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Latent Growth Curve Models (LGCM) have become a standard technique to model

change over time. Prediction and explanation of inter-individual differences in change

are major goals in lifespan research. The major determinants of statistical power

to detect individual differences in change are the magnitude of true inter-individual

differences in linear change (LGCM slope variance), design precision, alpha level, and

sample size. Here, we show that design precision can be expressed as the inverse of

effective error. Effective error is determined by instrument reliability and the temporal

arrangement of measurement occasions. However, it also depends on another central

LGCM component, the variance of the latent intercept and its covariance with the

latent slope. We derive a new reliability index for LGCM slope variance—effective curve

reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as

a standardized effect size index. We demonstrate how effective error, ECR, and statistical

power for a likelihood ratio test of zero slope variance formally relate to each other

and how they function as indices of statistical power. We also provide a computational

approach to derive ECR for arbitrary intercept-slope covariance. With practical use

cases, we argue for the complementary utility of the proposed indices of a study’s

sensitivity to detect slope variance when making a priori longitudinal design decisions

or communicating study designs.

Keywords: linear latent growth curve model, statistical power, effect size, effective error, structural equation

modeling, reliability, longitudinal study design

INTRODUCTION

People differ in rates of change in many functional domains, both at behavioral and neural
levels of analysis (e.g., Lindenberger, 2014). Describing, explaining, and modifying between-person
differences in change are the central goals of lifespan research (Baltes and Nesselroade, 1979; Baltes
et al., 2006; Ferrer and McArdle, 2010; McArdle and Nesselroade, 2014). Successful detection of
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inter-individual differences in change requires longitudinal
(within-person) study designs with adequate statistical power.

Statistical power, the likelihood of rejecting a false null
hypothesis, is a function of sample size, test size (that is, alpha
level), population effect size, and the precision of measurement.
In their considerations on optimal power in longitudinal designs,
Rast and Hofer (2014) illustrated that Willett’s (1989) reliability
of the growth rate—as captured by Growth Rate Reliability
(GRR)—plays an important role in determining statistical power
in longitudinal designs using linear latent growth curve models.
Latent growth curve models (LGCM) have become a commonly
used analysis technique to capture change in longitudinal data
(e.g., Meredith and Tisak, 1990; Ferrer and McArdle, 2003, 2010;
Duncan et al., 2006). Here we formally show why GRR is a useful
index of statistical power to detect slope variance in LGCM.
However, we also reveal that GRR may provoke misleading
interpretations because it remains constant over conditions
that alter statistical power to detect individual differences in
LGCM slopes using likelihood ratio tests. Specifically, the
magnitude of stable individual differences (intercept variance)
influences the power of 1-df likelihood ratio (LR) tests on slope
variance. However, this is not reflected by GRR. Furthermore,
the existence of intercept-slope covariance implies the existence
of slope variance, yet GRR does not change as a function
of intercept-slope covariance. These observations motivate and
justify the development of a new, more comprehensive reliability
measure that is coherent with the statistical power of LR
tests.

Central factors affecting statistical power to detect individual
differences in linear change include (a) the time elapsing from
the beginning to the end of a study (henceforth referred
to as total study duration); (b) the number of measurement
occasions and their distribution over total study duration; (c)
for each measured construct, the precision of the measurement
instruments administered at each occasion; and (d) the number
of participants, including any partial sampling designs, such as
withholding assessments to estimate practice effects (Baltes et al.,
1988), or other forms of planned missingness (McArdle, 1994;
Wu et al., 2016). Simulations of statistical power to detect LGCM
slope variances have already taken at least some of these factors
into account when evaluating questions about statistical power
(e.g., Hertzog et al., 2008; Wänström, 2009; Rast and Hofer, 2014;
Ke and Wang, 2015).

In this article, we present a formal derivation of measures
of precision, reliability, and statistical power that conform to
LR tests of slope variance. All three types of measures can be
regarded as gauging a design’s sensitivity to detect individual
differences in linear slopes (henceforth simply referred to as
change sensitivity). We derive a new measure of reliability,
which we term effective curve reliability (ECR). ECR can be
regarded as a standardized effect size measure that is coherent
with power to detect individual differences in linear change
using LR tests. We formally outline the conditions under which
GRR and ECR are identical, as well as the conditions under
which they diverge. We also discuss potential applications of
such measures in the service of a priori longitudinal design
decisions.

EFFECTIVE ERROR AND EFFECT SIZE
FOR SLOPE VARIANCE

Linear Latent Growth Curve Models
A linear LGCM for balanced designs assumes linear growth in
a variable xij over time points tj with j = 1, ..., M on i = 1, ...,
N persons with inter-individual differences in the intercept and
the linear slope, which are represented by latent variable means
and (co)variances. In a linear LGCM, the mean vector, µ, and the
covariance matrix, 6, of the observed variables are a function of
factor loadings,3, latent variables’ intercepts, ν, a latent variance-
covariance matrix, 9 , and a residual variance-covariance matrix,
2 (e.g., Bollen, 1989):

6 = 393
′

+ 2

µ = 3ν (1)

Under the assumption of homoscedastic and uncorrelated
residual errors, we define

3 =
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0
. . . 0
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(2)

with the number of measurement occasions M at times t1 to tM ,
the homogeneous residual error σ 2

ǫ , the mean µI , and variance
σ 2
I of the latent intercept, and the mean µS, and the variance of

the latent slope σ 2
S , and the latent intercept-slope covariance σIS.

One of the tj, j ∈ {1, . . . , M} can be conveniently fixed to zero to
identify the slope and intercept. Often t1 is fixed to 0 to define the
intercept at the first occasion of measurement (j = 1), but other
choices are possible.

In principle, SEM, multi-level model (e.g., Goldstein, 1986),
and random-effects model (e.g., Laird and Ware, 1982)
representations of the LGCM are empirically and analytically
identical (e.g., Rovine and Molenaar, 2000; Curran, 2003). For
the sake of clarity, we restrict our perspective to a treatment from
a SEM approach but our results and conclusions equally apply to
algebraically equivalent growth curve modeling approaches.

Specific and Generalized Variance Tests
LGCM captures individual differences in rates of change in the
between-person variance in linear slopes (e.g., Singer andWillett,
2003). In the univariate case, a formal statistical test of the null
hypothesis of zero slope variance can be obtained by two types of
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LR χ2-tests. Each of the tests is based on the difference in −2LL
(log-likelihood) goodness of fit of two nested models (meaning
that the parameters of the simpler model represent a subset of
the parameters of the larger model):

(a) A restricted model specifying that 9 has a free intercept
variance (σ 2

I ) but fixing both the slope variance (σ 2
S = 0)

and the intercept-slope covariance (σIS = 0), and a second
model freely estimating all three parameters in 9 . This 2-df
LR test relies on information in both the slope variance and
intercept-slope covariance to test the null hypothesis of zero
population slope variance.

(b) An alternative 1-df LR test ignores the information in the
intercept-slope covariance (by assuming it to be zero in the less
restricted model) and tests the loss of information by fixing
only the variance (that is, σ 2

S = 0) in the more restricted
model.

In practice, a third test is more often employed, a 1-df Wald test
(Bollen, 1989), generated from an estimated LGCM solution: the
estimated slope variance divided by its estimated standard error
of estimate. There are principled reasons in actual practice to
prefer the 2-df LR test over the 1-df LR test or the Wald test (see
section Discussion), but the 1-df LR test is particularly useful for
change-sensitivity analysis in longitudinal research design when
intercept-slope covariance is not considered substantial.

Prelude on Change Sensitivity and
Statistical Power
How can one best examine the sensitivity of linear change
measurements? von Oertzen (2010) and von Oertzen and
Brandmaier (2013) developed the concept of effective error,
which captures the precision with which properties of the latent
slope in a LGCM can be measured. In a single measurement,
measurement error of an instrument quantifies the amount of
unsystematic variance (and its inverse quantifies the precision
of measurement). In a longitudinal design, effective error
variance quantifies the magnitude of unsystematic variance in
the outcome of interest over repeated measures (and its inverse
is proportional to the precision of the repeated measures design
to measure a given outcome). Effective error is thus a measure
of sensitivity to detect a hypothesized effect. It can be computed
as a weighted composite of all variance sources in a LGCM
that potentially distort the measurement of the effect of interest.
As we will show below, major components of effective error
for LGCM linear slope variance are the temporal arrangement
of measurement occasions and instrument reliability. Effective
error is also scaled by intercept variance expressing the stable
between-person differences. As such, effective error is primarily
an index of change sensitivity that requires no assumption about
the true absolute (or, unstandardized) effect size, sample size, or
test size (significance level of the statistical test). Conceptually,
effective error can be construed as the error a researcher
would have experienced if one were able to measure the latent
construct of interest (here, variance in linear change) with a single
measurement. Despite the fact that this one-shot measurement
of change can never be attained in reality, it can be shown that

the correspondingminimal study design has equivalent statistical
power to the original study design (von Oertzen, 2010).

How is the concept of effective error relevant for
understanding statistical power? Recall that classic treatments
of power consider two main parameters that govern the power
of a study to reject the null hypothesis about a parameter value
when it is false (e.g., Cohen, 1988): effect size (as it relates to
the non-centrality parameter of the sampling distribution),
and dispersion of the sampling distribution, with two main
constituents: sample size and “error variance.” Consider the
dependency graph in Figure 1, which we use as a scheme to
develop a hierarchical conceptualization of change sensitivity.
We start with effective error and arrive at statistical power. From
top to bottom, the measures require an increasing number of
assumptions to be made about design factors or population
values (represented as white boxes): measurement precision,
true effect size, and test size. At the top of the hierarchy, effective
error is a measure of precision of a repeated-measures design,
construed broadly to imply all sources of variance that contribute
to the dispersion in the sampling distribution of the test statistic.
If an unstandardized population effect size (i.e., the absolute
value of the population slope variance parameter) is known or
assumed, one can derive a standardized effect size that rescales
the parameter against effective error to generate a metric-free
standardized effect size. Put differently, standardized effect
size can be conceptualized as the reliability of the population
effect, for instance, slope variance, in relation to the precision
with which it can be measured (e.g., Willett, 1989; Kelley and
Preacher, 2012). When scaling the standardized effect size with
sample size, we obtain evidence (the magnitude of evidence
against the null hypothesis) as a measure of change sensitivity.
Once one is willing to determine criteria of the statistical test
(i.e., the Type I error rate), statistical power itself is possibly
the ultimate index of change sensitivity as it determines the
probability of correctly rejecting the null hypothesis when it is
false. We stress that no single measure of change sensitivity is
generally superior to any other; instead, they complement each
other and convey different perspectives to change sensitivity, and
each is based on different population values or design factors (see
Figure 1).

Effective Error of the Specific Variance Test
The analytical derivations of effective error, standardized effect
size, and statistical power in this paper are based on the
assumption of no intercept-slope covariance, which renders them
coherent with the assumptions of the specific 1-df LR test of the
null hypothesis of zero slope variance. When the true intercept-
slope covariance parameter is different from zero, the 2-df test
should be used because (a) it has greater power to reject the null
hypothesis (Pinheiro and Bates, 2000; Hertzog et al., 2008), and
(b) the 1-df specific variance test is misspecified, as it represents
a LR test of two restricted models both incorrectly specifying
zero intercept-slope covariance. Currently, there is no known
closed-form solution for ECR in the general case. However,
in section Generalized ECR, we will provide an algorithm to
compute the ECR numerically for cases in which the intercept-
slope covariance is non-zero. This yields a standardized effect size
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FIGURE 1 | The relation of effective error (as the inverse of precision of a study

design), reliability, standardized effect size, evidence, and statistical power is

shown as a dependency graph. Gray boxes indicate measures, and white

boxes indicate design factors or population values. Each measure conveys

change sensitivity, with the number of assumptions to be made about design

factors and population values increasing from top to bottom.

metric coherent with the statistical power of the 2-df generalized
variance test. We proceed by presenting the analytical solutions
of precision, reliability, and power for the 1-df test. This test
is not only practically relevant but enables us to set out a
comprehensive perspective on the roles of GRR and ECR in
determining statistical power to detect individual differences in
linear change.

We now review a formal solution that allows one to derive
the proposed measures of change sensitivity, starting with the
variance of the effective error, for tests of linear slope variance in
a longitudinal study. We use power-equivalent1 transformations,
defined as transformations that structurally change themodel but
preserve statistical power for a given hypothesis (see MacCallum

1We are not referring here to equivalent models, that is, cases in whichmodels with

different parameter specifications generate identical derived mean and covariance

structures (Stelzl, 1986; Lee and Hershberger, 1990; MacCallum et al., 1993).

Instead, we are referring to models that, even if qualitatively dissimilar in terms

of model parameter specification, generate identical effective error for the effect of

interest.

et al., 2010; von Oertzen, 2010), to transform the original
complex design into a power-equivalent model with minimal
parameterization (see Figure 2). The resulting condensed model
specifies direct observation of the slope variance (which is, of
course, not possible in reality) and its corresponding residual,
effective error, which captures the aggregate effects of all variables
on precision of measurement.

Effective error serves as a basis for comparison of change
sensitivity across multiple studies that differ in specification (von
Oertzen and Brandmaier, 2013). The major practical value of an
expression for effective error is that models with equal effective
error have equal power to reject the null hypothesis of non-
zero slope variance, even if they are structurally different (under
the assumption that all parameters but the slope variance are
assumed fixed; see von Oertzen, 2010).

Here, we argue in favor of measures of change sensitivity that
are coherent with power for the specific variance test, that is, a
test that assumes no intercept-slope covariance (see null model
in Section Specific and generalized variance test). Extending
previous work (von Oertzen and Brandmaier, 2013), we derive
a general-case, analytical solution of effective error for known
and fixed non-zero intercept-slope covariance (see section 1 in
Supplementary Material). In the simplifying case of no intercept-
slope covariance, we obtain:

σ 2
eff =

σ 2
ǫ

M
∑

j = 1
t2j − η

(

M
∑

j = 1
tj

)2
(3)

with

η =
1

M +
σ 2

ǫ

σ 2
I

=
σ 2
I

M
(

σ 2
I + σ 2

ǫ /M
) =

ICC2

M
(4)

and σ 2
ǫ being the LGCM residual variance, σ 2

I being the intercept
variance, tj being the time point of measurement occasion j
(varying from 1 toM) and ICC2 being the intra-class correlation
coefficient for M repeated measures.

As can be seen from Equations (3) and (4), the effective
error depends directly on ICC2, and, thus, also on intercept
variance σ 2

I . Effective error increases with increasing ICC2 such
that change sensitivity decreases when intercept variance is large
in comparison to residual variance, or in other words, change
sensitivity increases with the amount of shrinkage captured as
ICC2. In summary, effective error increases with residual error
variance σ 2

ǫ , increases with intercept variance σ 2
I , decreases with

the number of measurement occasions M, and quadratically
decreases with the measurement time points tj, corresponding
to an asymptotic decrease proportional to the variance of the
distribution of measurement occasions.

RELIABILITY OF RANDOM SLOPES IN
LGCM

Reliability is typically conceived as a measure of consistency,
precision, or repeatability of measurement in a population
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FIGURE 2 | Left: A LGCM with a latent intercept “Icept” with variance σ2
I
and a latent slope “Slope” with variance σ2

S
, and intercept-slope covariance σIS. A single

variable is observed for a total of M occasions of measurement (labeled x1 to xM) and an error term with variance σ2
e . Right: A hypothetical minimal and

power-equivalent model representing a design in which the slope is measured directly with a single source of effective error.

(Kline, 1998). In practice, a reliable measurement instrument
reproduces the same or similar scores when measuring the
same construct from one assessment to another. This was the
principal justification used by Willett (1989) in deriving GRR,
which he treated as an extension of the reliability of a simple
difference score to cover the reliability of slope variance across
larger numbers of measurement occasions. We take a similar
approach here, but directly link the concept of reliability of the
slope variance to effective error, grounding that concept in the
basis for statistical power of the LR test of slope variances. In
a hypothetical model, in which slope variance could be directly
measured, total observed slope variance would be due to true
score variation, that is, individual differences in linear slope and
measurement error variance.

We depart from Willett (1989) in the error term used to scale
reliability of measurement for LGCM slopes, using the effective
error σ 2

eff
instead, to rescale the true effect of inter-individual

differences σ 2
S in order to yield an alternative reliability index

for slopes, effective curve reliability (ECR). ECR scales slope
variance as a proportion of the sum of slope variance and slope
measurement error:

ECR =
σ 2
S

σ 2
S + σ 2

eff

(5)

ECR is thus an index that ranges between zero and one, and
becomes larger as population slope variance increases, or as
the precision of the longitudinal study design reduces effective
error. Conceptualized as reliability, it can also be regarded as a
standardized effect size statistic (Kelley and Preacher, 2012).

When intercept-slope covariance is negligible, ECR is
obviously similar to the aforementioned GRR. In fact, GRR is
related to ECR and equal to it in a few limiting cases. We
illustrate the relations of ECR and GRR using the equations
above that assume that σIS = 0. One noteworthy limiting
case is when ICC2 = 1, where individual differences account
for all of the reliable sources of variance in the dependent
variable over time; that is, each measurement within a person
strongly depends on the others and the information gained
about intercept differences by any given measurement within one
person is largely redundant:

σ̃ 2
eff =

σ 2
ǫ

SST
(6)

with SST being the squared deviations of tj about their mean.
Formally:

SST =

M
∑

j = 1

(

tj − t̄
)2

and t̄ =

M
∑

j = 1

tj

M
(7)

Inserting this special-case effective error, σ̃ 2
eff
, into the definition

of ECR, we obtain GRR:

GRR =
σ 2
S

σ 2
S + σ 2

ǫ /SST
(8)

A second limiting case is when ICC2 = 0 renders η = 0 in
Equation (3), and produces a similar simplification on effective
error. It renders ECR = GRR because there is no intercept
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variance. Otherwise, ECR and GRR diverge by the degree to
which ICC2 is smaller than one, that is, to the extent that intercept
variance is relatively small or residual error variance large. As a
final special case, GRR= ECR when the sum across time points is
zero,

∑

ti = 0, which is the case inmodels in which the intercept
is centered with respect to t:

σ 2
eff =

σ 2
ǫ

M
∑

j = 1
t2j − η ·

(

M
∑

j = 1
tj

)2
=

σ 2
ǫ

M
∑

j = 1
t2j

=
σ 2

ǫ

SST
= σ̃ 2

eff (9)

Otherwise, ECR will differ from GRR. As we show next, ECR’s
direct connection to intercept variance ensures that it, and not
GRR, is coherent with power of the 1-df LR test for slope
variance.

Monte Carlo Simulation of ECR, GRR, and
Power of the 1-df Slope Variance Test
To illustrate that the statistical power of the 1-df LR test is
dependent on intercept variance, as expected based on the
definition of effective error, we ran selected Monte Carlo
simulations manipulating intercept variance. We hypothesized
that the effect of intercept variance on the power of the LR test
is captured by ECR but not by GRR. We also simulated the Wald
test as defined in section Specific and Generalized Variance Tests.
The baseline model for the simulations had three measurement
occasions with equally spaced intervals and a sample size of
100 (cf. Figure 3). For illustration, slope variance was set to 2,
residual variance was varied between 10, 20, and 30 (as indicated
by the different lines) and intercept variance was varied between
0.1 and 200 to cover a wide range of possible ICC2 values. The
intercept was defined at the first occasion of measurement by
fixing the basis vector loading t1 to zero. The critical purpose of
the simulation is to show the effect of ICC2 on power of the 1-df
LR test and the Wald test.

Figure 3 depicts the simulation results based on 1,000 Monte
Carlo replications of each condition. The left-hand panel plots
power as a function of varying intercept variance scaled as ICC2.
Clearly power of the specific variance LR test (solid lines) is
strongly affected by the proportion of intercept variance, as
predicted. However, this is not the case for the Wald test (dashed
lines). The right-hand panel plots ECR and GRR as a function
of the same ICC2. GRR, plotted in dashed lines, is unaffected by
ICC2. In contrast, ECR (solid lines of right-hand panel) tracks
the effects of ICC2 on estimated power. ECR does not ignore
intercept variance and thus conforms to the effective error and
power of the 1-df LR test, whereas GRR is in line with the Wald
test, which ignores intercept variance. The simulation shown in
Figure 3 is grounded in a particular set of LGCM parameter
values, but reflects a general principle of coherence of ECR with
power under the given assumptions.

In Figure 4, we extended this simulation to show how
statistical power and ECR change as a function of either shifting
measurement time points in time (including centering the
design) and prolonging or shortening total study duration by
a multiplicative factor. The baseline model is a linear change
model with three measurement occasions, baseline, 2 years after,

and 4 years after beginning of the study. Intercept, slope, and
residual variance were modeled after the values reported by
Rast and Hofer (2014) for the Memory-in-Reality measure from
the OCTO-Twin study (Johansson et al., 1999, 2004). Figure 4
shows that both ECR and statistical power increase when total
study duration is increased as measurement occasions are added.
Importantly (but not shown in the figure), GRR does not change
as a function of time shift (because SST is constant under time
shift).

In summary, both ECR and GRR connect closely to statistical
power to detect non-zero slope variance in LGCMs because they
are standardized effect sizemeasures for the slope variance, which
makes them independent of the original metric in the dependent
variable. Under the assumption of no intercept-slope correlation
and if one wanted to use aWald test, GRR is the appropriate effect
size statistic. However, ECR is superior to GRR when computing
effect sizes for the 1-df specific variance test because it traces
statistical power more accurately.

If one assumes for the sake of argument that the selection
of studies by Rast and Hofer (2014) is representative for a
particular future longitudinal study of individual differences
in psychological aging, one can compare expected differences
between ECR and GRR in the range of plausible parameter
values from their reported data sets. We used the reported
data from Rast and Hofer (2014) and observed ICC2 between
0.62 and 0.98 (median: 0.89), which may—depending on the
density of measurements—lead to substantial differences in the
predictions about change sensitivity as captured by ECR vs. GRR.
That is, within the reported range of the studies used in their
meta-analysis, post-hoc GRR estimates range from 0.02 to 0.72
(median = 0.36) and ECR estimates range from 0.03 to 0.76
(median= 0.40).

Below, we illustrate that this magnitude of difference can
have a serious impact on design decisions. Before doing so, we
corroborate our perspective on the usefulness of ECR as a proxy
for statistical power by formally showing how ECR relates to
statistical power in the specific variance test.

FORMALIZING THE CONNECTION OF ECR
TO STATISTICAL POWER OF THE 1-df
SLOPE VARIANCE TEST

In the typical fourfold table capturing hybrid Neyman–Pearson
inference, the probability of Type I errors is denoted α and that
of Type II errors is denoted as β . The power of a LR test (1 –
β) to correctly reject a (false) null hypothesis is defined as the
probability of obtaining a value of the test statistic that is larger
than a critical value derived from the sampling distribution of
that test statistic under the null hypothesis:

1− β =

∫ ∞

χ2
ν,0(α)

χ2
ν,λ (x) dx (10)

with χ2
ν,λ being a non-central χ2-distribution with ν degrees of

freedom and non-centrality parameter λ, and χ2
ν,0 (α) denoting

the critical value for test size α . Note that the start of the integral
is the critical value for the null distribution, which is usually a
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FIGURE 3 | Statistical power for specific variance test and Wald test, and effective curve reliability (ECR) and Growth Rate Reliability (GRR), as an effect of varying

intercept variance scaled as the intra-class correlation coefficient (ICC2). Left: Lines are Monte Carlo estimates of statistical power of the specific variance test (solid)

and Wald test (dashed) with each line representing a model with different residual error variance. Right: Corresponding ECR (solid lines) and GRR (dashed lines). GRR

is constant for all intercept variance values (scaled as ICC2) whereas ECR traces the shape of change in statistical power as seen in the left panel. GRR and ECR

converge to the same value as ICC2 approaches 1.

central χ2-distribution with ν degrees of freedom. However, if
the variance is at a boundary (i.e., in our situation, if the slope
variance is restricted to be positive), this distribution may be
different, e.g., a mixture of χ2-distributions (see Self and Liang,
1987; Stoel et al., 2006). Ignoring the mixture distribution may
lead to lower power than one could achieve when attending to
it (but see Kolenikov and Bollen, 2012). However this pertains
equally across all possible designs and, thus, can be ignored at the
level of effective error and reliability.

For a test of a single parameter, in particular, a restriction
on the slope variance, we set ν = 1. The left integral bound
χ2(ν, 0) is then determined by the critical value α as chosen
by the investigator. The area to be integrated over depends
on the non-centrality parameter λ, which again depends on
the true slope variance, and effective error here. Using the
approximation for λ by Satorra and Saris (1985), we obtain
its value from the likelihood ratio of the minimal model with
the slope variance restricted to zero over the minimal model
without any restriction2. The model-predicted covariance of the
unrestricted model is the sum of true slope variance and effective

error, 6min =

[

σ 2
S + σ 2

eff

]

. The restricted minimal model

assumes zero slope variance, which yields 6res =

[

σ 2
eff

]

.

Under the assumption of an unrestricted mean structure, the log-
likelihood ratio (see section 2 in Supplementary Material) as the
estimate of the non-centrality parameter is

λ = N

[

1

1− ECR
− ln

(

1

1− ECR

)

− 1

]

(11)

2Note that this likelihood ratio is equal to the likelihood ratio of the original model

from which the power-equivalent minimal model was derived (see Figure 2 for

illustration), with a zero-slope restriction on the original model (see von Oertzen,

2010).

Omitting third-order terms, an approximation of this Equation is

given by λ ≈ N
(

ECR2

1−ECR

)

which reveals that the relation of ECR

and λ is dominated by a quadratic term of reliability and a linear
term of sample size.

To summarize, by calculating the effective error σ 2
eff

from the

structural design parameters of a given LGCM (residual variance,
time points of occasions of measurement, and intercept variance)
and assuming a true slope variance σ 2

S , a sample sizeN, and a test
size α, we can derive λ, the non-centrality parameter of the χ2-
distribution under the hypothesis H1. By numerically integrating
this χ2-distribution between a left bound depending on α, and
infinity, we obtain the statistical power for the specific variance
test under the assumption of all parameters but slope variance
known and fixed. Note that under this assumption, the analytical
power value is typically overestimated as freely estimating the
remaining parameters will cost power. Still, it can be obtained
that ECR and sample size are the primary determinants of
statistical power of the LR test. The minimal power-equivalent
metrics, effective error and ECR, are particularly useful as they
constitute projections of the multidimensional design parameter
space of a LGCM to a univariate index. They can both serve
as comprehensive indices of change sensitivity in a longitudinal
design exercise. ECR, in particular, is suitable as a general-
purpose measure of slope effect size that is comparable across
different studies because it does not depend on the units of
measurement of the dependent variable.

Generalized ECR
When intercept-slope covariance is non-zero, the 1-df specific
variance test is mis-specified because it assumes a zero covariance
σ 2
IS = 0, and the analytical solution of ECR as presented above,

which does not capture this misspecification, is no longer fully
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FIGURE 4 | The effects of shifting, prolonging, or compressing the study duration on statistical power and effective curve reliability (ECR). Top left: Monte Carlo

simulation of the effect of decreasing or increasing residual error variance (x-axis) or shortening/prolonging total study duration (blue, green, and red lines) on statistical

power (y-axis). Top right: The effect of decreasing or increasing residual error variance (x-axis) or shortening/prolonging total study duration (blue, green, and red

lines) on ECR (y-axis). ECR traces the same shapes of decreases in statistical power as observed in the top left panel. Bottom left: Monte Carlo simulation of the

effect of shifting the measurement time points by factor (−4, −2, 0, 2, 4; colored lines) and changing residual error variance (x-axis) on statistical power (y-axis). Note

that anchoring the intercept at the first or last measurement has identical power. Lowest power is achieved with a centered design. Bottom right: The effect of shifting

the measurement time points by factors (−4, −2, 0, 2, 4; colored lines) and changing residual error variance (x-axis) on ECR (y-axis). Note that the green line

represents both the original design (shift: 0) and a design with intercept variance anchored at the last measurement (shift: −4), both of which empirically have identical

power whereas the centered design has lowest ECR and power. As shown in Equation (11), for all variations in time sampling, GRR yields the values corresponding to

the ECR of the time-centered design (yellow line; t = −2), and thus differential power because time shifts are not reflected in GRR.

coherent with its power. Currently, there is no analytical solution
to compute ECR from a set of LGCM parameters for arbitrary
intercept-slope covariance, which is then coherent with the 2-df
generalized variance test. However, we provide an algorithm that
can be used to compute ECR in the general case (see section 3
in Supplementary Material). This 2-df ECR can be interpreted
as a standardized effect size of the total latent information about
individual differences in linear slope. Under the assumption that
σ 2
IS = 0, the analytical and computational solutions are identical.
To illustrate the coherence of this generalized index of ECR

with power to detect slope variance, we ran an extension for
one condition of our previous simulation considering the effect

of intercept-slope covariance. Figure 5 shows a slice of the
simulation where residual error variance was set to 20, As before,
we varied ICC2 and also varied intercept-slope correlation,
σIS, between −0.5 and +0.5. The left-hand panel of Figure 5
shows the power of this test as a function of ICC2 (as in
Figure 3), but also as a function of σIS. The right-hand panel
also displays the computed ECR as a function of ICC2 and σIS.
Clearly power of the 2-df generalized variance test is strongly
affected by the proportion of intercept variance and the intercept-
slope correlation. Most noteworthy, comparison of the two
panels shows that ECR completely tracks these variations in
power. In contrast, GRR (dashed line) is identical across all
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FIGURE 5 | Statistical power and effective curve reliability (ECR) values for the 2-df generalized variance test as a function of intercept-slope correlation (ISC). Left:

Lines are Monte Carlo estimates of statistical power of the generalized variance test, with each line representing a model with different intercept variance scaled as the

intra-class correlation coefficient (ICC2). Right: Corresponding ECR (solid lines). GRR is constant for all conditions shown here.

conditions shown, despite the fact that the observed power ranges
between 10% and 70%. Clearly ECR, not GRR, is the appropriate
standardized effect size index for the 2-df test.

Considerations When Gauging Change
Sensitivity
We now consider the practical implementation of the concepts
introduced above for the purpose of a priori power analysis when
designing longitudinal studies. To illustrate our analytical
derivations, we continue to assume no intercept-slope
correlation, σIS = 0, but the same considerations can be
made using the computational approach allowing for non-zero
intercept-slope correlations. Let us assume that a developmental
researcher is engaged in design decisions when planning a
longitudinal study. In practice, one cannot necessarily use
existing studies to fully determine the configuration of LGCM
parameters that are needed to specify the statistical power
of a given design precisely. One reason for this claim is that
phenomena do not always generalize across different constructs
and measures, but another is that published papers often do not
report all the relevant parameter estimates that are needed to
compute ECR. Instead, partial or indirect evidence regarding
parameters is often reported, such as an estimate of slope
variance but none of the remaining parameters. How should
one proceed on the basis of whatever minimal information
is available in advance about the magnitude of individual
differences in change so as to inform the study design process
and its sensitivity to detecting said change? Although there are
no incontrovertible general answers to this question, there are a
number of practical guidelines and solutions available depending
on what is considered to be known about the phenomena of
interest. In the following, we present several cases showing how

one can make use of minimal information about measures and
their change to generate feasible study designs.

The parameters that determine ECR and hence power to
detect LGCM slope variances can be divided into two categories:
those that describe the process under investigation and those
that describe the study design. The former parameters determine
the structural model (9 ; see Equation 2) of the LGCM, that
is, the slope variance, intercept variance, and intercept-slope
covariance. The latter parameters comprise the measurement
model of the LGCM (3 and 2; see Equation 2), and consist
of measurement precision, number and temporal distribution
of measurement occasions, and total study duration. For the
most part, the parameters of the measurement model can be
directly influenced by design decisions. Hence variations in
those parameter values can and should be selected in ways that
are appropriate to design pragmatics and inevitable external
constraints, such as budget and time (see Brandmaier et al.,
2015), while optimizing power to detect the effect of interest.
Making informed choices about population values is typically
more difficult but equally important, as the choice of these values
will also influence the outcome of a power analysis for a given
design problem. In particular, deriving a plausible estimate of the
population slope variance for a given measure or set of measures
is crucial because it fundamentally determines the ECR and hence
statistical power. If estimates of unstandardized slope variance
or values of ECR from previous studies are available, they likely
provide the basis for a good first guess. We would therefore
like to emphasize the pressing need to report such indices of
change sensitivity. If necessary, a conservative best-guess must be
made from whatever other information is available. According to
Willett (1989), the most logical strategy is probably to adopt a
specific target reliability, such as GRR or ECR, when planning
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a study. We endorse this idea, although we demonstrate some
of its limitations below. But how does one arrive at reasonable
LGCM parameters needed to compute an index like ECR when
no estimates from existing studies are available? In the next
section, we offer some heuristics on how to go about solving this
problem, given the limited information that is typically available
at the time of study design.

Some heuristics for estimation of ECR need to include the
separate contributions of different sources of error variance to
effective error. The total error variance in a univariate LGCM
is a sum of slope regression residual variance and indicator
error variance. Slope regression residuals are errors of prediction
in the usual sense of a regression equation, and their variance
summarizes dispersion of occasion-specific latent factor scores
around the best-fit line estimated by the LGCM (that is,
they are occasion-specific shocks or disturbances in the latent
variable space). Indicator error captures stochastic measurement
error variance in the observed variable at each occasion. The
distinction between these sources of error variance should be
borne in mind when attempting to set parameter values in
a priori power analysis. In practice, one usually has a static
reliability estimate for a given measure that can be used to
estimate measurement error variance, even though assumptions
about measurement equivalence across time may not strictly
hold in a given data set (Meredith and Horn, 2001). However,
one also needs an estimate of regression residual variance. Our
current approach to this problem invokes the assumption of
homogeneous residual error variances as a heuristic that can
be relaxed in more advanced applications. The following simple
illustration of the underlying more complex logic exemplifies
this.

Assume that information is available on the stability of
individual differences of the target variable in a comparable
population over a particular epoch of time. Given this
information, provisional estimates of parameter values for the
LGCM power analysis can be based on what is known about
relations between stability of individual differences and LGCM
parameters (Rogosa et al., 1982; Rogosa and Willett, 1983). In
particular, there is a close correspondence between stability over
time and ICC. In the following we show how the estimates
of indicator reliability (such as parallel-forms reliability) and
estimates of stability over time can be leveraged to estimate error
variance in the LGCM for power analysis purposes.

Consider classical test theory approaches to alternate-forms
reliability (e.g., Jöreskog, 1971). Under the assumption of
homogeneous measurement error and no change between
measurements, the correlation of these two measurements
estimates their reliability (and corresponds to the intra-class
correlation, ICC):

ρreliability =
σ 2
I

σ 2
I + σ 2

ǫ

(12)

This allows us to relate the alternate-forms reliability to the
individual differences in intercept and the residual error variance,
which can be considered invariant over time for our purposes.
If we are willing to assume a linear change process with true

individual differences in change, then we can leverage a stability
coefficient (a correlation of a variable with itself over time in
a given sample (e.g., Bloom, 1964), sometimes labeled a test-
retest correlation), to achieve estimates of intercept variance
and regression residual variance. This approach is based on
simplifying the following equation for the stability coefficient:

ρstability =
σ 2
I + TσIS

√

σ 2
I + σ 2

ǫ

√

σ 2
I + σ 2

ǫ + T2σ 2
S + 2TσIS

(13)

Equations (12) and (13) allow us to translate stability and
reliability estimates into growth curve parameter estimates and
thus aid in study design planning by reducing degrees of freedom
in the choice of parameter values. In the following, we present
illustrative cases to show how these transformations can be
applied, and more broadly, how design decision can be informed
by using effective error and ECR.

ILLUSTRATED APPLICATIONS

Case 1: Deriving LGCM Weights
Here we will illustrate how the relationships identified in
Equations (12) and (13) using minimal pre-existing information
about the phenomena under investigation can generate useful
parameter values for the evaluation of statistical power. Suppose
a researcher is interested in longitudinally measuring episodic
memory performance in a group of older adults. If a similar
study has already been conducted via LGCM, we would generally
be willing to use its estimates to generate a power analysis.
For this purpose, we would assume generalizability in measures,
procedures, occasions, and populations. But what if a comparable
study with LGCM results is lacking, that is, there is neither a
report of existing effect sizes nor of parameter values that could
serve as a starting point for our analysis of change sensitivity?
In a literature review, the researcher does find (a) a cross-
sectional study reporting an alternate-forms reliability of 0.9 for
the memory task, and (b) longitudinal data on a similar task
reporting a 3-year stability coefficient of 0.85. These values reduce
uncertainty about possible LGCM parameter values and can be
leveraged to start the power analysis process.

In our example, we assume a scaling in T-score units, such that
the total observed variance is 100 (given that SD = 10). If there
were no individual differences in change (i.e., σ 2

S = 0), there
would be perfect stability of individual differences and hence zero
regression residual error. In this limiting case, which we assume
to hold with a parallel-forms reliability estimate, we find that
σ 2
I + σ 2

E = 100. Taking this information together with the other
given, ρreliability = 0.9, and solving Equation (12), we see that

σ 2
I = 90 and σ 2

E = 10. Of course, our focus is on variance in
change, and if we assume true individual differences in change,
then the 3-year test-retest stability estimate must be lower than
the parallel-forms estimate because these systematic differences
in rates of change contribute to the observed score variances.

We can apply Equation (13) to generate a crude estimate
of σ 2

S . A practical constraint is that it is usually impossible to
specify a point value for the intercept-slope covariance term σIS
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in advance. However, one solution to the problem is to assume
that σIS = 0, at least as a starting point. With this assumption
we can solve Equation (13) for σ 2

S by inserting T = 3 and using
our previous estimates of σ 2

I and σ 2
E , yielding an estimate of

σ 2
S = 1.35. These parameter values can then be used to conduct

statistical power analysis for a longitudinal design based on the
specific parameters.

Brandmaier et al. (2015) developed a power analysis utility
for LGCM slope variances called LIFESPAN. Using LIFESPAN
(or the R code in the Supplementary Material) we can fill in
the derived values for a design that is supposed to measure
participants, for example, 3 times over 5 years, and we obtain
estimated σ 2

eff
= 0.76, ECR = 0.64, and GRR = 0.63. The

effective error gauges the precision of the design in units
of unstandardized effect size without relying on a specific
unstandardized effect size. The standardized effect size metrics
indicate that a substantial amount of change-related variance in
the variable of interest is associated with systematic individual
differences in rates of change.

We might want to be more conservative when estimating true
slope variance based on point estimates of residual variability
and indicator reliabilities, given that these may be based on
minimal information from the literature. For example, we might
be targeting a slightly different population for which we believe
change to be more difficult to detect (e.g., a sample that is
slightly younger, slightly better educated, or that includes a lower
proportion of participants with dementia) than the population
generating available information on indicator reliability and
stability. Table 1 presents a range of slope variance estimates for
different test-retest stabilities crossed with different alternative-
forms reliabilities. The smaller the test-retest stability, the smaller
the proportion of stable individual differences and the larger the
estimate of variance in change is.

Table 1 highlights that there can be no true variance in slopes
when both estimates of reliability and stability are identical. As
noted by Rogosa et al. (1982), this is the degenerate case in which
there are no individual differences in change, and in which the
reliability of the difference score must be zero. In our terms,
there is no opportunity for change sensitivity because there are
no individual differences in change that the design must be able
to detect.

In practice, engaging in power analysis means that we can
entertain a range of possible slope variance effect sizes. Use of
a power analysis program like LIFESPAN facilitates generation
of a range of possible power values by systematically varying

TABLE 1 | Slope variance as a function of reliability and stability.

Reliability Stability

0.750 0.800 0.850 0.875 0.890

0.890 4.54 2.64 1.07 0.38 0.00

0.900 4.89 2.95 1.35 0.64 0.25

0.925 5.79 3.74 2.05 1.31 0.89

Slope variance values are derived under the assumption of no intercept-slope covariance

and no slope regression residuals.

values of error variance components, but the same thing can also
be done with values of ECR and unstandardized effect size (see
Brandmaier et al., 2015).

Case 2: Evaluating and Comparing Study
Designs
Evaluating and comparing existing study designs is often a useful
first step when planning a longitudinal study. When post-hoc
power estimates are available from a set of pertinent studies
(e.g., Rast and Hofer, 2014), one can call on these existing
designs as a starting point for a future design. As argued earlier,
statistical power can be decomposed into several components
influencing change sensitivity. In the following example, we show
how different indicators of change sensitivity may inform us in
complementary and useful ways when comparing longitudinal
studies with respect to their change sensitivity.

Assume we have singled out two existing studies from the
literature targeting the same or a similar outcome of interest. In
each, participants were measured every 3 months for 1 year and
it happens that the estimated intercept variances were similar,
suggesting an approximate σ 2

I = 90. The studies fundamentally
differ in the precision of measurement instruments used (5.9 in
Study A and 10 in Study B), in themagnitude of estimated change
variance (3.0 in Study A and 5.0 in Study B), and in sample size
(200 participants in Study A and 300 in Study B). Now, a post-
hoc power analysis reveals that Study A has a power of roughly
70% to reject the null hypothesis, σ 2

S = 0, whereas Study
B has a corresponding power of 85%. If presented with these
power values only, we might be inclined to start our own study
design by building upon the original design of the more powerful
study, namely Study B. However, the difference in sample sizes
between the studies must also be considered in evaluating the
space of possible designs that are made up of alternative sample
sizes, different temporal spacing of observations, and so on. As
we noted earlier (see Figure 1), statistical power is determined
by standardized effect size and sample size. Since we may not
yet have decided on a sample size for our new study, it seems
reasonable to compare the reliabilities of the studies given that
reliabilities are independent of sample size. Using the LIFESPAN
program, we find that for both studies, ECR = 0.246. Thus, one
possible inference, based only on reliability, is that the difference
in observed statistical power is solely due to the larger sample size
in Study B. Upon closer inspection of the differences between the
studies, we are reminded that the dependent variables also had
different indicator reliabilities. Willett (1989) already noted that
reliability confounds both individual differences in change and
measurement precision, which may present hidden problems for
the unwary investigator. If we wanted to plan our future study
design independently of the absolute magnitude of individual
differences, we can turn to effective error as a metric that is
in units of (estimated) true effect size but independent of its
magnitude. Doing so, we obtain σ 2

eff
= 9.20 for Study A and

σ 2
eff

= 15.33 for Study B. By comparing effective error (which

only works when variables are scaled in the same metric), we
consider the measurement model and factor out sample size
and true effect size. Then we find that Study A is the more
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sensitive measurement model (withmore favorable precision and
temporal spacing of measurements) to detect change variance
despite its lower estimated post-hoc power even though Study B is
the overall more powerful study when respective unstandardized
effect size (magnitude of population slope variance) and sample
sizes are also taken into account. This result may seem trivial
as the difference in effective errors in this illustration—for
the sake of simplicity—is solely due to apparent differences in
indicator reliability. In actual applications, study differences in
ECR may often reflect differences arising from constellations
of total study duration, measurement density, and indicator
reliability. Although we advocate using a standardized effect size
measure like ECR in design planning, this example shows that no
single measure of change sensitivity is inherently superior to the
others; instead, they convey complementary summaries of study
design properties.

Case 3: Finding Optimal Measurement
Density
Suppose a group of researchers is about to start a longitudinal
study. The initial design calls for five occasions of measurement,
each 1 year apart, thus spanning a total time of 4 years. Based
on a literature review, the group assumes σ 2

I = 10, σ 2
S = 1,

and σ 2
ǫ = 50. Using the LIFESPAN program, the researchers

compute an effective error σ 2
eff

= 2.50 and a relatively low

reliability of ECR = 0.29. When discussing the design, the
question comes up whether a different spacing of measurements
in time would be better to detect individual differences in change.
The initial design will be denoted as a set of time points at
which measurement takes place relative to study onset, {0, 1, 2, 3,
4}. The following alternative spacings of measurement occasions
are discussed: for example, for organizational reasons, either the
first three or last three measurement occasions could be moved
closer together with time differences between measurements of
6 months each: {0, 0.5, 1, 3, 4}, {0, 1, 3, 3.5, 4}. Table 2 lists
ECR, GRR, and Monte-Carlo-simulated power values for all
three designs. Note that ECR values are scaled proportionally to
statistical power whereas the two alternative designs have equal
GRR values but different statistical power. The difference arises
because the ICC2 = 10/(10 + 50/5) = 0.5, which is different
from the asymptotic case of ICC2 = 1, which would render
both effect size indices identical. ECR, not GRR, adequately
quantifies differences in effective error due to the different
spacing of measurement occasions. Given that sample size and
unstandardizedmagnitude of individual differences in change are
constant across all alternative designs considered, deciding upon
the best (that is, the most change-sensitive) design can actually be
based on effective error (coherent with ECR) alone and need not
necessarily rely on simulated power values.

DISCUSSION

This paper has demonstrated how measures of sensitivity
to detect individual differences in linear change including
statistical power can be leveraged to help researchers
communicate and make decisions about longitudinal

TABLE 2 | Measures of study design quality for different distributions of five

measurement occasions over 4 years.

Design Dispersion GRR ECR Statistical power (N = 100)

{0, 1, 2, 3, 4} 2.50 0.17 0.29 0.51

{0, 0.5, 1, 3, 4} 2.95 0.19 0.28 0.51

{0, 1, 3, 3.5, 4} 2.95 0.19 0.33 0.63

Statistical power refers to the 1-df variance test and is based on a Monte Carlo estimate

with 2,500 repetitions. Dispersion is given as the variance of the measurement time points.

Note that the second and the third design have equal GRR values despite different ECR

values and statistical power.

designs. Building on earlier results (von Oertzen, 2010;
von Oertzen and Brandmaier, 2013), we have described
how the central concept of effective error relates to
concepts of reliability and standardized effect size for the
LGCM slope variance parameter, captured either as GRR
or ECR. The direct connection among effective error,
standardized effect size, and statistical power of the 1-df
LR test in a maximum likelihood framework provides a
comprehensive perspective on sensitivity to detect individual
differences in change that can be used as a benchmark for
evaluating alternative longitudinal designs in terms of change
sensitivity.

The developments presented here allow for a much broader
and more comprehensive approach to analyzing, diagnosing, and
planning longitudinal studies than is common practice in the
field. In our view, both a lack of a formal system for comparison
and contrast of influences of design decisions on statistical
power, and the absence of a practically implementable approach
to testing a wide range of alternative design configurations
have led researchers to neglect a priori power analysis of
change sensitivity at the planning stages of longitudinal
investigations.

The approach illustrated here provides a means by which
researchers can systematically and comprehensively consider
trade-offs of design features that generate equivalent power.
They can also examine how change sensitivity can be improved
by attending to specific design features, such as adding
occasions ofmeasurement or prolonging the total study duration.
Furthermore, this approach has been implemented in a power
analysis utility program (LIFESPAN; Brandmaier et al., 2015)
that facilitates iterative consideration of how power changes
as a function of manipulating different design features. In
the Supplementary Materials, we also provide R code to
compute the discussed indices of precision and reliability.
This paper provides a formal treatment of the elements
that are essential to make this approach both statistically
coherent and practically feasible. Of course, the LIFESPAN
approach is a first pass at a utility aiding in the formalization
of the optimal-design problem, and we fully expect that
future efforts can greatly improve upon how the a priori
design process can be supported by alternative optimization
approaches.

Considerations of statistical power are inevitably a function of
the specific hypotheses being tested. Researchers typically focus
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on more specific questions than detecting variance in change.
Hence a generic assessment of change sensitivity is no substitute
for an evaluation of a longitudinal design’s power with respect to
a more specific hypothesis critical to the viability of the respective
study. Given that most longitudinal studies include multiple
outcome variables, one would need to consider the possibility
of a change sensitivity analysis within each relevant construct
domain, an aspect of the problem that we do not consider further
in this paper.

Building on previous work by Willett (1989) and Rast and
Hofer (2014), we have shown that both ECR and GRR can be
regarded as a metric-free index of slope variance effect size. We
also showed that, when σIS = 0, GRR is a special case of ECR,
and that only ECR is coherent with the effective error term
for the specific and generalized LR test of zero slope variance
that governs its power. Although GRR and ECR are closely
related, we have shown here that ECR provides a better basis
for capturing statistical power of the 1-df LR test (assuming
no intercept-slope covariance) or the 2-df LR test (assuming
an arbitrary intercept-slope covariance), because it does not
ignore the contribution of intercept variance (scaled as ICC2)
and intercept-slope covariance to the power of the LR test. On
the other hand, GRR may be better suited for indexing an effect
size coherent with the statistical power of the Wald test as it
ignores intercept variance and intercept-slope covariance like the
Wald test does. Along with others in the literature, we continue
to argue (Hertzog et al., 2008) that the generalized 2-df test of
zero slope variance is superior to the other tests, and generally
preferable, because a non-zero intercept-slope covariance is also
evidence of individual differences in change. Therefore there
is a pressing need to extend the line of research presented in
this paper to focus on how the more complex effective error
for a 2-df LR test of slope variance—and an effect size index
based upon it—may be analytically derived to achieve a better
understanding about how design factors, individually and in
interaction, determine statistical power to detect variance in
change.

Previously, Rast and Hofer (2014) criticized simulations
of LR test power attending to indices of error that were
influenced by intercept variance (e.g., Hertzog et al., 2008)
and advocated the merits of GRR for power analysis based on
the fact that it ignored intercept variance. We have shown,
to the contrary, that the power of the specific variance LR
test is influenced by intercept variance (as scaled by ICC2)
and that this influence on power is reflected in effective
error and ECR, but not by GRR. The interconnection of
intercept variance and slope variance can also be shown via
the asymptotic non-independence of both components; the
fact that the Fisher information matrix in an LGCM has
non-zero entries for the covariance of the intercept variance
parameter and slope variance parameter (even if intercept-
slope-covariance is zero) violates the asymptotic independence
assumption and has implications on bias in parameter estimates,
standard errors, and statistical power (Kaplan and Wenger,
1993).

In general, we advocate that studies of LGCM begin to
report estimates of ECR and GRR to provide a means to scale

change sensitivity across different studies with different outcome
variables3. One benefit of reliability indices such as ECR and GRR
is that they allow formeta-analysis of effect sizes based on existing
findings in the literature. Rast and Hofer (2014) used GRR to
characterize existing studies in the field of normal cognitive
aging. Our findings demonstrate another benefit: The availability
of ECR as an effect size statistic will further improve the field’s
ability to conduct a priori power analyses that attend specifically
to change sensitivity, often by leveraging information from other
studies. Given that studies often do not report the full set of
unconditional LGCM variance parameter estimates that can be
used to generate estimates of ECR, we recommend that studies
using linear LGCM begin reporting an estimate of ECR as a
measure of slope effect size that can be useful for communication
of results and can facilitate longitudinal design decisions by other
researchers.

Although the ultimate target for evaluating change sensitivity
is the statistical power to detect slope variance, statistical power
is not the only index of change sensitivity to consider or
report. Rather, our illustrative cases show that any of the three
measures—effective error, ECR, or statistical power—can provide
helpful information about aspects of change sensitivity. When
examining alternative design possibilities within a single study,
it seems reasonable to operate on the most basic component
of change sensitivity proposed here, that is, the effective error
of the slope variance test, as it already allows for the analysis
of trade-offs of study design properties against each other.
In particular, effective error enables researchers to analyze
the effect of adding or removing occasions of measurement,
prolonging or shortening the study’s duration, or switching
between differentially reliable measurement instruments (von
Oertzen, 2010; von Oertzen et al., 2010; von Oertzen and
Brandmaier, 2013). Reliability, as indexed by ECR, scales a
candidate slope variance parameter by its effective error in a
given design. As such, it provides a metric for standardized effect
size that can be used to compare different study designs against
each other directly and efficiently. Furthermore, one can consider
absolute precision of the design in terms of effective error as
well (see Case 2). Effective error is expressed in absolute units of
unstandardized effect size but is independent of both sample size
and true effect size.

In the study design phase, guesses about effect sizes may draw
upon reports of published studies. If no plausible estimates of
absolute magnitude of slope variance can bemade when planning
a longitudinal study, effective error is still applicable as a metric
for comparisons of change sensitivity when deciding between
different proposed study designs for the same outcome (i.e.,
when change is measured in the same units across designs). If
longitudinal outcomes of different studies can legitimately be
scaled to a common metric (e.g., T-scores), then effective error
provides a metric for comparisons of relative precision even
across different scales.

3An estimate of ECR from a LGCM using ML estimation is obtained by

substituting estimates of LGCM parameters in Equation (7). Currently, this can

be accomplished by inputting LGCM parameter estimates into the LIFESPAN

program, which returns values for effective error, ECR, and GRR.
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Another commonly reported measure of reliability in latent
variable models is ICC2. ICC2 is closely connected to ECR but
targets the reliability of intercept variance. It is usually defined
as a reliability measure in which variance due to differences
between persons in a repeated-measures design is expressed as
a proportion of the total variance (Raudenbush and Bryk, 2002).
ICC2 can be identically obtained by following the logic proposed
here to derive reliability (ECR) in an intercept-only LGCM, in
which no change of the construct is assumed. Then, we obtain
ICC2 as the reliability of the intercept variance (representing
stable between-person differences).

Limitations
The limitations of using any of the indices developed in this paper
inherit the well-known limitations of statistical power analysis in
general. If all parameters of the LGCM can be specified a priori
(i.e., they can be considered known at the time of planning),
existing software such as Mplus (Muthen and Muthen, 2007),
PinT (Snijders et al., 2007), OpenMx (Boker et al., 2011), simsem
(Pornprasertmanit et al., 2016), or SIMR (Green and MacLeod,
2016) can be used to evaluate the power to reject candidate
values of the parameter of interest—in our case, slope variance.
For practical purposes, the need to specify values of parameters
in advance can be an impediment to further efforts to use a
priori power analysis to inform design decisions. At one extreme,
this problem can be avoided by simply calculating the power
to reject a particular magnitude of overall model fit using a
relative goodness-of-fit index, as suggested by MacCallum et al.
(2006). One can thereby make statements about the power of
the entire model to detect consequential violations in overall
model fit. However, this is not equivalent to evaluating power
to reject a critical null hypothesis about a specific parameter.
Our claim is that change sensitivity in a longitudinal study
is often best captured by the ability to detect LGCM slope
variance.

If post-hoc estimates of population values are used to
determine indices of change sensitivity, the uncertainty about the
empirical point estimates of the parameters induces uncertainty
in the derived indices. That is, effective error, effective growth
curve reliability, and statistical power reflect true change
sensitivity only to the degree to which post-hoc parameter
estimates involved in their computation (e.g., residual error,
slope variance, or intercept variance) reflect the corresponding
population values. The same is necessarily true for a priori
guesses that can only be as accurate as the researcher’s a
priori knowledge or intuition in picking parameter values.
Therefore, it is typically recommended that a designer choose
conservative values during study design planning (von Oertzen
and Brandmaier, 2013). In the light of uncertainty of best guesses,
it is also advisable to calculate reliability of change or statistical
power for a range of possible values and either to integrate over
this range or to select the most conservative value among them.
Alternatively, it may be useful to treat uncertainty in estimates
formally (Kelley and Rausch, 2011; Lai and Kelley, 2011; Gribbin
et al., 2013) and to derive confidence intervals for effect size
estimates in accordance with best practices proposed by Kelley

and Preacher (2012). Future work should focus on capturing the
uncertainty around single-point estimates of ECR and GRR.

In a similar vein, effective error, reliability, and statistical
power are only valid under the assumption that the growth
process is adequatelymodeled, that is, there is nomisspecification
in the underlying LGCM. The perfect interchangeability of
power-equivalent operations—for instance between adding more
occasions within a given total study duration or increasing total
study duration—is based on the assumption that linearity of
change is strictly true, and not just a useful approximation
for shorter stretches of time. Also note that our considerations
are only valid under the assumption of homogeneous residual
error variances over time. The present manuscript is a
central building block for planned future work addressing
more complex models, such as non-linear growth curve
models or (dual) change score models, and other types of
hypotheses (e.g., the generalized variance test). We recommend
to use Monte-Carlo-based simulation approaches (Muthén and
Muthén, 2002) for assessing more general designs currently
not covered by our approach. However, simulation-based
approaches will always be slower and their results will always
be more difficult to generalize than an analytical solution that
allows a fuller overall theoretical understanding of what is
being studied. For example, solving the problem of finding
alternative, power-equivalent designs to an initial study design
(Brandmaier et al., 2015) may be time-consuming, at best,
if not infeasible when purely relying on simulation-based
approaches.

Finally, missing data, and specifically attrition in longitudinal
data, decrease the change sensitivity of longitudinal designs.
von Oertzen and Brandmaier (2013; Appendix B, Theorem 4)
proved that under a missing-completely-at-random (MCAR)
assumption, an effective error can be derived for each group that
has a unique attrition pattern, and the resulting effective error
is a weighted harmonic mean of the effective errors aggregated
over attrition groups. Given that attrition from longitudinal
studies is decidedly not MCAR, further work on this problem is
needed.With the same approach, spacing betweenmeasurements
varying both within and across people can be accounted for by
conceiving of such a study design as a multiple-group design, in
which each person is his or her own group, and in which the
overall effective error is a function of the person-specific effective
errors.

Future work should also address additional statistical issues.
The power equivalence theory that is the basis for the present
work assumes that all parameters other than the values subject
to a hypothesis test are known and fixed. Power-equivalent
operations are performed under this assumption; however, in
practice, all LGCMs are typically freely estimated from data. The
same assumption is made in other analytical approximations
of statistical power, such as that of Satorra and Saris (1985).
When researchers are exploring a design space for variations
in change sensitivity, they need to be aware that the LR
test in question may have lower power than is estimated
by the power equivalence approach because it actually freely
estimates all parameters. Thus, after a candidate design has
been chosen using power-equivalence trade-offs, a final Monte
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Carlo simulation to generate a more accurate estimate of power
with the candidate design should be conducted. The LIFESPAN
program can generate the Monte Carlo simulation for a specified
set of hypothetical model parameters generated by power-
equivalence searches of the design-trade-off space (Brandmaier
et al., 2015).

To conclude, we believe that the notions of precision (scaled as
effective error), reliability, and statistical power help to promote
the insight that increasing sample size is not the only, and not
necessarily even the best way to optimize change sensitivity of a
longitudinal design. Instead, all design decisions influence change
sensitivity, and research designs can be optimized accordingly
even before the size of the sample has been specified. Greater
sample size increases statistical power of the LR test, to be
sure, but one can consider other means to achieve this that
may be more practically feasible in a given study context
(e.g., by administering instruments with higher reliability). The
present approach enables researchers to evaluate, optimize,
and communicate longitudinal designs comprehensively by

considering how design features interactively influence change
sensitivity in LGCM.
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