
ORIGINAL RESEARCH
published: 19 February 2018

doi: 10.3389/fpsyg.2018.00174

Frontiers in Psychology | www.frontiersin.org 1 February 2018 | Volume 9 | Article 174

Edited by:

Maicon Rodrigues Albuquerque,

Universidade Federal de Minas Gerais,

Brazil

Reviewed by:

Jörg Henseler,

University of Twente, Netherlands

James Gaskin,

Brigham Young University,

United States

*Correspondence:

JaeHong Park

jaehp@khu.ac.kr

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 02 December 2017

Accepted: 01 February 2018

Published: 19 February 2018

Citation:

Jung S and Park J (2018) Consistent

Partial Least Squares Path Modeling

via Regularization.

Front. Psychol. 9:174.

doi: 10.3389/fpsyg.2018.00174

Consistent Partial Least Squares
Path Modeling via Regularization
Sunho Jung and JaeHong Park*

Kyung Hee University, Seoul, South Korea

Partial least squares (PLS) path modeling is a component-based structural equation

modeling that has been adopted in social and psychological research due to its

data-analytic capability and flexibility. A recent methodological advance is consistent

PLS (PLSc), designed to produce consistent estimates of path coefficients in structural

models involving common factors. In practice, however, PLSc may frequently encounter

multicollinearity in part because it takes a strategy of estimating path coefficients based

on consistent correlations among independent latent variables. PLSc has yet no remedy

for this multicollinearity problem, which can cause loss of statistical power and accuracy

in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc,

creating a new technique called regularized PLSc. A comprehensive simulation study

is conducted to evaluate the performance of regularized PLSc as compared to its

non-regularized counterpart in terms of power and accuracy. The results show that our

regularized PLSc is recommended for use when serious multicollinearity is present.

Keywords: consistent partial least squares, structural equation modeling, ridge-type regularization,

multicollinearity, Monte Carlo simulation

INTRODUCTION

Structural equation modeling (SEM) has become a common tool in social and psychological
research, including business research fields such as marketing and information systems. In no
small part, this is due to its ability to provide a flexible measurement and testing framework for
investigating interrelationships among observed and latent variables (Kaplan, 2009). Covariance
structure analysis (CSA) (Jöreskog, 1973) and partial least squares (PLS) path modeling (Wold,
1975) represent two technically distinctive approaches to SEM (Fornell and Bookstein, 1982;
Reinartz et al., 2009). Recently, a new consistent PLS estimator (PLSc) has been introduced as
another alternative approach that bridges the gap between CSA and PLS (Dijkstra, 2010; Dijkstra
and Henseler, 2015a). This technique rests on the idea that when PLS represents latent variables
through factors, correcting for a measurement error is required to obtain consistent PLS estimates.

With the introduction of PLSc, some interest exists in evaluating its relative performance, when
compared to CSA and PLS. A recent simulation study by Dijkstra and Henseler (2015b) showed
that PLSc is recommended for use over traditional PLS, if the common factor model holds true
for the theoretical construct. This finding is expected, given that PLSc explicitly takes the reliability
of construct scores into account, and therefore, corrects the structural paths between the latent
variables for attenuation, thereby enabling consistent estimates to be produced. The ability of PLSc
to perform well with common factors is an important result, because SEM is frequently conducted
with reflectively measured constructs.
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However, Dijkstra and Henseler (2015b) clearly pointed
out the potential weakness of PLSc in their simulation study,
as it exhibited relatively lower statistical power and larger
standard deviations under multicollinearity, as compared to
other techniques. This tendency was particularly evident and
problematic with small sample sizes. In practice, a high level
of correlations among the latent variables is known to be quite
common in the applied research (Grewal et al., 2004). In addition,
because PLSc employs inter-construct correlations corrected for
attenuation as input data for parameter estimations, it would
likely encounter multicollinearity problems due to the possibly
high correlation between independent variables. The major
problem with multicollinearity is that the least squares estimators
of the coefficients can produce inflated standard errors, often
leading to the loss of statistical power.

Despite potential multicollinearity problems, no attempt has
been made to provide methods for mitigating the problems in
PLSc. Therefore, in this paper, we propose a new approach, a
ridge-type of regularization, to solve multicollinearity issues in
PLSc. Ridge regression (Hoerl and Kennard, 1970) is one of the
possible remedies for multicollinearity in the statistical learning
literature, by intentionally trading a small amount of bias for
greater efficiency. Derived as an alternative to the ordinary least
squares (OLS) regression estimator in the PLSc procedure, we
propose a ridge least squares estimator by adding a small positive
constant, called the regularization parameter, to the estimation in
a straightforward manner.

The major purpose of this paper is to propose a regularized
model of PLSc which handles multicollinearity problems
effectively. By doing so, we believe that we can contribute
to the related literature. As some researchers have already
acknowledged thatmulticollinearity in PLSc can arouse problems
in the estimation, we believe it is necessary for other researchers
to consider our new approach, a ridge-type of regularization,
to solve the multicollinearity issues in PLSc. The second goal
of this paper is to present a comprehensive evaluation of the
proposed method, relative to its non-regularized counterpart,
under a variety of experimentally manipulated conditions using
a Monte Carlo simulation study. With a comprehensive Monte
Carlo simulation, our proposed regularized PLSc is better in
dealing with a severe multicollinearity problem with common
factors than ordinary PLSc.

In the next section, we discuss the previous PLSc and
then propose our theoretical concept of regularized PLSc in a
structural equation model. We then suggest a simulation study to
confirm the newly proposed model’s performance, as compared
to the previous method.

CONSISTENT PARTIAL LEAST SQUARES
VIA REGULARIZATION

A Consistent Reliability Coefficient for PLS
Traditional PLS approximates common factors with weighted
composites of observed variables. Since the composites serve as
proxies for the reflective constructs, PLS construct scores are
inevitably contaminated with measurement errors. Measurement

errors attenuate the relationship between any two constructs,
resulting in biased and inconsistent estimates of structural
relationships (e.g., Bollen, 1989; Cassel et al., 2000). Correcting
for measurement error attenuation would be worthwhile, as
a structural equation model typically contains one or more
common factors.

To achieve this purpose, Dijkstra and Henseler (2015b) have
recently proposed a consistent reliability coefficient term ρA,
based on the estimation of the indicator weights under Mode
A, suitable for reflective indicators. This plays a pivotal role
in mitigating PLS’ consistency problems in SEM with reflective
measurement models. PLSc employs the coefficient of reliability
to correct the latent variable correlations for attenuation, thereby
adjusting the estimates to make them consistent.

The reliability measure for PLS’ construct scores is determined
as the squared correlation between composite scores for each
latent variable and the corresponding true scores. A consistent
estimator of ρA can be obtained so as to minimize the sums of
squares of the discrepancies between the off-diagonal elements
of S and 6̂, in which S is the sample covariance matrix of a
latent variable’s indicators and 6̂ is the implied covariance matrix
based on a underlying common factor model. The coefficient
of reliability can be consistently estimated using the indicator
weights as follows (Dijkstra and Henseler, 2015b):

ρ̂A = (ŵ′ŵ)
2
×

ŵ′(S− diag(S))ŵ

ŵ′(ŵŵ′ − diag(ŵŵ′))ŵ
, (1)

where ŵ is the estimated weight vector for a block of indicators
for the latent variable. In particular, the second part of this
equation simply represents a scaling factor corresponding to the
constant of proportionality between the indicator weights and the
factor loadings. It plays a role in rescaling the former to the latter
to adjust for an overestimation.

Regularized Consistent PLS
PLS involves two distinct models: a structural model and a
measurement model. As the structural model of PLS includes
a series of linear regression models for each endogenous latent
variable, we begin by describing the path coefficient estimation
procedures for the PLSc. The estimation procedure comprises
three main steps: (1) estimate the iteratively updated indicator
weights to obtain the latent variable correlations; (2) correct
these correlations for attenuation using the consistent reliability
estimates; and (3) perform the OLS regression to estimate the
path coefficients based on the consistent construct correlations.

Step 1: The first step is to attempt to create latent
variable proxies as linear composites of the associated observed
indicators, which requires the estimation of indicator weights.
This stage involves an iterative algorithm for the estimation
of the weights. Accordingly, each latent variable explains as
much variance as possible, with adjacent latent variables that are
connected to the same latent variable. This step produces the
indicator weights and correlations between the latent variable
scores as inputs for the next step.

Step 2: Due to the presence of measurement errors, proxy
correlations typically tend to underestimate the true factor
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correlations. As correlations among the proxies are mainly
used for the estimation of the path coefficient in PLSc, a
conventional attenuation correction factor can be applicable
(e.g., Muchinsky, 1996). Specifically, for every pair of composite
scores, a consistent construct correlation may be expressed in
terms of the original proxy correlations and the two reliabilities
obtained in Equation (1). That is, it is calculated by the ratio of
the correlation between the construct scores to the square root
of their respective reliabilities. Consequently, the correlations
between the proxies associated with large measurement errors
may be given greater weight than the correlations associated with
smaller measurement errors.

Step 3: By correcting for the attenuation, due to the
unreliability, as in the previous step, we are able to determine
the underlying latent relationships without the distraction
of measurement errors. The third step estimates the path
coefficients in the structural model by means of an OLS
regression. In other words, the PLSc estimator is obtained by
regressing each endogenous latent variable on its causally related
latent variables as follows:

β̂ = R−1
X rXy, (2)

where β̂ indicates a vector of path coefficients,RX is the consistent
correlation matrix of the predictor variables of the structural
equation, and rXy is the vector of consistent correlations between
the outcome variable and the predictor variables. This illustrates
that the PLSc estimator stems from the OLS regression and
consistent correlation estimation.

Several variance-based SEM techniques exist, but PLSc seems
to be the preferred choice of researchers for evaluating the
structural model with common factors. However, although a
consistent reliability coefficient helps to establish consistent
estimations in the model involving factors, rather ironically, the
correction for attenuation is likely to lead to a multicollinearity
problem, which can give rise to spurious results. Multicollinearity
is considered a major application problem in SEM, because it
reduces statistical power and increases the variances for the
estimated coefficients, making them unstable (Grewal et al.,
2004). The more variance the coefficients have, the more difficult
it is to interpret them.

To address this issue, a regularized extension of the PLSc
is proposed that integrates a ridge-type of regularization into
PLSc. Estimating the path parameters through regularization is

straightforward. A ridge least squares estimator for β̂ is given by:

β̂ (λ) = (RX + λI)−1rXy, (3)

where: λ denotes the regularization parameter (or tuning
parameter). When λ = 0, the ridge estimates are equivalent
to those obtained using ordinary PLSc (Equation 2). As with
PLSc, the ridge estimator can be used as a tool for recursive
models that only include unidirectional effects. The proposed
regularized PLSc initially entails finding an appropriate value
of the regularization parameter. It then estimates the path
parameters using Equation (3), for which an optimal value of λ

is included in the analysis.

A significant number of studies emphasize the practical utility
of regularization in many multivariate data analysis techniques
(Hastie et al., 2001; Tenenhaus and Tenenhaus, 2011; Srivastava
et al., 2014). In general, the regularization parameter plays a
crucial role in controlling the degree of regularization imposed
on the parameters. It has the effect of shrinking the least squares
estimates toward zero, thereby enabling more accurate solutions
to be produced. A regularized estimator intentionally trades bias
for reduction in variance. As such, it will certainly be biased
(albeit slightly), but will still exhibit a much smaller variability.
Therefore, the ridge estimates of parameters tend to be, on
average, closer to the true population values than their least
squares counterparts (see Groß, 2003, pp. 118–120). In particular,
this positive effect of regularization is more pronounced under
multicollinearity and/or small sample sizes (Takane and Jung,
2008).

The proposed method utilizes the K-fold cross-validation
method to select the value of λ, which is typically a small positive
constant. In the cross validation, the entire dataset is randomly
divided into K subsets (typically, either 5 or 10). One of the K
subsets is set aside as a validation sample, while the remaining
K-1 subsets are used as a training sample for fitting a single
structural equation model for each endogenous construct from
which the estimates of the path coefficients are obtained. These
resultant estimates are then applied to the validation sample
to calculate the prediction error of the structural model. This
procedure is repeated k times, changing a single group set aside
systematically. The cross-validation estimate of the prediction
error is accumulated over all K validation samples. The cross
validation procedure also systematically varies the values of λ

and the value that yields the lowest prediction error is finally
chosen. When K is equal to N (sample size in the original data),
the cross validation procedure is also known as the leaving-one-
out cross validation, which appears to work reasonably well with
small sample sizes (e.g., Molinaro et al., 2005).

As in its ordinary counterpart, the proposed regularized
PLSc uses the bootstrap method (Efron, 1982) to estimate the
standard errors of the parameter estimates. More specifically,
their standard errors are calculated non-parametrically based
on 5,000 bootstrap samples (Hair et al., 2011). Furthermore,
the bootstrap standard errors can be used to test whether a
structural parameter is statistically different from zero, based
on a confidence interval approach (Aguirre-Urreta and Rönkkö,
forthcoming). For instance, if the 95% confidence interval of a
parameter does not include zero, then the observed effect may be
considered statistically significant.

A SIMULATION STUDY

The primary goal of the present simulation study is to compare
the performance of the proposed regularized PLSc (hereafter
referred to as RegPLSc) with that of the non-regularized PLSc.
A secondary goal is to evaluate the impact of a comprehensive
set of design factors and their interactions on the performance of
these two estimation methods. This study builds on earlier work
(Grewal et al., 2004), examining the role of multicollinearity and
measurement errors on parameter recovery and inference errors
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in SEM. All computations for this study were carried out using
MATLAB R2009a (The MathWorks, Inc.).

Design Factors
The Monte Carlo simulation involved manipulating four
experimental conditions: multicollinearity (φ), measurement
error (θ), coefficient of determination (R2), and sample size (N).
These design factors are essentially the same as those that Grewal
et al. (2004) considered in their simulations within the framework
of covariance-based SEM. Prior simulation studies have shown
them to be meaningful conditions in evaluating the performance
of various SEM techniques (e.g., Hwang et al., 2010; Lu et al.,
2011). In particular, we employed R2 as a design factor as a
high R2 has the potential to improve the quality of parameter
estimation in the presence of multicollinearity (e.g., Mason and
Perreault, 1991; Grewal et al., 2004).

The levels of the design factors should be chosen, such
that they would represent the range of values encountered in
substantive studies using SEM. The selected ranges for the first
three factors (φ, θ , R2) are basically the same as those considered
in Grewal et al. (2004). First, the level of multicollinearity was
varied by systematically altering the correlation between ξ1 and
ξ2. The moderate condition (φ = 0.4) was included, plus strong
(φ = 0.6) and extreme (φ = 0.8) correlation levels. The amount
of random measurement error was then varied at two levels.
Specifically, the composite reliability of each latent variable was
set at 0.6 or 0.8 that can be considered as weak and strong,
respectively. For the coefficient of determination, the value of
R2 for each latent endogenous variable was set to 0.25 or 0.50,
corresponding to the medium and large effect sizes, respectively,
according to Fritz et al. (2012). Finally, the value of N was set
to 30, 60, 120, or 200. These sample sizes are identical to the
sizes Lu et al. (2011) considered in their simulations. Various
approaches for SEM exist, but PLS path modeling has typically
been recommended for use in the case of small samples (e.g.,
Henseler et al., 2009). Prior studies have found that PLS provides

a better quality of solution in small samples (e.g., Chin and
Newsted, 1999). Small sample sizes may be the rule, rather than
the exception, in an empirical application of PLS (e.g., Haenlein
and Kaplan, 2004).

We specified a structural equation model which consisted
of six latent variables and four reflective indicators per latent
variable (Figure 1). We adapted this model from Grewal et al.
(2004), in which all unstandardized path coefficients were
originally fixed at 0.28. Variance-based SEM, such as partial
least squares, typically provides standardized parameter estimates
and their standard errors. Thus, we calculated different sets of
standardized parameter values based on varying levels of φ and
R2 (Table 1).

Data Generation
The full factorial design for the simulation leads to a total of
48 factor combinations (4 Sample Sizes × 3 Multicollinearity
× 2 Measurement Error × 2 Coefficients of Determination).
For each of the 48 different combinations, individual-level
multivariate normal data were drawn from N(0, 6), where 6 is
the implied population covariance matrix derived from a CSA
formulation using the unstandardized parameter values. During
the data generation process, in some rare situations, a consistent
correlation matrix is found not to be positive definite. The least
squares estimator (Equation 2) fails with such a matrix. Any
simulated sample was removed that failed to produce a consistent
non-singular correlation matrix from further consideration to
compare the two methods in an impartial manner. The first 500
replications with proper solutions were maintained for each of
the combinations of the design factors.

SIMULATION RESULTS

In this section, we report the ability of RegPLSc and PLSc to
recover the true parameter values for the path coefficients, as well
as conduct a statistical inference. The practical benefit of PLS, in

FIGURE 1 | The specified model for the simulation study. Dashed line represents a path whose true value is zero.
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TABLE 1 | The standardized parameters.

Collinearity R2 Population path coefficients

γ11 γ12 γ31 γ32 γ21 γ23

φ = 0.4 R2 = 0.25 0.318 0.279 0.372 0.335 0.354 0.354

R2 = 0.50 0.45 0.394 0.525 0.473 0.5 0.5

φ = 0.6 R2 = 0.25 0.298 0.261 0.382 0.322 0.354 0.354

R2 = 0.50 0.421 0.369 0.541 0.456 0.5 0.5

φ = 0.8 R2 = 0.25 0.281 0.246 0.391 0.311 0.354 0.354

R2 = 0.50 0.397 0.348 0.554 0.44 0.5 0.5

empirical applications, may depend on its ability to determine the
significance of a parameter estimate from the statistical power
perspective. Although achieving accurate statistical inferences
enables researchers to perform reliable hypothesis tests, they
also put equal emphasis on the magnitude of the structural
parameter to interpret the substantive significance of a result
or for predictive purposes. Accordingly, evaluating the ability to
recover the true parameters is important for applied researchers
who would consider using PLS techniques.

Recovery of Path Parameters
To assess the recovery of the parameters under the two estimation
procedures, we calculated the mean absolute differences (MAD)
between the parameter values and their estimates as follows:

MAD =

P
∑

j = 1

∣

∣

∣

θ̂j − θj

∣

∣

∣

P
, (4)

where: θ̂j and θj denote the parameter estimates and population
parameter values, respectively, and P is the number of parameters
(e.g., Mason and Perreault, 1991).

For MAD, we conducted the full-factorial five-way mixed
ANOVA. A single within-subjects method factor is the estimation
method (M, where M = RegPLSc or PLSc). The between-
subject data factors are the above-described four experimental
conditions of the study. Table 2 presents the results about
the capability of the two estimation methods. As illustrated
in Table 2, most of the main and interaction effects were
statistically significant, due to the large number of observations,
in addition to fitting all possible interactions in the ANOVA.
For this reason, it is crucial to also examine the effect size
(e.g., Paxton et al., 2001). Following the accepted practice for
identifying a substantial effect, we will focus on the main and
interaction effects, having a partial eta-squared (η2) greater than
2%, which deserves further examination (see Reinartz et al.,
2009). According to Cohen’s (1988) guidelines regarding effect
sizes, a value of 0.02 represents a small effect, 0.06 a medium
effect, and 0.14 or greater a large effect.

The analysis method (η2 = 0.24) had a sufficiently large main
effect. This suggests meaningful differences in the average MAD
between the two methods (RegPLSc = 0.14 and PLSc = 0.19).
The ANOVA for MAD in the parameter recovery revealed
that all two-way interaction effects were statistically significant

TABLE 2 | The results of ANOVA test for the mean absolute differences (MAD) of

parameter estimates.

d.f. MAD

F η2

WITHIN-SUBJECTS EFFECTS

M 1 7384.39 0.24

M*L 2 1351.16 0.10

M*F 1 1694.35 0.06

M*R 1 3417.41 0.13

M*N 3 1350.97 0.15

M*L*F 2 6.95 0.01

M*L*R 2 20.16 0.00

M*L*N 6 35.87 0.01

M*F*R 1 11.29 0.00

M*F*N 3 157.65 0.02

M*R*N 3 194.46 0.03

M*L*F*R 2 6.73 0.00

M*L*F*N 6 1.80 0.01

M*L*R*N 6 24.78 0.00

M*F*R*N 3 9.41 0.00

M*L*F*R*N 6 1.57 0.00

Error (M) 23952

BETWEEN-SUBJECTS EFFECTS

Intercept 1 172168.43 0.88

L 2 1970.69 0.14

F 1 52.85 0.00

R 1 4726.95 0.17

N 3 5731.48 0.42

L*F 2 127.31 0.01

L*R 2 25.51 0.00

L*N 6 4.57 0.00

F*R 1 0.57 0.00

F*N 3 13.43 0.00

R*N 3 95.12 0.01

L*F*R 2 2.24 0.00

L*F*N 6 7.17 0.00

L*R*N 6 18.32 0.00

F*R*N 3 1.44 0.00

L*F*R*N 6 1.45 0.00

Error 23952

M, method; L, multicollinearity; F, R2; R, reliability; N, sample size.

All F-values are statistically significant (p < 0.05) except for those underlined.

d.f. = degrees of freedom and η2 = Effect Size. Interaction effects having η2 greater

than 2% are shown in boldface.

and achieved effect sizes larger than 6%, reflecting a medium
effect: Method × Multicollinearity (η2 = 0.10), Method ×

Measurement Error (η2 = 0.13), Method × R2 (η2 = 0.06), and
Method × Sample Size (η2 = 0.15). Two additional interactions,
Method × Measurement Error × Sample Size (η2 = 0.03)
and Method × R2 × Sample Size (η2 = 0.02) were selected
for further examination, because they were theoretically and
practically related to multicollinearity problems and had an
effect size above the cut-off point. We first discuss the two way
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interaction of Method × Multicollinearity. The remaining two-
way interactions are then described below in the context of the
three-way interactions that include them.

Figure 2 displays the average values of MAD for each method
under the three levels of multicollinearity. Overall, we could
confirm that RegPLSc is notably superior across different degrees
ofmulticollinearity. As the level ofmulticollinearity increases, the
superiority of RegPLSc over PLSc becomes larger. A closer look
at the performance of RegPLSc reveals that the method appears
to be an effective tool to deal with multicollinearity in structural
equation models. The average MAD value for RegPLSc under
extreme conditions remains similar to that under moderate
conditions. In contrast, for PLSc, such a stable tendency in the
values of MAD cannot be observed, implying that PLSc is highly
susceptible to multicollinearity problems.

The three-way interaction ofMethod×Measurement Error×
Sample Size is presented in Figure 3. This three-way interaction
includes the two-way interaction of Method × Sample Size,
which can be seen in each of the two blocks included in the figure.
In general, the average MAD values for both methods tended to
decrease as the sample sizes increased. We find two intriguing
characteristics, depending on the level of measurement error.
First, when reliability is weak, RegPLSc yields uniformly lower
MAD than PLSc across all sample sizes. Second, in contrast, when
measures are highly reliable, the differences in the values of MAD
of the estimates become negligible, except for the smallest sample
size. This implies that the adverse effects of multicollinearity
may be largely offset by the measurement properties, such as
reliability. The similar pattern was replicated in a simulation
study by Grewal et al. (2004).

Another three-way interaction (Figure 4) is produced by the
interaction of R2 with the Method and Sample Size. Our findings
show that R2 is another meaningful factor that can mitigate the

FIGURE 2 | Two-way interactions of method × multicollinearity with MAD as

dependent variable. Dashed line = PLSc, solid line = regularized PLSc.

damaging effects of multicollinearity on the estimation accuracy.
In general, PLSc and RegPLSc perform similarly for a large R2 of
0.50, while the difference becomesmoremarkedly with amedium
R2 of 0.25. Consistent with the findings of Mason and Perreault
(1991), the adverse effects of multicollinearity can be markedly
attenuated with a greater portion of explained variance in the
dependent variable. Overall, reliability and R2 are likely to have
an important impact on the good recovery of parameters in the
presence of multicollinearity.

Statistical Inference
The above ANOVA test results suggest that all the experimental
conditions (multicollinearity, sample size, reliability, and R2)

FIGURE 3 | Three-way interactions of method × reliability × sample size with

MAD as dependent variable. Dashed line = PLSc, solid line = regularized

PLSc.
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FIGURE 4 | Three-way interactions of method × R2 × sample size with MAD

as dependent variable. Dashed line = PLSc, solid line = regularized PLSc.

are meaningful in differentiating the performance of the
two methods in parameter recovery. To gain an additional
understanding of the performance of these techniques, the
statistical power was further investigated under those four
experimental conditions. We estimated the standard errors of
path coefficients estimates on the basis of the bootstrap method
with 200 bootstrap samples (e.g., Reinartz et al., 2009).

Table 3 shows the empirically obtained statistical power
of each estimation method for each combination of the
experimental conditions. The numbers in the table indicate the
proportion of simulation trials for which a 95% confidence
interval for a path coefficient rejected the null hypothesis that
path coefficient equals zero.

The results suggest that under multicollinearity, RegPLSc
has an advantage over PLSc with respect to detecting statistical
significance, given that the hypothesized effect actually exists in
the population. This pattern of results replicates the findings
for path coefficient estimation accuracy. RegPLSc can maintain
very similar levels of statistical power, regardless of the degrees
of multicollinearity, whereas PLSc is highly hampered by severe
multicollinearity. For RegPLSc, it is apparent that the statistical
power varies as a function of the sample size, reliability, and R2.
More specifically, the minimum reasonable size of the sample
(N = 30) in this particular study can lead to unacceptably
low levels of statistical power. However, even under extreme
multicollinearity, a small sample size of N = 60 is adequate
for satisfactory statistical power (close to or above 80%), if R2

is large and reliability is high. With the larger sample sizes,
RegPLSc is able to achieve appropriate statistical power (above
80%) in almost all cases, if reflective measures are highly reliable.
This highlights the importance of reliable measurements in the
presence of multicollinearity. Conversely, when multicollinearity
is extreme, PLSc still fails to achieve a sufficient statistical
power for γ11 and γ12, which are substantially affected by high
correlations between ξ1 and ξ2, even if reliability is high, R2 is
large, and the sample size is relatively large (N = 200).

Although researchers often pay more attention to the control
of Type II error for theory testing in the SEM literature, they
also need to consider whether an estimation method shows good
control of Type I error rate (e.g., α = 0.05). Variance-based
SEM techniques sometimes tends to favor less parsimonious
models as they might fail to control Type I error rate (e.g.,
Henseler, 2012; Dijkstra and Henseler, 2015b). In general, a ridge
type estimator produces more stable estimates of parameters,
for which we have to pay with bias, making them prone to
inflated Type I errors (Erickson, 1981). It is therefore important
to evaluate the ability of RegPLSc to control the Type I error
rate under multicollinearity. For the effect γ22 = 0, PLSc
maintained an overall Type I error rate of 5%. This result is in
agreement with simulation results already obtained by Dijkstra
and Henseler (2015b). Although RegPLSc seems to maintain
marginally acceptable levels of Type I error (average = 0.085,
minimum = 0.02, maximum = 0.164), Table 3 suggests that
it can have inflated Type I error rates, even in relatively
large samples, in the case of severe multicollinearity. PLSc
adequately controls Type I error under all conditions, whereas
RegPLSc provides greater power. If prior research and theory are
sufficient to hypothesize structural model relationships, then we
recommend using RegPLSc for theory testing.

CONCLUSIONS

A recently developed PLSc is regarded as a viable alternative
to traditional PLS if the common factor model holds true.
However, in practice, PLSc may suffer from multicollinearity. In
this paper, PLSc was combined with ridge-type regularization
in order to deal with potential multicollinearity problems. The
ridge least squares estimates of the path coefficients can be
found by adding the regularization parameter into the OLS
estimation. The optimal value of the parameter may be chosen
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through cross-validation. Our overall conclusion is that the
proposed regularized PLSc is successful while dealing with a
severe multicollinearity problem in structural equation models
with common factors.

A comprehensive Monte Carlo study was conducted which
systematically compared the relative performance of the
regularized PLSc with non-regularized PLSc in the presence of
multicollinearity. In so doing, it provides a greater understanding
of the capability of these two estimation methods in terms of
parameter recovery and inference errors. The primary goal of
this section is to briefly discuss the implications of the simulation
study and provide guidelines for choosing between the two
methods.

The following summarizes the major findings for each
performance measure.

1. Mean absolute differences (MAD): both methods behave
similarly in terms of MAD under moderate multicollinearity.
If multicollinearity is from strong to extreme, the regularized
PLSc generally recovers the path coefficients much better than
non-regularized PLSc. The superior parameter recovery of the
regularized PLSc over its non-regularized counterpart is found
in most sample sizes considered, particularly when reliability
is weak or when R2 is moderate. When the sample size is very
small (N = 30), the regularized PLSc has smaller MAD than
the ordinary PLSc, regardless of the levels of reliability and R2.

2. Power: as long as multicollinearity is around 0.4, reliability
is high, and the sample size is more than 100, researchers
should not be overly concerned about the estimation accuracy
and statistical power of PLSc. However, if a higher level of
multicollinearity is present in the data, the regularized PLSc
should be the preferred choice of researchers. Under high or
extrememulticollinearity, it has the adequate statistical power,
even with relatively small sample sizes, as long as the reliability
is high.

These findings have important implications for researchers who
use PLS path modeling to inform substantive hypotheses. First,
if researchers are ensured that no serious multicollinearity is
present, there may be little reason to choose the regularized
PLSc over the non-regularized PLSc, since PLSc generally

resulted in similarly accurate parameter estimates and reliable
statistical inference. However, this is true only when a measure
is reasonably reliable. Otherwise, our results suggest that the
regularized PLSc should be the method of choice. Second, when
assessing structural models under conditions of multicollinearity,
the regularized PLSc is highly recommended for use over
non-regularized PLSc in all situations involving sample size,
reliability, and R2.

Despite these important contributions, the present study
has a few limitations. First, this study was designed to
generate synthetic data within a continuous variable framework.
Covariance structural models are often fitted to the data
measured on ordinal categorical scales.

Thus, it might be interesting to investigate the relative
performance of ordinal PLSc (Schuberth et al., 2018) vs.
its regularized extension with the sample matrix of ordinal-
scale variables. More methodological work is needed on
how to accommodate ordinal data within the framework of
regularized PLSc. Second, as is the case with all Monte Carlo
simulation studies, the relative performance of each method is
conditioned on the specific levels chosen for the experimental
conditions. Although the current simulation took into account
important experimental conditions frequently used in Monte
Carlo simulation studies within the framework of SEM, it is
necessary to contemplate a wider range of models and conditions
for more careful investigations of the relative performance of the
two approaches in future research.
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