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This study investigated the performance of three selected approaches to estimating a

two-phase mixture model, where the first phase was a two-class latent class analysis

model and the second phase was a linear growth model with four time points. The

three evaluated methods were (a) one-step approach, (b) three-step approach, and

(c) case-weight approach. As a result, some important results were demonstrated.

First, the case-weight and three-step approaches demonstrated higher convergence

rate than the one-step approach. Second, it was revealed that case-weight and

three-step approaches generally did better in correct model selection than the one-step

approach. Third, it was revealed that parameters were similarly recovered well by all

three approaches for the larger class. However, parameter recovery for the smaller

class differed between the three approaches. For example, the case-weight approach

produced constantly lower empirical standard errors. However, the estimated standard

errors were substantially underestimated by the case-weight and three-step approaches

when class separation was low. Also, bias was substantially higher for the case-weight

approach than the other two approaches.

Keywords: mixture model, latent class analysis, case-weight approach, one-step approach, three-step approach

INTRODUCTION

Mixture modeling has become a widely used statistical method in behavioral sciences because it
allows for an exploration of identification and understanding of latent subpopulations in a given
population. Among them, a method where categorical latent trait constructs are identified based
on multiple observed categorical variables is specifically referred to as a latent class analysis (LCA)
(Lazarsfeld and Henry, 1968; Dayton and Macready, 1998). While identifying and interpreting
latent classes may be of the main interest with LCA, researchers may be also interested in how the
identified latent classes are related to auxiliary variables, such as covariates and distal outcomes. In
other words, researchers are not only interested in latent classes of individuals, but also in potential
causes and/or consequences of the class membership (Bakk et al., 2013, 2014). This type of analysis
would provide additional information about heterogeneity of the relations, since it is not realistic to
assume that all individuals in the population have the same relations to auxiliary variables (Nylund-
Gibson et al., 2014). Moreover, researchers may be interested in considering an auxiliary model in
conjunction with LCA, such that separate auxiliary model parameters are estimated for each of
the latent classes. For example, a simple linear regression model as an auxiliary model to LCA was
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presented and investigated in Asparouhov and Muthén (2014).
In such a modeling, the latent class variable can be thought of a
moderator for the auxiliary model (i.e., secondary model). In this
paper, this type of a model is referred to as a two-phase mixture
model, because the model is consisted of two phases, the LCA
model phase and the auxiliary model phase.

One may argue that a single mixture model without a
latent class measurement model may be sufficient to describe
heterogeneity on the auxiliary model, such as mixture regression
and growth mixture model. However, there are contexts where
latent classes should be defined by a latent class measurement
model, rather than by a single mixture model. For example,
Asparouhov and Muthén (2014) and Vermunt (2010) pointed
out that a single mixture model approach will not fit a logic of
a researcher, if the latent class measurement model is theorized
to define latent classes, rather than the mixture distribution of
the auxiliary variable or model. In such a case, results from the
two-phase mixture model are not necessarily the same as results
from the single mixture model. Therefore, it is paramount to
identify latent classes by measurement indicators in the latent
class measurement model first, rather than directly attempting to
identify latent classes based on heterogeneity in their auxiliary
variable or model. Thus, an implementation of a two-phase
mixture model becomes important.

METHODS TO TWO-PHASE MIXTURE
MODELS

There are several different approaches that can be undertaken to
estimate a two-phase mixture model. In this section, four selected
approaches are described, although the first approach will not be
investigated in this study.

Classify and Analyze Approach
Classify-and-analyze approach is a two-step process, also referred
to as hard partitioning (Vermunt, 2010). In the first step, LCA
is conducted, and each individual is assigned to a specific
latent class by the highest posterior class-membership probability
that is obtained from the LCA. Then, in the second step,
class assignments are used as an observed grouping variable to
compare groups on auxiliary variables, if the model contains
auxiliary variables. If the model contains auxiliary model, the
auxiliary model will be fitted for each of identified classes.
In either case, membership in identified classes is mutually
exclusive, such that each observation is classified into only
one of the identified classes. While it is straightforward
to implement (Hibbard et al., 2007; Reinke et al., 2008;
Archambault et al., 2009; Hardigan, 2009), this strategy comes
with some critical disadvantages. First, there can be misclassified
individuals, because deterministic classifications are based on
the probabilistic information of class-membership probabilities.
It is known that misclassification of individuals in the classify-
and-analyze approach can result in biased estimates of the
relations between the latent classes and the auxiliary variables
and auxiliary model parameters (Hagenaars, 1993; Clogg, 1995).
Second, somewhat related to the first disadvantage, classification

uncertainties (namely, measurement errors in classifications
from the LCA) would be ignored. Since classifications are treated
as true states, the standard errors for parameter estimates by the
classify-and-analyze approach are likely underestimated (Roeder
et al., 1999; Loken, 2004; Clark and Muthén, 2009). Overall,
the literature to date is in agreement that the classify-and-
analyze approach is no longer recommended for estimating an
LCA model with auxiliary variables and/or auxiliary models.
Therefore, the classify-and-analyze approach was not considered
further in this study.

One-Step Approach
The one-step approach involves a simultaneous estimation
of an LCA model and auxiliary variables and/or auxiliary
models (Formann, 1992; Heijden et al., 1996; Bandeen-Roche
et al., 1997; Dayton and Macready, 1998; Muthén and Muthén,
2000; Clark and Muthén, 2009; Kim et al., 2016). The one-
step approach is recommended particularly by earlier literature
(Heijden et al., 1996; Muthén, 2001), because estimating LCA
and auxiliary models in one-step has advantages over the classify-
and-analyze approach. First, occurrence of classifying individuals
into incorrect classes would be irrelevant, because the one-
step approach does not involve classifications of individuals
into particular classes based on estimated class probabilities. In
other words, the estimation of the latent classes is accomplished
jointly by the inclusion of auxiliary variable(s) and/or model(s)
(Kim et al., 2016). As underlined by Clark and Muthén (2009),
individuals can be fractional members of all identified latent
classes in the one-step approach. Thus, it reduces problems that
arise from treating the latent classes as a true state, the procedure
that is followed by the classify-and-analyze approach. Second,
measurement errors of class membership would be incorporated
in the analysis, because they are embedded in the model by the
one-step approach. Another advantage of the one-step approach
is a contribution of the included auxiliary variable(s)/model to
the estimation of latent classes. Clark and Muthén (2009) argue
that this inclusion improves the class separation and reduces the
standard errors.

However, while it is still known as an efficient approach, recent
studies are cautious about employing the one-step approach
(Vermunt, 2010; Nylund-Gibson et al., 2014). The prominent
reason is that the parameters of the first-phase LCAmodelmay be
affected by auxiliary variables and/ormodels, if the strength of the
associations between latent class indicators and latent classes are
not sufficiently strong (Vermunt, 2010; Asparouhov andMuthén,
2014). If this becomes a problem, it could lead to a different
number and/or interpretations of latent classes by including
auxiliary variables and/or models. Changing the parameters in
this manner would be disconcerting and leads to problems with
model construction. While the inclusion of auxiliary variables
and/ormodels is important, themeasurement of the latent classes
should be free from influence of auxiliary variables and models
(Nylund-Gibson et al., 2014).

Three-Step Approach
Another approach to a two-phase mixture model is the three-
step approach (Bolck et al., 2004; Vermunt, 2010). The key
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advantage of the three-step approach is a separate treatment
of the LCA model and auxiliary variables or models, just like
classify-and-analyze approach, while classification measurement
errors are still taken into account. As a result, class separation
is accomplished without being affected by auxiliary variables
and models (Vermunt, 2010; Kim et al., 2016). As the first step
with the three-step approach, the LCA model is estimated as a
measurementmodel by using only latent class indicator variables.
In the second step, a variable for most likely classes ( ) is created
by the modal assignment using the largest posterior probabilities
obtained in the first step. Just like classify-and-analyze approach,

is treated as a manifest nominal variable that represents
the class assignments. However, the three-step approach retains
the information about classification uncertainties and utilizes it
as the measurement errors of classifications as follows. Using
the estimated posterior class probabilities and number of the
individuals assigned to each of the latent classes, classification
uncertainty rates are computed. These rates are the average
posterior probabilities in the form of k × k matrix, where k
is the number of latent classes. In the third step, the auxiliary
model is fit separately for each of the identified classes in
the first step by incorporating the measurement errors derived
in the second step. Bolck et al. (2004) demonstrated their
three-step approach underestimated associations between class
membership and auxiliary variables. Vermunt (2010) proposed
a correction method by maximizing a weighted log-likelihood
function for clustered data. With a series of simulation studies,
Vermunt demonstrated that the correction improved the method
substantially. Currently, the three-step approach with Vermunt’s
correction is incorporated in Mplus software (Asparouhov and
Muthén, 2014).

Asparouhov and Muthén (2014) demonstrated that the three-
step approach with Vermunt’s correction recovered parameters
very well, when the latent class variable was measured well by the
LCA model (i.e., high entropy). Also, it was demonstrated that
the loss of efficiency for the three-step approach was minimal,
compared to the one-step approach. On the other hand, Bakk
et al. (2014) reported that the bias-corrected three-step approach
utilized in Mplus software tends to underestimate the standard
errors of the auxiliary variables effects. Nylund-Gibson et al.
(2014) extended the application of this three-step approach to a
latent transition analysis (LTA). Overall, the three-step approach
with Vermunt’s correction has become a promising method
to estimate a mixture model with auxiliary variables and/or
auxiliary models. Nonetheless, Asparouhov and Muthén (2014)
argued that anymethod could fail to achieve satisfactory accuracy
and efficiency, if the latent class variable is poorly measured
by the measurement model (i.e., low entropy), including the
three-step approach.

Case-Weight Approach
The case-weight approach for mixture models is also a three-
step procedure. In the first step, the measurement model (i.e.,
LCA) is estimated by using only latent class indicator variables.
In fact, this first step LCA is exactly the same as the first step
of the aforementioned three-step approach. However, how the
information about classification uncertainties are derived in the

second step is different from the three-step approach. In the
second step of the case-weight approach, the estimated posterior
class probabilities from the first step are directly saved as weight
variables (one weight variable for each identified class). In the
third step, the auxiliary model is fit separately for each of the
latent classes by using the corresponding weight variable from
the second step as the case weights.

This way, each observation is treated as a fractional member of
all identified latent classes, as a way to incorporate classification
uncertainties. As a result, the contribution of each observation
to a given class is represented by the estimated class probability
for the observation. For example, if an observation has a very
small class probability for a given latent class, the observation
will have a very small impact on estimating parameters of an
auxiliary model, but not zero. Also, the effective sample size for
each class is the sum of the estimated class probabilities, which is a
reasonable realization of the estimated class size. This procedure
is analogous to computing a weighted data summary quantity,
such as a weighted mean, which is also similar to the propensity
score weighting procedure (Robins and Rotnitzky, 1995; Hirano
and Imbens, 2001).

As one example related to this approach, Clark and Muthén
(2009) demonstrated an approach, where the latent class variable
was regressed on a predictor variable by using the classification
probabilities from the initial-step LCA as regression weights.
Cheng (2012) also employed the same approach for an LCA
model with a distal outcome. Clark andMuthén, as well as Cheng,
confirmed that the weighted regression approach worked well,
while the one-step approach was still found to best account for
the uncertainty in latent class membership.

The case-weight approach discussed in this paper assumes any
kind of latent-class measurement model and any kind of auxiliary
model. For example, Nese et al. (2017) employed this approach to
study heterogeneity of the growth of emergent literacy knowledge
by combining a zero-inflated Poisson regression model (i.e.,
the latent-class measurement model phase) and a three-class
growth mixture model (i.e., the auxiliary model phase). However,
the performance of this approach is rather unknown. Thus,
the current study aimed to investigate the performance of the
case-weight approach under various conditions for a two-phase
mixture model through a simulation study. The performance
of the case-weight approach was also compared to two other
approaches; namely, one-step and three-step approaches.

METHODS

Model
The first phase of the investigated two-phase mixture model was
a two-class LCA model with four dichotomous measurement
indicators. The model is expressed as

P
(
Up = 1|c

)
=

[
1+ exp

(
τcp

)]−1
,

where Up is the response on the pth dichotomous measurement
indicator (p = 1, . . . , 4) and c is the latent class variable (c = 1
or 2). Also, τcp is the threshold parameter for pth measurement

Frontiers in Psychology | www.frontiersin.org 3 February 2018 | Volume 9 | Article 130

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kamata et al. LCA with Auxiliary Linear Growth Model

indicator for latent class c. Accordingly, τcp is the logit of Up = 1,
given in the cth class.

The second phase of the two-phase mixture model was an
auxiliary model, which was a linear growth model (LGM) with
four time points. The LGM was set up as a special case of a two-
factor confirmatory factor analysis model, where the two latent
factors represented the growth intercept and growth slope that
varied between individuals. The model is expressed as

y = 3η + ǫ,

where y is a 4 × 1 vector of outcome measures, 3 is a 4 ×

2 matrix of factor loadings, η is 2 × 1 vector of two latent
factors, and ǫ is a 4 × 1 vector of residuals. Factor loadings
for the four outcome measures were all constrained to fixed
values: [1, 1, 1, 1] for the intercept factor (the first column of
3), and [0, 1, 2, 3] for the slope factor (the second column
of 3). As a result, the growth intercept was a realization of
the initial status. In addition, ǫ was assumed to be normally
distributed with 0 means and covariance matrix with equal
diagonals and 0 off-diagonals, indicating that error variances for
the four outcome measures were constrained to be equal and
zero covariances between errors. In addition, η was assumed to
be normally distributed with unknown means (mean intercept
and mean growth trajectory) and covariance matrix (variances
of intercept and growth trajectory, and covariance between
intercept and growth trajectory). All parameters in the auxiliary
model (i.e., mean intercept, mean slope, intercept variance,
slope variance, covariance between intercept and slope, and
error variances) were assumed to be different between the
two latent classes. A graphical representation of this two-phase

mixture model is also provided in Figure 1. As mentioned
above, all parameters in the auxiliary model were assumed
to be different between latent classes. These parameters are
graphically indicated as dots on straight and curved arrows in
Figure 1.

The true parameter values for the LCA model were varied,
including the class proportion for the smaller class. Hereafter,
the smaller class will be referred to as “class 2.” The threshold
parameters were constrained to be the same for the four
measurement indicators, but the value was varied depending
on simulation conditions (see below). These differences in
threshold parameter values indirectly affected differences in class
separation (i.e., entropy), where a lower threshold resulted into
a lower class separation. Parameters for the auxiliary LGM
were assumed to be different between the two classes, but fixed
for all simulation conditions. The parameter values for the
auxiliary model are provided in Table 1. Note that we did not
hypothesize any direct relations between the auxiliary model
variables and latent class indicators, just like in Bakk et al.
(2013).

Simulation Study
Data were generated for the two model phases simultaneously,
just like how Asparouhov and Muthén (2014) generated data.
According to Asparouhov and Muthén, this data generation
strategy generates data that would be consistent with a 2-
phase mixture model, because the latent class variable is not an
endogenous variable in the data generationmodel. Data sets were
generated for a total of 27 within-method simulation conditions,
with a minimum of 1,000 replications for each condition. We
generated additional replications if there were fewer than 1,000

FIGURE 1 | Graphical representation of the studied two-phase mixture model. On the measurement model, U1, U2, U3, and U4 represent four dichotomous

outcome variables related to latent class variable c. On the auxiliary model, y1, y2, y3, and y4 represent repeatedly measured outcome variable at four time points.

Also, I represents the growth intercept, S represents the growth slope, and ǫ represent the residuals. Black dots indicate that parameters represented by these arrows

are different between latent classes.
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TABLE 1 | True parameter values for the auxiliary model.

Parameter Class 1 (larger class) Class 2 (smaller

class)

Mean(I) 0.6 0.4

Mean(S) 1.0 1.8

Variance(I) 1.9 1.4

Variance(S) 0.4 0.3

Covariance(I, S) 0.5 0.3

Variance(ǫ) 0.5 0.7

I, intercept; S, slope; ǫ, residuals.

successfully converged replications that correctly identified the
2-class model as the best model by BIC for any of the analysis
methods. We followed this strategy only for fitting the 2-
class model, because the parameter recovery evaluations were
undertaken only when the 2-class model was fitted. In addition,
if any methods that had more than 1,000 successfully converged
replications with 2-class model as the best model by BIC for
a particular condition, only the first 1,000 replications were
evaluated for parameter recovery evaluations.

The 27 within-method simulation conditions were
represented by three simulation factors; namely, sample
sizes, class proportion for the smaller class (class 2), and class
separation (i.e., threshold parameter in the LCA phase of the
model). These three simulation factors were chosen, because
they are known to affect the performance of mixture model
estimation. Three sample sizes were: small (500 examinees),
medium (1,000 examinees), and large (2,000 examinees). Three
class-2 proportions were: small (0.05), medium (0.15), and large
(0.30). Note that this study generated latent classes only by a
two-class LCA model. Lastly, three levels of class separation
(the threshold parameter the LCA phase of the model) were:
low (0.754), medium (1.254), and high (1.750). These threshold
parameter values were computed by first defining the log-odds
difference between classes for the LCA phase of the model;
low = 1.50, medium = 2.50, and high = 3.50. As a result, the
average entropy was 0.66, 0.77, and 0.90 for the three levels of
the class separation in the simulation. Data generated for each of
the 27 within-method simulation conditions were fitted by three
methods, namely, one-step approach (OS), case-weight approach
(CW), and three-step approach (TS).

For each simulation condition, the model fit for the 2-class
model was evaluated relative to 1-class and 3-class models. To do
so, the proportion of replications, in which Bayesian information
criterion (BIC) for the 2-class model was smaller than ones for
1-class and 3-class models, was computed for each of the three
methods for each of the 27 within-method simulation conditions.
For the case-weight and three-step approaches, this evaluation
was commonly performed for the first-step LCA model, because
it would be the step where one would make a model selection
decision regarding the number of latent classes for these two
approaches. Also, convergence rate was evaluated for the 1-class,
2-class, and 3-class models for each simulation condition. Note
that a computation of the convergence rate for the CW and TS
approaches involved a multiplication of the convergence rate

of the first-step LCA model and the convergence rate of the
third-step auxiliary LGMmodel.

Finally, parameter recovery performance was evaluated for
the 2-class model, separately for the three approaches for each
auxiliary model parameter for the two latent classes for each
of the 27 within-method simulation conditions, by computing;
(a) absolute relative bias, (b) empirical standard error (SE), (c)
the mean estimated SE relative to the empirical SE, and (d)
root mean square error (RMSE). Then, each of the four indices
were averaged across all model parameters for the two latent
classes separately for each of the 27 within-method simulation
conditions. As mentioned earlier, only the first 1,000 successfully
converged replications were included in the parameter recovery
evaluations, including only replications that concluded the 2-
class model was correctly selected by the BIC.

Note that a bias is the systematic part of the estimation error.
In this study an absolute relative bias was computed by taking the
absolute value of a relative bias value (i.e., bias divided by the true
parameter value). For a given parameter θ ,

(absolute relative bias)θ =

∣∣∣∣∣∣∣

(∑r
i=1 θ̂i
r

)
− θ

θ

∣∣∣∣∣∣∣
,

where θ̂i is the parameter estimate for the ith replication, θ is
the true parameter value, and r is the number of replications.
On the other hand, an empirical SE is the random part of
estimation error that attributes to sampling and was computed
as the standard deviation of repeatedly obtained 1,000 parameter
estimates for a given parameter θ by

(
empirical SE

)
θ
=

√√√√
∑r

i=1

(
θ̂i −

(∑r
i=1 θ̂i
r

))2

r
,

where all symbols are defined above. Also, each simulation
replication produced an estimated SE, and it is explicitly referred
to as the “estimated SE” in this study to distinguish it from
the empirical SE. The empirical SE is a numerically realized
theoretical SE based on repeatedly sampled data, while the
estimated SE is an analytically (or numerically, in some other
cases, such as the bootstrap method) estimated SE based on
one given sample data. In practice, only an estimated SE will
be available to data analysts and will be treated as the best
estimate of the theoretical SE. Therefore, it would be of interest
how much the estimated SEs are close to the theoretical SE
(i.e., the empirical SE) to evaluate the quality of the estimated
SEs. Therefore, the mean of the estimated SEs was computed
across 1,000 replications, and its magnitude was compared to
the empirical SE by their ratio to evaluate potential under- or
over-estimation of the estimated SEs. Finally, RMSE is the total
estimation error, and it was computed for a given parameter θ by

(RMSE)θ =

√∑r
i=1

(
θ̂i − θ

)2

r
,

where all symbols are defined above.
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Mplus software (Muthén and Muthén, 1998–2012) was used
to generate the data, as well as to fit the model. Data generations
and analyses with Mplus were controlled by R software (R
Core Team, 2016). Examples of Mplus syntax are provided as a
Supplementary Material.

RESULTS

Convergence Rate
Convergence rates are summarized in Table 2. Although they are
not shown in the table, all replications converged without any
warning or error for the 1-class one-step approach and first step
1-class LCA model. Also, almost all replications of the first-step
2-class LCA model converged, which was shared by the case-
weight and three-step approaches, with the lowest convergence
rate of 97.1%.

For the 2-class model, the case-weight approach had the
highest convergence rate among the three methods. For example,
they converged nearly 100% for all conditions when n = 2,000,

while its convergence rate dropped somewhat when the class-2
proportion was small with n= 500. Nonetheless, its convergence
rates were always higher than 96%. The convergence rates for
the three-step approach had a similar pattern as the case-
weight approach, namely, when class-2 proportion was small,
convergence rate was lower. However, the convergence rates were
constantly lower than the ones for the case-weight approach
within the same conditions. In some conditions, they were
substantially lower, especially when n = 500, and/or when the
class-2 proportion was small. Even with n = 2,000, when the
class-2 proportion was small and the class separation was low, the
convergence rate dropped to 56.9%, whereas the convergence rate
remained nearly 100% for the case-weight approach. On the other
hand, the convergence rate for the one-step approach dropped to
even lower percentages with lower sample size, smaller class-2
proportion, and/or lower class separation. For example, the
convergence rate was 79.6% when the class-2 proportion was
small and the class separation was low even with n = 2,000. It
dropped to only 29.4% in the same condition with n= 500.

TABLE 2 | Percentages of convergence and correct model selection.

Sample size Class-2

proportion

Class

separation

Convergence:

OS approach

Convergence:

CW approach

Convergence:

TS approach

Correct model

selection

2-Class 3-Class 2-Class 3-Class 2-Class 3-Class OS LCA

Low 29.4 2.7 96.9 80.1 50.0 32.7 11.3 7.1

Small Medium 64.5 5.8 98.9 72.7 71.1 37.0 61.3 86.0

High 80.5 7.3 97.5 62.4 81.2 38.7 79.7 99.5

Low 83.3 6.9 99.4 78.3 84.5 40.1 81.2 70.4

n = 500 Medium Medium 94.8 9.1 100.0 53.8 94.5 38.1 93.9 99.8

High 98.4 9.3 100.0 51.4 97.9 42.1 97.9 99.8

Low 98.3 8.8 100.0 75.5 97.4 49.9 97.2 97.8

Large Medium 99.9 11.7 100.0 47.5 99.5 41.2 98.9 100.0

High 99.9 10.5 100.0 53.6 99.9 48.3 98.6 99.6

Low 53.2 5.2 96.8 74.8 51.4 26.3 24.2 9.2

Small Medium 84.6 9.4 99.7 62.9 85.5 27.4 84.5 98.1

High 93.7 11.9 99.8 48.0 94.6 31.4 93.7 100.0

Low 96.1 10.4 99.9 67.8 94.6 33.9 96.0 94.2

n = 1,000 Medium Medium 99.4 11.3 100.0 41.9 99.2 28.8 99.4 100.0

High 99.9 11.2 100.0 36.0 99.9 25.9 99.9 100.0

Low 99.9 11.9 100.0 55.5 99.9 35.0 99.8 99.7

Large Medium 100.0 11.2 100.0 35.3 100.0 29.2 99.9 100.0

High 100.0 12.3 100.0 44.7 100.0 37.7 100.0 100.0

Low 79.6 8.8 98.0 69.1 56.9 15.3 61.2 19.8

Small Medium 96.2 12.3 100.0 53.1 95.1 20.5 96.2 100.0

High 98.6 15.3 100.0 38.2 98.7 19.4 98.6 100.0

Low 99.7 11.3 100.0 55.5 99.3 20.3 99.7 100.0

n = 2,000 Medium Medium 100.0 12.8 100.0 31.6 100.0 18.1 100.0 100.0

High 100.0 12.7 100.0 33.9 100.0 20.9 100.0 100.0

Low 100.0 11.8 100.0 36.7 100.0 22.9 100.0 100.0

Large Medium 100.0 12.8 100.0 31.2 100.0 23.3 100.0 100.0

High 100.0 15.3 100.0 40.7 100.0 31.9 100.0 100.0

OS, one-step approach; CW, case-weight approach, and TS, three-step approach. LCA was common first step for CW and TS approaches.
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For the 3-class model, convergence rates for the one-step
approach dramatically dropped. The highest convergence rate
was only 15.3% for the conditions with n = 2,000 and high
class separation. On the other hand, the convergence rates
remained high for the case-weight approach, although they were
uniformly lower than 2-class model in comparable conditions.
For the three-step approach, convergence rates for 3-class
model dropped much more than the case-weight approach. Yet,
convergence rates were considerably higher than the ones for the
one-step approach.

Model Selection
Percentages of correct model selection are summarized in the last
two columns of Table 2. First, correct model selection rates were
quite low either by the one-step approach or the first-step LCA
when class separation was low and class-2 proportion was small.
For this combination of the conditions, correct model selection
rates were always low, regardless of the sample size.

On the other hand, correct model selection rates were 100%
or nearly 100% with high class separation and large or medium
class-2 proportion, regardless of the analysis method and the
sample size. Also, conditions with medium class separation and
large class-2 proportion demonstrated quite high correct model
selection rates. With high class separation and small class-2
proportion, the correct model selection rate was nearly 100%
with n = 2,000 (98.6% for OS and 100% for first-step LCA).
However, the rates decreased as the sample size became smaller
for OS; 93.7% with n= 1,000, and 79.7% with n= 500, while the
rates remained near 100% for the first-step LCA. Similar patterns
were observed for conditions with medium class separation and
medium class-2 proportion.

Overall, the first-step LCA (i.e., case-weight approach and
three-step approach) was better in correct model selection than
the one-step approach. Exceptions were when class separation
was low and class-2 proportion was small. Another exception
was when class separation was low and class-2 proportion was
medium with n= 500.

Parameter Recovery
As mentioned earlier, parameter recovery results were
summarized by averaging for all parameters in the auxiliary
LGM for each latent class. The summary results are presented
in Figure 2 (mean of absolute relative bias), Figure 3 (mean
of empirical SE), Figure 4 (mean of estimated SE relative to
empirical SE), and Figure 5 (mean of RMSE). For each figure,
results are summarized into three columns of graphs for three
sample sizes (n = 500; n = 1,000; n = 2,000) for each latent
class. The first three columns of graphs are for the larger class
(class 1), and the last three columns of graphs are for class 2
(smaller class). Three rows of graphs are for the three levels of the
class-2 proportion (small; medium; large). The three ticks on the
horizontal axis of each graph are three levels of class separation
(low; medium; high).

For the larger class (class 1), all of absolute relative
bias, empirical SE, and RMSE were substantially smaller.
Particularly, differences between the three approaches were
nearly undistinguishable for class 1 for high class-separation

conditions, regardless of sample size and class-2 proportion.
The only exception was the relative estimated SE, where
underestimation of the estimated SE was revealed for the
case-weight and three-step approaches, especially when class
separation was low. Underestimation of estimated SE was nearly
zero for conditions with medium or high class separation for
all three approaches. Interestingly, underestimation was much
larger by the one-step approach than the other two approaches
when class separation was low, class-2 proportion was small, and
n= 500.

There were some important observations for results for the
smaller class (class 2). Hereafter, discussions of the results are
focused on class 2. First, it was revealed that the mean of absolute
relative bias (Figure 2) was larger for the case-weight approach
than the other two approaches in all conditions. Relative bias
for the one-step approach and the three-step approach sharply
decreased as the sample size became larger, as the class separation
became higher, and as the class-2 proportion became larger.
However, relative bias for the case-weight approach was affected
much less by the class-2 proportion and the sample size, while it
was still affected by the class separation. In other words, larger
sample size and larger class-2 proportion did not reduce the
relative bias by the case-weight approach. On the other hand,
relative bias for all three approaches decreased sharply as the class
separation became higher, and the discrepancy between the case-
weight approach and the other two approaches became smaller
when the class separation was high. Overall, the one-step and
three-step approaches displayed strength with respect to relative
bias, while the case-weight approach did not.

Although details are not presented in this paper, results for
each parameter were examined under n = 500 conditions. The
mean and variance parameters of the slope for class 2 was
particularly high in relative bias by all three approaches when the
class-2 proportion was small and the class separation was low.
However, sharp decrease was observed for all three approaches
as the class separation became higher. Also, sharp decrease was
observed for the one-step and three-step approaches as the
class-2 proportion became larger. Overall, it was confirmed that
relative bias for the case-weight approach was constantly higher
than the two other approaches for all parameters for the smaller
class. Also, it was confirmed that the discrepancy between the
three approaches became smaller as the class separation became
higher.

With respect to empirical SE (Figure 3), the performance
of the case-weight approach was better than the other two
approaches, especially when the class-2 proportion and the
sample size was small. However, the discrepancies between
the three approaches became smaller as the class separation
became higher and the class-2 proportion became larger. The
performance of the one-step and three-step approaches were
similar; when the class separations were medium or high, their
empirical SEs were nearly identical, especially under medium
and large class-2 proportion conditions. Overall, the case-weight
approach displayed strength with respect to empirical SE. To
evaluate potential under- or over-estimation of the estimated SE,
the relative magnitude of the mean estimated SE to empirical
SE was evaluated (Figure 4). As a result, the case-weight and
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FIGURE 2 | Averaged absolute relative bias for auxiliary model parameters. OS, one-step approach; CW, case-weight approach, and TS, three-step approach.

three-step approaches displayed substantial underestimation of
the SE for both classes particularly when class separation
was low. For class-1 parameters, underestimation for the two
approaches became small when class separation was medium
or high. However, for class-2 parameters, underestimation for
the case-weight approach did not diminished under small
class-2 proportion conditions. Another notable result for the
underestimation of the estimated SE was that the one-step
approach displayed substantial underestimation for both class-1
and-2 parameters under themost demanding condition (n= 500,
small class-2 proportion, and low separation) compared to the
case-weight and three-step approaches.

As empirical SEs were evaluated for each parameter for
n = 500 conditions (again, details are not presented here), they
were notably high for the mean and variance of the intercept for
class 2 by the one-step and three-step approaches when the class
separation was small and the class-2 proportion was small. As the
class-2 proportion became larger, empirical SE values improved

for the one-step and three-step approaches, however, empirical
SE values were still constantly lower by the case-weight approach.

With respect to RMSE (Figure 5), the performance of the one-
step and three-step approaches were nearly identical and slightly
better than the case-weight approach under medium/high class
separation and medium/large class-2 proportion conditions.
When class-2 proportion was small, the one-step approach
performed slightly better than the three-step approach for larger
sample sizes (n = 1,000 and 2,000). The case-weight approach
performed better than the other two approaches in limited
conditions. First, under small class-2 proportion conditions
with n = 500, the case-weight approach performed constantly
better than the other two approaches. Also, the case-weight
approach performed better than the other two approaches under
small class-2 proportion and low class separation condition with
n= 1,000.

When RMSE were evaluated for each parameter for n = 500
conditions (again, not presented here), they were constantly
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FIGURE 3 | Averaged empirical SE for auxiliary model parameters. OS, one-step approach; CW, case-weight approach, and TS, three-step approach.

low for class-1 parameters for all three approaches. For class-
2 parameters, the case-weight approach constantly performed
better than the other two approaches for three parameters; latent
factor covariance (i.e., covariance between intercept and slope),
the mean and variance of the intercept. However, the case-
weight approach constantly performed worse than the other two
approaches for the mean of the slope.

CONCLUSIONS

This study investigated the performance of three selected
approaches for estimating two-phase mixture model, where the
first phase was a two-class LCA model and the second phase
was a LGM with four time points. There were some important
observations in relation to the literature. First, according to
Asparouhov and Muthén (2014), the loss of efficiency for the
three-step approach would be minimal, compared to the one-
step approach. Our results confirmed that this was the case. On
the other hand, according to Asparouhov and Muthén (2014)

and Vermunt (2010), parameters of the LCA model may be
affected by auxiliary models, if the strength of the associations
between the latent class indicators and latent classes are not
sufficiently strong. This made us anticipate that parameter
recovery for one-step approach would suffer in conditions with
low class separations. Also, it was our hope that the case-
weight approach and/or three-step approach would show better
results than the one-step approach. However, it was not the
case with respect to bias. One-step approach was less affected
by low class separation. Also, our results displayed substantial
underestimation of estimated SE for the case-weight and three-
step approaches in certain conditions, which is consistent with
Clark andMuthén (2009), Vermunt (2010) and Bakk et al. (2014).

PRACTICAL IMPLICATIONS

Some practically important results were demonstrated in this
study. First, it was revealed that case-weight approach displayed
constantly larger bias than the other two approaches. It should
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FIGURE 4 | Averaged mean estimated SE relative to mean empirical SE for auxiliary model parameters. OS, one-step approach; CW, case-weight approach, and TS,

three-step approach.

be noted that this is a critical limitation of the case-weight
approach. On the other hand, one-step and three-step approaches
displayed much smaller bias. Their bias values were nearly
identical especially when class separation was medium or high.
However, their biases were high, when class-2 proportion was
small, class separation was low, and the sample size was not large.
Second, it was found that the case-weight approach had a strength
with respect to empirical SE. However, one should be cautioned
that estimated SEs were quite underestimated by the case-weight
approach. Also, correct model selection rates were extremely low
in such demanding conditions for all approaches, including the
case-weight approach. Therefore, in practice one may not be able
to take advantage of the strength of the case-weight approach
with respect to SE, because there will be a lot of uncertainty in
correct model selection in such demanding conditions.

Regarding successful convergence, it was found that one-step
approachwas very sensitive to demanding conditions. Practically,
this will make one-step approach difficult to use unless the data

are from ideal conditions, such as large sample size, medium to
high class separation, and no presence of small class proportion.
On the other hand, convergence rate was a strength of the
case-weight approach under the demanding conditions. This
strength makes case-weight approach allow one to explore and
test more model options even in less ideal conditions. However,
the case-weight approach should be used with caution in practice,
because it come with substantially larger bias than the other two
approaches.

Based on the results of this study, our recommendation for
an application of a two-phase mixture model is as follows. First,
ensure that the sample size is sufficiently large, a minimum of
500, as Asparouhov and Muthén (2014) and Vermunt (2010)
have already suggested. Second, fit the latent-class measurement
model part by itself to explore the number of latent classes.
This makes sense because this study has demonstrated that
the first-step LCA would identify a correct model better than
the one-step approach. Also in this stage, it is recommended
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FIGURE 5 | Averaged RMSE for auxiliary model parameters. OS, one-step approach; CW, case-weight approach, and TS, three-step approach.

to ensure (a) the class separation is reasonably high, such as
entropy >0.80, (b) there is no small class with <15%, to utilize
the three-step approach. If these two conditions are not met,
or sample size is not as large as 2,000, it is recommended to
implement the one-step approach. However, if these conditions
becomemore challenging (lower class separation and presence of
smaller class), the one-step approach and the three-step approach
may not converge. If so, it is when the case-weight approach
is recommended to be fit. However, even if the case-weight
approach converges, the results should be used with caution.

LIMITATIONS

The investigated model in this study was limited to a very
specific model. As mentioned earlier in this paper, the case-
weight approach and three-step approach can be applied to any
kind of latent-class measurement model and any kind of auxiliary
model. For example, Nese et al. (2017) employed this approach to

study heterogeneity of the growth of emergent literacy knowledge
by combining a two-class zero-inflated Poisson regression model
as the latent-class measurement model phase, and a three-class
growth mixture model as the auxiliary model phase. A future
study to investigate the performance of the one-step, case-
weight and three-step approaches in such a complex model is
warranted.
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