). That is,

Q∗(s, a) = E[r + γmaxa′Q
∗(s′, a′)|s, a] (4)

Such action-value function can be estimated iteratively as
Watkins and Dayan (1992):

Qi+1(s, a) = E[r + γmaxa′Qi(s
′, a′)|s, a] (5)

Convergence of such value iteration algorithms leads to the
optimal action-value function, Qi → Q∗ as i→ ∞ (Sutton and
Barto, 1998). In classical Q-learning, the update rule is given by
Sutton and Barto (1998), Kaelbling et al. (1996), andWatkins and
Dayan (1992):

Q(s, a)← Q(s, a)+ α(r + γmaxa′Q(s
′, a′)− Q(s, a)) (6)

where α is a learning rate that decreases with iterations for
convergence and γ is a discounting factor. It can be shown
that, multiple updates of every state-action pair lead Q-learning
to converge for finite state-action spaces (Sutton and Barto,
1998; Even-Dar and Mansour, 2003). Then, it results in optimal
Q-function. Generally, the update is performed online in a
sample-by-sample manner. That is, the value function is updated
after every new transition. Q-learning is an off-policy algorithm
(Even-Dar and Mansour, 2003). The current state consists of
the utterance (U) and objects present in the agent’s immediate
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environment in the current situation. Each utterance is a set of
words w ∈ ℜN . Since the number of situations is P, the Q-table is
of sizeℜP×N . TheQ-value for each word-object pair is computed
as the running average of Q-values when an object is visited. In
this way, a Q-matrixQW ∈ ℜM×N is constructed for word-object
pairs. The Q-learning steps are shown in Algorithm 1.

Algorithm 1 Q-learning Algorithm for Word-Learning

1: Input: s is the current state, a is the current action, s′ is the
next state, r is the immediate reward received

2: Initialize action-value function, Q table as randomly
3: Initialize Q-matrix for word-object pairs, QW as zeros
4: for eachEpisode = 1 to Maxepisode do
5: Observe current state, s = {w, o}
6: for eachsituation = 1 to P do

7: Choose action, a with probability ǫ using ǫ-greedy
policy

8: Observe next state, s′, select a action, a′ = maxa′

Q(s′, a′)
9: if (o = o′ and a = a′) or (o 6= o′ and a 6= a′) then
10: r = 100
11: else

12: r = −1
13: end if

14: Update Qtable:
15: Q(s, a)← Q(s, a)+ α(r + γmaxa′Q(s

′, a′)− Q(s, a))
16: Construct Q-matrix for word-object pairs, QW:
17: for eachobject, j = 1 to M do

18: if label(o) = j then
19: count← count + 1

20: QWj← QWj +
Q(s,a)−QWj

count
21: end if

22: end for

23: s← s′

24: end for

25: end for

2.2. SARSA
State-Action-Reward-State-Action (SARSA) is an on-policy
algorithm for temporal difference learning and is more realistic
than Q-learning. According to Russell and Norvig (2002), if
the overall policy is even partly controlled by other agents, it is
better to learn a Q-function for what will actually happen rather
than what the agent would like to happen. The key difference
from Q-learning is that Q-values are updated with new action
and reward instead of using the maximum reward of the next
state (Sutton and Barto, 1998). The Q-matrix for word-object
pairs, QW, is constructed in the same way as in Q-learning. The
SARSA steps are shown in Algorithm 2.

2.3. SARSA-λ
The SARSA-λ algorithm was experimented with to observe the
effect ofmemory in word-learning. Adding eligibility traces to the
SARSA algorithm forms SARSA-λ algorithm (Loch and Singh,
1998). In this algorithm, n-steps backup are carried out instead
of one step backup in SARSA or Q-learning. The value of λ

Algorithm 2 SARSA Algorithm for Word-Learning

1: Input: States, S
2: Initialize action-value function, Q table randomly
3: Initialize Q-matrix for word-object pairs, QW as zeros
4: for eachEpisode = 1 to Maxepisode do
5: Observe current state, s = {w, o}
6: for eachsituation = 1 to P do

7: Choose action, a with probability ǫ using ǫ-greedy
policy

8: Observe next state, s′, select action, a′ with probability
ǫ using ǫ-greedy policy

9: if (o = o′ and a = a′) or (o 6= o′ and a 6= a′) then
10: r = 100
11: else

12: r = −1
13: end if

14: Update Qtable:

15: Q(s, a)← Q(s, a)+ α(r + γQ(s′, a′)− Q(s, a))
16: Construct Q-matrix for word-object pairs, QW:
17: for eachobject, j = 1 to M do

18: if label(o) = j then
19: count← count + 1

20: QWj ← QWj +
Q(s,a)−QWj

count
21: end if

22: end for

23: s← s′, a← a′

24: end for

25: end for

determines the value of n. An eligibility trace acts as an additional
memory variable for every state-action pair (Sutton and Barto,
1998). Q-matrix for word-object pairs, QW, is constructed in the
same way as in Q-learning. The SARSA-λ steps are shown in
Algorithm 3.

2.4. Q-Learning Using Neural Networks
In this paper, the state of the environment in the word-
learning case is defined as a situation consisting of utterances
and objects presented at that time. In the real world, children
below three years of age hear at least 240 utterances per
hour (Grabe and Stoller, 2013)-p70. In a year, they encounter
approximately 21 million utterances. So there will be 21 million
rows in our imaginary Q-table in the table-based method
which is computationally inefficient for the Q-table to converge.
Ideally, a good prediction for Q-values is required for unseen
states. Neural networks are good at learning useful features
for highly-structured data. Therefore, Q-function could be
represented by a neural network where state is the input
and Q-value for each possible action are the outputs. The
advantage of this approach is that, performing a Q-value
update or choosing the action with highest Q-value requires
only one forward pass through the network. Table-based Q-
learning is not practical because of separate action-value function
estimation process for each situation without any generalization
capability.
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Algorithm 3 SARSA-λ Algorithm for Word-Learning

1: Input: States, S
2: Initialize action-value function, Q(s, a) randomly and

eligibility trace, e(s, a) = 0 for all s, a
3: Initialize Q-matrix for word-object pairs, QW as zeros
4: for eachEpisode = 1 to Maxepisode do
5: Observe current state, s = {w, o}
6: for eachsituation = 1 to P do

7: Choose action, a = maxaQ(s, a)
8: Observe next state, s′, select action, a′ with probability

ǫ using ǫ-greedy policy
9: if (o = o′ and a = a′) or (o 6= o′ and o 6= o′) then
10: r = 100
11: else

12: r = −1
13: end if

14: δ = r + γQ(s′, a′)− Q(s, a)
15: e(s, a)← 1
16: Update Q-table and eligibility traces:

17: Q(s, a)← Q(s, a)+ αδe(s, a)
18: e(s, a)← γ λe(s, a)
19: Construct Q-matrix for word-object pairs, QW:
20: for eachobject, j = 1 to M do

21: if label(o) = j then
22: count← count + 1

23: QWj← QWj +
Q(s, a)−QWj

count
24: end if

25: end for

26: s← s′, a← a′

27: end for

28: end for

In neural network-based method, an error function is
introduced that measures the difference between the current Q-
value and the new value that should be assigned. For example,
a squared-error function may be used: error = (Q(s, a) − (r +
γmaxa′Q(s

′, a′)))2 (Riedmiller, 1999). The Q-learning rule in
Equation (6) can be directly implemented as a neural network
minimizing this squared-error. A neural network function
approximator with weights θ will be referred to as a Q-network
(Sutton and Barto, 1998). Gradient descent techniques, such as
the backpropagation learning rule, can be applied to update the
weights of a neural network by minimizing the error (Baird
and Moore, 1999). The Q-matrix, QW, for word-object pairs
is computed using running average in the same way as in
Q-learning. The steps are shown in Algorithm 4.

2.5. Neural-Fitted Q-Network
Q-learning for neural network is an online algorithm where
Q-network parameters (θ) are typically updated after each
new situation. The problem with the online update rule
is that, typically a large number of iterations is required
to compute an optimal or near-optimal policy (Riedmiller,
1999). If weights are tuned for a state-action pair, undesirable
changes might occur at other state-action pair which, in
our experience, is the primary reason behind slow learning

Algorithm 4 Q-learning with Neural Network for Word-
Learning

1: Initialize Q-matrix for word-object pairs, QW as zeros
2: Initialize action-value function, Q with random weight, θ
3: Learning rate, α = 0.001, discount rate, γ = 0.99
4: Initialize ǫ = 0.99 for ǫ − greedy action selection.
5: for eachEpisode = 1 to Maxepisode do
6: Observe current state, s = {w, o}
7: for eachsituation = 1 to P do

8: Calculate Q using perceptron network with two
hidden layers, Q = net(s, θ)

9: Choose action, a using ǫ-greedy policy.
10: Observe s′, choose a′ based on maximum Q-value.
11: Calculate reward r as described in Algorithm.1.
12: Set Qtr = rj + γQ(s′, a′, θ)
13: Perform gradient descent step on (Qtr − Q(s, a, θ))2

with respect to the network parameter θ

14: Calculate Q− value for state s with Qup = net(s, θ)
15: Construct Q-matrix for word-object pairs, QW:
16: for eachobject, j = 1 to M do

17: if label(o) = j then
18: count← count + 1
19: QWj ← QWj +

Qup−QWj

count
20: end if

21: end for

22: Set s← s′;
23: end for

24: Decrease ǫ linearly.
25: end for

(Riedmiller, 1999). NFQ is an example of the Fitted-Q Iteration
family of algorithms (Ernst et al., 2005) where multilayer
perceptron network is used for regression. The steps are shown
in Algorithm 5. It consists of two major steps: generating the
training set D and training a multilayer perceptron using these
patterns.

2.6. Deep-Q Learning
In deep-Q learning, an agent’s experience at each situation
is stored in a replay memory, termed as experience replay
(Mnih et al., 2015). This is an important trick for training
neural networks where random mini-batches are drawn from
replay memory instead of most recent experience for updating
the Q-network. This random choice breaks similarity between
subsequent situations which reduces the variance of the updates
(Mnih et al., 2015). Moreover, during training, multiple weight
updates in each situation lead to higher data efficiency in
DQN over Q-NN (Van Hasselt et al., 2016). The agent selects
and executes an action according to an ǫ-greedy policy after
performing experience replay (Mnih et al., 2015). The steps are
shown in Algorithm 6.

3. DATASET

Two transcribed video clips (me03 and di06)
of mother-infant interaction from the CHILDES
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Algorithm 5 NFQ-Algorithm for Word-Learning

1: Initialize Q-matrix for word-object pairs, QW as zeros
2: Initialize a set of transition samples, D to capacity J
3: Initialize action-value function, Q with random weight, θ
4: Learning rate, α = 0.001, discount rate, γ = 0.99
5: Initialize ǫ = 0.99 for ǫ-greedy action selection.
6: for eachEpisode = 1 to Maxepisode do
7: Observe current state, s = {w, o}
8: for eachsituation = 1 to P do

9: Calculate Q using perceptron network with two
hidden layers, Q = net(s, θ)

10: Choose action, a using ǫ − greedy policy.
11: Observe s′, choose a′ based on maximum Q-value.
12: Calculate reward r as described in Algorithm.1.
13: Store transition (s, a, s′, a′, r) as (sj, aj, sj+1,aj+1, rj) in

D where j is 1 to J − 1.
14: Set the target Q-value for current state as: Qtr =

rj + γQ(sj+1, aj+1, θ)
15: Perform gradient descent step on (Qtr −Q(sj, aj, θ))

2

with respect to the network parameter θ

16: Calculate Q− value for state s with Qup = net(s, θ)
17: Construct Q-matrix for word-object pairs, QW:
18: for eachobject, jj = 1 to M do

19: if label(o) = jj then
20: count← count + 1
21: QWjj← QWjj +

Qup−QWjj

count
22: end if

23: end for

24: Set s← s′;
25: end for

26: Decrease ǫ linearly.
27: end for

dataset (MacWhinney, 2000) is used in this study, as in Yu
and Ballard (2007), Frank et al. (2008), Kievit-Kylar et al. (2013),
and Lazaridou et al. (2016). Each recording is approximately
of 10 min duration. These clips represent an environment
where a mother introduces a pre-verbal infant to a set of
toys. Each utterance is annotated manually in the transcripts.
Transcriptions consist of a list of object labels (e.g., ring,
hat, cow) corresponding to objects present in the immediate
environment of the infant while the utterance took place. A
bidirectional relationship between mother and infant involves
seeing, hearing, touching, and pointing. Social cues encoded in
multimodal interaction help young language learners to learn
word-object relations (Yu and Ballard, 2007). In Frank et al.
(2008), social cues from infant’s eyes, hands, mouth, touch, and
mother’s hands, eyes, touch are considered. In Yu and Ballard
(2007), two social cues, visual joint-attention cues and prosodic
cues in infant-directed speech, are taken into account.

Several aspects make the CHILDES dataset challenging for
learning word-object relations. In this type of bidirectional
natural multimodal interaction, the vocabulary is large and the
number of object labels are very less in comparison to the most
frequent words. In these videos, only 2.4 and 2.7% co-occurring
word-object pairs are relevant while rest are irrelevant. Moreover,
this dataset contains a large amount of referential uncertainty

Algorithm 6 Double deep Q learning for optimal control

1: Initialize experience replay memory D to capacity J
2: Initialize action-value function, Q with random weight, θ
3: Initialize target action value function, Qtr with random

weights, θp = θ .
4: Learning rate, α = 0.001, discount rate, γ = 0.99
5: Initialize ǫ = 0.99 for ǫ-greedy action selection.
6: for eachEpisode = 1 to Maxepisode do
7: Observe current state, s = {w, o}
8: for eachsituation = 1 to P do

9: Calculate Q using perceptron network with two
hidden layers, Q = net(s, a, θ)

10: With probability ǫ select random acrion a
11: otherwise select a = argmaxaQ
12: Observe s′, choose a′ based on maximum Q̂-value,

Q̂ = net(s′, a′, θp).
13: Calculate reward r as described in Algorithm.1.
14: Store transition (s, a, s′, a′, r) in D.
15: Sample minibatch of transitions (sj, aj, sj+1,aj+1, rj,)

from D
16: Set Qtr = rj + γ argmax

a′
(sj+1, a

′, θp)

17: Perform gradient descent step on (Qtr −Q(sj, aj, θ))
2

with respect to the network parameter θ

18: After C step reset Qtr network with Q by setting
θp = θ

19: Calculate Q − value for state s and chosen action, a
with Qup = net(s, a, θ)

20: Construct Q-matrix for word-object pairs, QW:
21: for eachobject, jj = 1 to M do

22: if label(o) = jj then
23: count← count + 1
24: QWjj ← QWjj +

Qup−QWjj

count
25: end if

26: end for

27: Set s← s′;
28: end for

29: Decrease ǫ linearly.
30: end for

where for each utterance up to seven objects are presented in the
scene. Mother uttered the name an attended object explicitly only
in 23% of utterances. Putting these facts together, there are many
frequent but irrelevant pairs consisting of function words and
a small set of referent objects. Thus, learning word-to-referent
object mappings by computing co-occurrence frequencies leads
to incorrect associations. Considering the smoothness and
efficiency in word-learning, it is highly probably that infants use a
more smart and effective strategy to learn relevant word-referent
object pairs.

4. EXPERIMENTS

4.1. Experimental Setup
4.1.1. Data Representation
Each of the models discussed in section 2 is trained using a
subset of CHILDES dataset (MacWhinney, 2000). The results
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are compared to the models in Frank et al. (2008), Kievit-
Kylar et al. (2013), and Lazaridou et al. (2016). The dataset has
two streams: audio and video. The video stream is represented
as symbolic channels and consists of a list of object labels.
While an utterance is occurring, all mid-size objects in view
are labeled and included in the list. The list grows from empty
to a set of object labels. For audio stream, two cases are
considered:

1. The audio stream is represented as a symbolic channel
containing the words that occurred in a sentence, as in Yu
and Ballard (2007), Frank et al. (2008), and Chen and Filliat
(2015). Using the transcriptions, the word-occurrence is coded
as a binary vector of the size of the vocabulary of all known
words. The vocabulary is created incrementally, starting from
an empty set and including each new word encountered in
sentences at the end.

2. The caregiver’s speech is segmented into utterances based on
speech silence. Each utterance is aligned with transcriptions
using Sphinx speech recognition system (Lee et al., 1990).
The time-stamps of the beginning and end of each spoken
word are extracted. The prosodic features are computed for
each word, as in Yu and Ballard (2007). The prosodic feature
for each word in an utterance is computed as the difference
between 75 − percentile pitch of the word and the utterance.
75−percentile pitch of an utterance means the 75th percentile
pitch of the utterance. So, this allows eachword to be presented
as a scalar prosodic feature value.

In this paper, two sets of experiments are done using social
cues: (1) joint attention-based reinforcement learning where
joint attention on the objects are considered as social cues
and the audio stream is symbolically represented; (2) joint
attention and prosodic cue-based reinforcement learning where
both jointly attentive object and prosody in the caregiver’s
speech are considered as social cues. In the latter case, audio
stream is represented as prosodic feature. For both experiments,
video stream is represented as a list of object labels. The
dataset consists of 624 utterances with 2,533 words in total.
The vocabulary size is 419. The number of objects and referent
objects are 22 and 17 respectively. The dataset includes a
gold-standard lexicon consisting of 37 words paired with 17
objects (Frank et al., 2008; Kievit-Kylar et al., 2013; Lazaridou
et al., 2016). The models have to discover word-referent object
pairs.

4.1.2. Joint Attention
To find the object jointly attended by both caregiver and infant,
we follow the same methodology as in Yu and Ballard (2007)
based on body movement cues that indicate the speaker’s visual
attention. In Baldwin et al. (1996), experiments are performed
on children of age 18–20 months under two cases: (Case 1)
a word is uttered by a caregiver who is within the infant’s
view and concurrently directed attention toward the target
toy, and (Case 2) a word is uttered by a caregiver who is
outside of the infant’s view. Infants can establish a stable link
between the novel word and target object only in case 1.
Same observation is found in Deák and Triesch (2006) which

indicates that joint visual attention is an important factor in
development and learning. Based on this observation, jointly-
attended objects are manually identified from the video. In Yu
and Ballard (2007), two categories of extra-linguistic contextual
information for each learning situation are described. One
category consists of objects jointly attended by the child and
the caregiver. The second represents all the other objects in the
visual field. A few examples of jointly-attended objects are as
follows:

Example 1:
Utterance: The kitty-cat go meow meow.
Visual context: baby, big-bird, rattle, book
Attended object: kitty-cat

Example 2:
Utterance: Yeah, I see those hands.
Visual context: hand, big-bird
Attended object: hand

4.1.3. Prosodic Cues
In Snedeker and Trueswell (2003), it is shown that speakers
produce and listeners use prosodic cues to distinguish between
alternative meanings of a word in a referential interaction.
It suggests that not only linguistic information (what is said,
etc.) but also non-linguistic aspects of speech contain decisive
information. Here, the linguistic information refers to what the
speaker said and the non-linguistic information refers to how it is
said. One role of prosodic cues in word-learning is to help young
learners identify key words from the speech stream. It is shown in
Yu and Ballard (2007) that prosodically-salient words in infant-
directed maternal speech contain the most important linguistic
information that the caregiver intends to convey. In Yu and
Ballard (2007), it is shown through data analysis on CHILDES
dataset that the word corresponding to the referrent/object has
higher pitch than any other word in the infant-directed utterance.
Moreover, pitch enhancement of the target word related to
object helps to learn word-object pairs (Filippi et al., 2014). This
motivates us to extract the values of 75 − percentile pitch over
both an utterance and the words within the utterance to obtain
the prosodically-highlighted words in each spoken utterance. For
the word wi in the spoken utterance uj, we formed the feature:

p
wi
75 − p

uj
75. When using symbolic representation of auditory

stream, the word-occurrence is coded as a binary vector of the
size of the vocabulary of all known words. When considering
prosody, instead of binary representation, word occurrence is
coded by the above feature of the words in the utterance at that
situation.

4.1.4. Evaluation Metrics
The performance of proposed models for the task of word-
referent object pair learning are evaluated using the following
criteria:

• Word-referent Matrix: If all 37 words are assigned an object,
the proportion of pairings matching with the golden standard
can be calculated from the confusion matrix representing the
Word-referent Matrix (Kievit-Kylar et al., 2013). According to
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the gold standard, each word is associated with exactly one
object except for “bird” which can refer to <bird>or <duck>.
Based on this hypothesis, a winner-take-all filter has been
applied for each gold-standard word to compute the confusion
matrix in Kievit-Kylar et al. (2013). In the current paper,
confusion matrix is determined by extracting Q-values of each
gold-standard word for all the objects from Q-matrix,QW. To
have the same scaling for all the objects,QW is first normalized
and then normalized Q-matrix is used to compute confusion
matrix. For each object Oi, normalized Q-matrix (QWnorm)
and confusion matrix are computed as follows:

QWnorm(Oi) = QW(Oi)/max(QW(Oi)) (7)

confusion matrix = QWnorm(wgold,Oi) (8)

where,wgold is the set of gold-standard words and i is the index
of the object. So, for a given j-th target word/gold-standard

FIGURE 3 | For each iteration, reward is computed and plotted for

Q-learning, SARSA, and SARSA-λ, respectively.

word (wgoldj), the referent object (Oj) can be
found as:

Oj = argmaxiQWnorm(wgoldj
,Oi) (9)

• Quality of learned word-referent lexicon (Yu and Ballard,
2007; Frank et al., 2008; Lazaridou et al., 2016): Threemeasures
are used to evaluate the quality of lexicon learned using the
proposed models. They are: (1) Precision (the percentage of
words spotted by the model which are actually correct), (2)
Recall (the percentage of correct words that the model learned
among all the relevant words that are expected to be learnt),
and (3) F-score (the harmonic mean of precision and recall).

Performance of the proposed models is compared to that of
the existing models in Frank et al. (2008), Kievit-Kylar et al.
(2013), and Lazaridou et al. (2016) and the baseline association
model based on co-occurrence called COOC. Bayesian CSL is
the original Bayesian cross-situational model (Frank et al., 2008),
also including social cues. BEAGLE+PMI is the best semantic-
space model across a range of distributional models and word-
objectmatchingmethods which produces state-of-the-art F-score
in learning word-object pairs (Kievit-Kylar et al., 2013).

4.2. Simulation Results
4.2.1. Training Parameters
We investigated the word-learning performance in a virtual agent
using models based on six reinforcement learning algorithms: Q-
learning, SARSA, SARSA-λ, NFQ, andDQN. For all the cases, the
learning rate (α), discount rate (γ ) and ǫ are chosen empirically
as 0.001, 0.99, and 0.99, respectively. For Q-learning, SARSA and
SARSA-λ, Q-tables are initialized randomly. λ is chosen as 0.9
empirically for SARSA-λ.

For each neural network model for word-learning, the Q-
network has four-layers with the first layer being the input layer,
second and third layers are hidden, while the fourth is the output
layer representing the Q-value of each word. So input and output
layers are of dimension 419 each. The activation function in

FIGURE 4 | For Q-NN, NFQ, and DQN: (A) obtained maximum rewards for different number of hidden units are plotted to find the optimal structure of Q-network;

(B) for each iteration, with optimal number of hidden unit (200 units) reward is computed and plotted.
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the two hidden layers is sigmoid. In the output layer, activation
function is chosen as softmaxwhich leads the agent to have higher
Q-value for one word per utterance.

The neural network weights are initialized randomly in
[10−2, 102]. In this paper we have used online gradient decent
algorithm for learning QNN and stochastic gradient descent for
learning NFQ and DQN. For all three neural network-based

algorithms, the behavior policy during training was ǫ-greedy
with ǫ annealed linearly from 0.99 to 0.0001 and fixed at 0.0001
thereafter. The capacity J of storage D in NFQ network is set
empirically to 50 for the result reported in this paper. For DQN,
the capacity J of experience replay D is set to 50 of most recent
experienced situations,mini-batch size is 10 andC = 4 (the target
network is updated every four steps) in Algorithm 6.

FIGURE 5 | Confusion Matrix for (A) Attentional Q-learning, (B) Attentional SARSA, (C) Attentional SARSA-λ, (D) Attentional Q-NN, (E) Attentional NFQ, and (F)

Attentional DQN respectively.
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4.2.2. Word-Learning Using Joint Attention-Based

Reinforcement Learning
The input to each model is the auditory stream represented as a
binary vector. The reward for each situation is computed based
on jointly attended object transition. Each table-based model (Q-
learning, SARSA, SARSA-λ) is run for 10,000 iterations. Rewards
computed in each iteration are shown in Figure 3. Q-learning
and SARSA converge after 5,000 iterations whereas SARSA-λ
converges sooner after 2,000 iterations. Total reward is higher
in SARSA-λ than Q-learning or SARSA. In order to estimate
the optimal structure of each neural network-based model, the
number of hidden units is varied from 10 to 500, and rewards are
computed for each case. Figure 4A shows the reward with respect
to different number of hidden units for QNN, NFQ, and DQN.
For any network, reward did not increase beyond 200 hidden
units. So the neural network consists of 200 units in each hidden
layer for QNN, NFQ, and DQN. Reward in DQN is greater than
NFQ and Q-NN at convergence with the optimal neural network
structure (ref. Figure 4B).

The result of word-referent pairs learning can be visualized

using a color confusion matrix. The confusion matrix shows
the similarity between word-object pairings as gradients from
yellow to blue color filling each grid cell where yellow stands for
higher Q-value and blue stands for lower. The cells outlined in

red represent the correct word-object pairings in gold standard
lexicon. The confusion matrix is computed using Equation (8)
which consists of Q-values of all objects for each gold standard
word for Attentional Q-learing, SARSA, SARSA-λ, Q-NN, NFQ,
DQN and depicted in Figures 5A–F. The object that has the
highest association is assigned the higher Q-value (colored
yellow). The color gradually moves from yellow to blue as Q-
value decreases. The Q-values returned by the reinforcement
learning algorithms cannot be directly interpreted as probabilities
for pairing selections. Hence, only relative similarity measures
are used here. For each reinforcement model and each gold-
standard word, Equation (9) is applied on confusion matrix to
get the associated object related with the gold-standard word. The
results are shown in Table 1 where the gold-standard words that
are associated with wrong objects are mentioned. Table 1 shows
that table-based methods, Q-learning, SARSA, and SARSA-λ,
identified 14, 12, and 7 word-object pairs incorrectly given
the target words. In comparison, all the neural network-based
methods correctly identified 36 word-object pairs out of 37. None
of the methods was able to relate two words to one object. All
of them chose “bird” to refer to <bird>only when it can also be
associated with the object <duck>.

It is important to note which word/object pairs are more or
less likely to be discovered by the model. A lexicon is created
from the Q-value matrix based on a threshold, as in Frank et al.
(2008). Figure 6 shows the precision and recall for lexicons across
the full range of threshold values for Q-learning, SARSA, SARSA-
λ, Q-NN, NFQ, and DQN for the task of word-learning. Unlike
standard receiver operating characteristic (ROC) curves for
classification tasks, the precision and recall of a lexicon depends
on the entire lexicon. The irregularities in the curves in Figure 6

reflect the small size of the lexicons. For each of the learned

TABLE 1 | Gold-standard words incorrectly associated with gold-objects using

Q-learning, SARSA, SARSA-λ, Q-NN, NFQ, and DQN.

Q-learning SARSA SARSA-λ Q-NN NFQ DQN

“bunny” “bigbirds” “moocows” “bird” “bird” “bird”

“cows” “bunnyrabbit” “duck”

“moocows” “cows” “duckie”

“duck” “moocows” “kittycats”

“duckie” “duckie” “lambie”

“kitty” “kitty” “bird”

“mirror” “kittycats” “hiphop”

“piggies” “lamb”

“ring” “lambie”

“bunnies” “bunnies”

“bird” “bird”

“hiphop” “oink”

“meow”

“oink”

TABLE 2 | F-score, precision, and recall values using the learned lexicon from

Attentional reinforcement learning models.

F-score Precision Recall

Attentional Q-learning 0.5667 0.7391 0.4595

Attentional SARSA 0.5205 0.5278 0.5135

Attentional SARSA-λ 0.5763 0.7727 0.4595

Attentional Q-NN 0.6667 0.95 0.5135

Attentional NFQ 0.7097 0.88 0.5946

Attentional DQN 0.7213 0.9167 0.5946

The bold values in each column indicate highest score over the algorithms.

models, the best F-score, precision and recall are tabulated
in Table 2. For word-learning, neural network-based models
(Attentional Q-NN, NFQ, DQN) have comparatively higher F-
score and precision than table-based models (Attentional Q-
learning, SARSA, SARSA-λ). Though the precision is highest for
Attentional Q-NN, highest F-score is achieved by Attentional
DQN due to higher recall than Attentional Q-NN.

4.2.3. Word-Learning Using Joint

Attention-Prosody-Based Reinforcement Learning
As neural network-based reinforcement learning models
outperform table-based models, simulations were run on the
former for word-referent learning considering audio and visual
social cues: prosody and joint attention. The input to each model
is the audio stream represented by prosodic feature vector instead
of binary vector. The reward for each situation is computed
based on jointly attended object transition as described in section
2. The same optimal structure of the Q-network from the last
section is retained.

In Figures 7A–C, confusion matrix is depicted for gold
standard word-object pairs using Equation (8) for Attentional-
prosodic Q-NN, NFQ, and DQN. As before, the association

Frontiers in Psychology | www.frontiersin.org 13 January 2018 | Volume 9 | Article 5

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Najnin and Banerjee Word-Learning

FIGURE 6 | ROC for Q-learning, SARSA, SARSA-λ, Q-NN, NFQ, and DQN,

respectively.

between words and objects are shown as gradient of colors from
yellow to blue. Figures 7A–C shows that Attentional-prosodic Q-
NN, NFQ, and DQN correctly identify 36 word-object pairs out
of 37 given target words. However, the algorithms chose “bird” to
refer to <bird>only when it can also be associated with the object
<duck>. So adding prosodic feature does not resolve the problem
of discovering one word referring to multiple objects. This is
expected because of the language constraints (“novel words to
novel objects”) chosen in the proposed models for computing
rewards.

To compare the performance of the proposed models with
exiting models in the task of learning word meaning, we focus
on precision, recall and F-score computed from each model. We
have analyzed the effect of integrating prosodic cues with cross-
situational learning in the proposed model and then compared
it with the state-of-the-art models. To investigate the effect of
addition of prosodic features, a lexicon is created from the Q-
value matrix using a threshold, in the same way as was done for
joint attention only. In order to compare the proposed models
(Attentional Q-NN, NFQ, DQN, Attentional-prosodic Q-NN,
NFQ,DQN)with existing ones (BEAGLE, hybrid BEAGLE+PMI,
BayesianCSL, COOC), the precision and recall for lexicons across
the full range of threshold values is shown in Figure 8. Recall is
higher for Attentional-prosodic models than Attentional models.
Thus, integration of prosodic cues with joint attention helps
the models to learn correct words among all the relevant words
expected to be learnt.

The best F-score, precision and recall for Attentional Q-
NN, NFQ, DQN, Attentional-prosodic Q-NN, NFQ, DQN,
and existing Bayesian CSL, BEAGLE, hybrid (BEAGLE+PMI),
MSG, and baseline COOC models are tabulated in Table 3.
Attentional Q-NN and Attentional-prosodic Q-NN has highest
precision of 95 and 96%, respectively. However, both have
much lower recall than Attentional NFQ, DQN, Attentional-
prosodic NFQ, DQN, and existing state-of-the-art Beagle+PMI
model. On the other hand, fusion of prosody with joint
attention in Attentional-prosodic NFQ and DQN enhances the

models’ capacity in terms of having better trade-off between
precision and recall. Attentional-prosodic DQN has better F-
score, precision and recall than Attentional-prosodic NFQ.
Among all the reinforcement learning models considered in this
paper, Attentional-prosodic DQN produces best performance for
the task of word-learning.

When compared to the existing models, Attentional DQN
exhibits higher F-score than COOC, Bayesian CSL, BEAGLE,
MSG, and AttentiveMSG models. It is noted that existing
models mentioned here ignore prosodic cues. AttentiveMSG and
Attentivesocial MSG models integrate social cues with cross-
situational learning where infants attend to objects held by them
instead of following eye gaze. State-of-the-art BEAGLE+PMI
model also ignores prosodic cues in the infant-directed speech.
For a fair comparison, we have tested BEAGLE model with
prosodic vector instead of using random vectors. The BEAGLE
model yields an F-score of 0.55 which increases to 0.6629 when
it is integrated with prosodic cues. Integration of PMI model
with prosodic cues is yet to be researched. No experiment with
Attentional-prosodic BEAGLE+PMI model is performed in this
paper due to availability of limited information regarding the
exact procedure. Since the F-score of BEAGLE+PMI is very
close to that of Attentional-prosodic DQN, it is unclear how
the performance of the former would compare to reinforcement
learning models. However, only joint attention could not make
DQN’s performance better than AttentiveSocial MSG. When
prosody is combined with joint attention, DQN produces higher
F-score than AttentiveSocialMSG and BEAGLE integrated with
prosodic cue models. It is noteworthy that Attentional-prosodic
DQN and BEAGLE+PMI would have been more comparable if
the latter incorporated prosodic information as the former. The
best lexicon learned by Attentional-prosodic DQN is shown in
Table 4.

5. DISCUSSION

In this paper, an agent is developed that can learn word-object
pairings from ambiguous environments using reinforcement.
Joint attention and prosodic cues are integrated in caregiver’s
speech with cross-situational learning. Prosodic cues are
extracted from audio stream. Joint attention is utilized to
compute the reward for the agent. Among the proposed Q-NN,
NFQ, and DQN algorithms for word-learning, Q-NN is online
whereas the other two use batch processing. According to
the behavioral studies in Vouloumanos (2008) and Yu and
Smith (2007), the human brain follows an incremental learning
algorithm for the task of word-learning. Moreover, it is claimed
that only memory-limited models can truly mimic human
performance (Frank et al., 2010). In Medina et al. (2011), it is
found that cross-situational word-learning is sensitive to input
order which is incompatible with the prediction of ideal learners
assuming full access to statistical regularities in data. Among
neural network-based word-learning models used in this paper,
Q-NN requires the memory that contains the information only
from the last trial which can be called memory-limited. In case
of NFQ and DQN, both models have an episodic memory for
storing transition data samples and corresponding rewards of
the most recent 50 experiences. In Q-NN, learning update rule
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FIGURE 7 | Confusion Matrix for (A) Attentional-prosodic Q-NN, (B) Attentional-prosodic NFQ, and (C) Attentional-prosodic DQN, respectively.

FIGURE 8 | ROC for Attentional Q-NN, NFQ, DQN, Attentional-prosodic

Q-NN, NFQ, DQN, existing Beagle, Beagle+PMI model, COOC, and

Bayesian CSL.

is online/incremental and follows the input order of the dataset.
On the other hand, for NFQ the update is performed through

batch processing of the batch size of the storage. In DQN, each

time a mini-batch of size 10 is randomly selected from episodic

memory to update the neural network parameters. So, Q-NN
has higher fidelity to human performance than the other two
models, NFQ and DQN, though it provides lower F-score than
NFQ and DQN.

Some research (e.g., Yu, 2008; Kachergis et al., 2012a;
Vlach and Sandhofer, 2012) suggests that episodic memory, a
basic human cognitive ability, likely supports language-learning.

According to this hypothesis, objects are stored in memory along

with words and other stimuli we encounter in every situation
(i.e., in a language-learning class or while eating breakfast). If

the word-object pair is confirmed by being consistent with the
succeeding observation, the learner will further solidify the word

meaning in memory (Medina et al., 2011; Trueswell et al., 2013).

According to this hypothesis, episodic memory can play an
important role in word-referent pair learning. This hypothesis

is supported by our proposed models, NFQ and DQN, where
both have storage capability. However, from a computational
perspective, DQN provides the best F-score compared to other
models.

It is found through behavioral studies in Estes and Bowen
(2013) that the increased pitch and variation in pitch contours
of infant-directed speech attract attention and enhance arousal
for word-learning and infants in the infant-directed speech
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TABLE 3 | Comparison of proposed attentional and Attentional-prosodic

reinforcement learning models with existing models.

F-score Precision Recall

Attentional Q-NN 0.6667 0.95 0.5135

Attentional NFQ 0.7097 0.88 0.5946

Attentional DQN 0.7213 0.9167 0.5946

Attentional-prosodic Q-NN 0.77419 0.96 0.6486

Attentional-prosodic NFQ 0.78378 0.7838 0.7838

Attentional-prosodic DQN 0.85333 0.8421 0.8641

COOC 0.53 0.7578 0.4012

Bayesian CSL model 0.54 0.64 0.47

Beagle model 0.55 0.58 0.525

Beagle+prosodic cue model 0.6629 0.71 0.525

Beagle+PMI model 0.83 0.86 0.81

MSG model 0.64 NA NA

Attentive MSG 0.7 NA NA

AttentiveSocial MSG 0.73 NA NA

The bold values in each column indicate highest score over the algorithms.

TABLE 4 | Learned best lexicon (word-object pairs) using Attentional-prosodic

DQN.

Words Objects Words Objects Words Objects Words Objects

“ahhah” eyes “bunnies” bunny “hiphop” bunny “pig” pig

“ahhah” rattle “bunny” bunny “david” mirror “piggie” pig

“baby” baby “bunnyrabbit” bunny “kitty” kitty “piggies” pig

“bear” bear “cow” cow “kittycat” kitty “rattle” rattle

“big” bunny “duck” duck “kittycats” kitty “ring” ring

“bigbird” bird “duckie” duck “lamb” lamb “rings” ring

“bird” bird “eyes” eyes “lambie” lamb “sheep” sheep

“birdie” duck “hand” hand “meow” kitty “through” bunny

“book” book “hat” hat “mirror” mirror

“books” book “he” duck “moocow” cow

condition were able to learn the associations successfully.
Another study (Zangl and Mills, 2007) proposed that prosodic
characteristics in infant-directed speech allows infants to form
stronger associations between words and their referents because
of increase in brain activation for prosodic words. In these
behavioral prosodic studies, joint attention is ignored. In Filippi
et al. (2014), behavioral studies are performed to compare the

learning effects of typical pitch emphasis in infant-directed speech
with those of other visual and acoustic attentional cues. It
is found that word-object pair learning performance is better
when consistent high pitch of the target word is integrated
with co-occurrence as compared to co-occurrence alone or
co-occurrence integrated with visual cues. Simulation results
using a mother-infant interaction dataset show that, for given
gold-standard words, both Attentional Q-NN, NFQ, DQN,
and Attentional-prosodic Q-NN, NFQ, DQN models can learn
correct associations with 97.29% accuracy (36 out of 37). When
prosodic cues are included along with joint attention, they learn
higher number of correct word-object pairs in comparison to
using only joint attention, which is consistent with experimental
studies (Filippi et al., 2014) and computational models (Yu and
Ballard, 2007).

From a machine learning perspective, the proposed
Attentional-prosodic DQN model outperforms some of the
existing models in word-learning tasks in terms of F-score,
precision and recall. However, our models failed to discover the
association if one word is assigned to multiple objects due to
assuming the “novel words to novel objects” language-specific
constraint for computing rewards. A future goal is to model
reinforcement by relaxing the language constraint. It is believed
that the word-learning process in children is incremental.
Though the proposed Attentional-prosodic Q-NN model-based
agent learned incrementally, our best performing agent is
based on Attentional-prosodic DQN model which learns in
mini-batches. In the proposed approach, joint attention was
manually selected from the video. Recently a number of neural
network-based reinforcement learning models have manifested
strong performance in computing visual joint attention (Doniec
et al., 2006; da Silva and Romero, 2011; Da Silva and Romero,
2012). In future, it would be interesting to integrate automatic
detection of joint attention with the proposed approach to make
the proposed word-learning model more general.
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