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Research shows that people’s wait-and-see preferences for actions against climate
change are a result of several factors, including cognitive misconceptions. The use of
simulation tools could help reduce these misconceptions concerning Earth’s climate.
However, it is still unclear whether the learning in these tools is of the problem’s surface
features (dimensions of emissions and absorptions and cover-story used) or of the
problem’s structural features (how emissions and absorptions cause a change in CO2

concentration under different CO2 concentration scenarios). Also, little is known on how
problem’s difficulty in these tools (the shape of CO2 concentration trajectory), as well as
the use of these tools as a decision aid influences performance. The primary objective
of this paper was to investigate how learning about Earth’s climate via simulation
tools is influenced by problem’s surface and structural features, problem’s difficulty,
and decision aids. In experiment 1, we tested the influence of problem’s surface and
structural features in a simulation called Dynamic Climate Change Simulator (DCCS) on
subsequent performance in a paper-and-pencil Climate Stabilization (CS) task (N = 100
across four between-subject conditions). In experiment 2, we tested the effects of
problem’s difficulty in DCCS on subsequent performance in the CS task (N = 90 across
three between-subject conditions). In experiment 3, we tested the influence of DCCS as
a decision aid on subsequent performance in the CS task (N = 60 across two between-
subject conditions). Results revealed a significant reduction in people’s misconceptions
in the CS task after performing in DCCS compared to when performing in CS task in the
absence of DCCS. The decrease in misconceptions in the CS task was similar for both
problems’ surface and structural features, showing both structure and surface learning
in DCCS. However, the proportion of misconceptions was similar across both simple
and difficult problems, indicating the role of cognitive load to hamper learning. Finally,
misconceptions were reduced when DCCS was used as a decision aid. Overall, these
results highlight the role of simulation tools in alleviating climate misconceptions. We
discuss the implication of using simulation tools for climate education and policymaking.

Keywords: stock-and-flow simulations, correlation heuristic, violation of mass balance, experience, problem
structure, decision aids, heterogeneity, Dynamic Climate Change Simulator
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INTRODUCTION

Understanding stocks and flows is a fundamental process in
the real world (Dörner, 1996; Sterman, 2008, 2011; Cronin
et al., 2009; Fischer et al., 2015). For example, we maintain our
bank accounts (a stock) as a result of our incomes (inflows)
and expenses (outflows); we support our body weight (a stock)
by managing our diet (inflow) and exercise (outflow); and,
we maintain carbon-dioxide levels in the atmosphere (a stock)
by emissions (inflow) and absorption (outflow) (Cronin et al.,
2009; Dutt, 2011). Different stock-flow problems share the same
underlying structure: A stock or level accumulates the inflows to
it less the outflows from it (Sweeney and Sterman, 2000).

It is a well-known phenomenon that people have difficulties
in understanding the dynamics of stock-flow problems (Dörner,
1996; Sterman, 2008, 2011; Cronin et al., 2009; Dutt, 2011).
Stock-flow problems, even simple ones involving one stock and
two flows (inflow and outflow), are difficult, even for highly
educated people with strong mathematics backgrounds (Sweeney
and Sterman, 2000; Sterman and Sweeney, 2002; Sterman, 2008,
2011; Cronin et al., 2009; Dutt, 2011). For example, Sweeney and
Sterman (2000) presented graduate students at Massachusetts
Institute of Technology with a picture of a bathtub and graphs
showing the inflow and outflow of water, then asked them
to sketch the trajectory of the stock of water in the tub.
Although the patterns were simple, fewer than half responded
correctly. We denote such difficulties in responding to stock-flow
failure.

Stock-flow failure has also been documented in problems
concerning Earth’s climate system (Dutt, 2011). Here, people
find it difficult to sketch the shape of emissions and absorptions
corresponding to a carbon-dioxide (CO2) concentration
trajectory. Two of the prevalent misconceptions in climate
stock-flow problems are the correlation heuristic and violation
of mass balance (Dutt and Gonzalez, 2012a,b). According
to the correlation heuristic, people incorrectly infer that an
accumulation (CO2 concentration) follows the same path as
the inflow (CO2 emissions). This misconception assumes that
stabilizing emissions would rapidly stabilize the concentration;
and, emission cuts would quickly reduce the concentration
and damages from climate change. This reasoning is incorrect
because reliance on the correlation heuristic significantly
underestimates the time delays existent between reductions
in CO2 emissions and their effect on the CO2 concentration
(Sterman, 2008; Dutt and Gonzalez, 2012a, 2013a,b; Kumar and
Dutt, unpublished).

According to the second misconception in climate stock-
flow problems, violation of mass balance, people incorrectly
infer that atmospheric CO2 concentration can be stabilized even
when emissions exceed absorptions. According to mass balance
violation, people think that the current state of the Earth’s climate,
where emissions are about double that of absorptions, would not
pose a problem to future stabilization (Sterman, 2008; Dutt and
Gonzalez, 2012a; Kumar and Dutt, unpublished).

Although people’s wait-and-see preferences for actions against
climate change are a result of several factors like social identities,
party-affiliations, and denial (McCright and Dunlap, 2011),

recent research has shown that climate misconceptions are also
likely to influence such preferences (Dutt, 2011). Specifically,
correlation heuristic thinking leads to wait-and-see preferences
because people believe that stabilizing CO2 emissions is sufficient
to stabilize the CO2 concentration. Similarly, violation of mass
balance thinking leads to wait-and-see choices because people
believe that CO2 concentration can be stabilized even when CO2
emissions are double that of absorptions (Sterman, 2008; Dutt
and Gonzalez, 2012a; Kumar and Dutt, unpublished).

Prior research has used a Climate Stabilization (CS) task
to test for correlation heuristic and violation of mass balance
misconceptions (Sterman and Sweeney, 2007; Sterman, 2008;
Dutt and Gonzalez, 2012a,b). In the CS task, participants are
given the concentration’s starting value in the year 2000 and its
historical trend between 1900 and 2000 on paper. Participants are
asked to sketch the CO2 emissions and absorptions shapes that
would correspond to the projected scenario of CO2 concentration
between 2001 and 2100. Irrespective of educational backgrounds,
people show widespread reliance on correlation heuristic and
committing of violation of mass balance in their sketches in
the CS task (Sterman and Sweeney, 2007; Sterman, 2008; Dutt
and Gonzalez, 2012a). Overall, the CS task has been used
as a measure for assessing people’s stock-flow misconceptions
concerning climate change (Sterman, 2008; Fischer et al., 2015).

Furthermore, recent research has documented the role that
repeated feedback about cause-and-effect relationships plays
on human understanding of dynamic systems, particularly
for Earth’s climate system (Moxnes and Saysel, 2009; Dutt
and Gonzalez, 2012a). Researchers have used computer-
based simulation tools and decision-making games (called
microworlds) to provide repeated feedback, where a reduction
in people’s correlation heuristic and violation of mass balance
misconceptions has been demonstrated regarding Earth’s climate
system (Dutt and Gonzalez, 2012a, 2013b; Kumar and Dutt,
unpublished) and, dynamic systems more generally (Gonzalez
et al., 2005; Gonzalez and Dutt, 2011; Dutt and Gonzalez,
2012b). For example, Dutt and Gonzalez (2012a) made
participants perform in a Dynamic Climate Change Simulator
(DCCS) microworld and then transferred them to the CS task
immediately. Participants controlled CO2 concentration to a goal
level in DCCS by deciding the CO2 emissions and absorptions.
Next, in the CS task, participants sketched the CO2 emissions and
absorptions corresponding to a CO2 concentration stabilization
trajectory. Results revealed that exposure to DCCS before CS
task reduced correlation heuristic and violation of mass balance
misconceptions.

Although prior research has documented a reduction in
correlation heuristic and violation of mass balance due to
exposure to simulation tools, little is known on how people
improve their stock-flow misconceptions when they interact
with these tools. For example, Dutt and Gonzalez (2012a) gave
their participants the same problem in DCCS as well as the
following CS task. As the problem did not change between DCCS
and CS task, it is unclear whether people learnt the structural
features (how emissions and absorptions cause a change in CO2
concentration under different CO2 concentration scenarios) or
the surface features (dimensions of emissions, absorptions, and
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concentration; and, the cover-story used) of the problem in
DCCS before attempting the CS task.

While performing in DCCS, one possibility is that people
may learn the problem’s structural features. For example, recent
research has shown that structural knowledge helps people
reduce their correlation heuristic and violation of mass balance
misconceptions in both cases when problems encountered in the
CS task are structurally similar or different compared to those
presented in DCCS (Kumar and Dutt, unpublished). However,
while performing in DCCS, another possibility is that people
learn the surface features of the climate problem (Chi et al., 1981;
Gonzalez and Wong, 2012).

In literature, procedural reinstatement principle states that
performance would be better at transfer when the problems
encountered during transfer are similar to those encountered
during training (Healy et al., 2005). Also, heterogeneity of
practice hypothesis states that training on heterogeneous
(diverse) problems improves performance during transfer
(Gonzalez and Madhavan, 2011). Because of the procedural
reinstatement principle (Healy et al., 2005), we expect better
performance when problems in the CS task (transfer) are similar
in structural features or surface features to those that are learned
during DCCS training (before the CS task). Also, because of
heterogeneity of practice hypothesis (Gonzalez and Madhavan,
2011), we expect problems with surface or structural training
during DCCS would likely produce a more efficient transfer of
knowledge and improved performance in the CS task.

Moreover, as per the difficulty hypothesis, people’s transfer
of learning is improved when they train on difficult problems
compared to easy problems (Schneider et al., 2002; Healy et al.,
2005; Young et al., 2011). Thus, if people are subjected to
difficult problems in DCCS, then they would likely be able to
reduce their correlation heuristic and violation of mass balance
misconceptions in the CS task due to the effects stated in the
difficulty hypothesis. One way to create difficulty of problems in
DCCS is by changing the shape of the CO2 concentration curve
presented: If the shape of the concentration curve is curvilinear,
then this curvilinear shape would create more perceived difficulty
among participants compared to when the concentration curve is
straighter.

However, it is also possible that a difficult curve in DCCS
may not help reduce correlation heuristic and violation of
mass balance misconceptions in the CS task because of the
predictions of the cognitive load theory (Sweller, 1994; De
Jong, 2010). According to cognitive load theory, people possess
bounded working memory capacity (Simon, 1959). Thus, if
a learning task requires too much-working memory capacity,
learning may get hampered (De Jong, 2010). In the DCCS
task, it is possible that the processing of different elements
like emission, absorption, and concentration requires certain
working memory capacity. Also, the processing of the curvilinear
CO2 concentration curve shape may further need additional
working memory capacity. Due to the overload of working
memory capacity, participants may not be able to learn the
stock-flow relationships in DCCS and reduce their correlation
heuristic and violation of mass balance misconceptions in the CS
task.

Finally, simulation tools could also be used as a side-by-side
decision aid that helps people understand relationships between
emissions, absorptions, and concentration by a trial-and-error
procedure. There is evidence that even in simple descriptive
binary-choice decision tasks, when participants are provided with
experiential decision aids, they tend to rely on the experience
gained in these aids in making descriptive decisions and improve
their decision making (Jessup et al., 2008; Camilleri and Newell,
2011; Lejarraga and Gonzalez, 2011). When DCCS is given as
aid, people are likely to get a chance to try different emissions
and absorptions and see their effect on concentration. Thus,
misconceptions are possible to reduce significantly when people
are given an opportunity to try different values of emissions and
absorptions in DCCS and to test their effect on the shape of the
concentration trajectory.

The primary goal of this research is to investigate via lab-
based experiments people’s stock-flow misconceptions about
climate change and the role that different factors like surface
and structural features, problem difficulty, and decision aids play
in reducing people’s stock-flow misconceptions. Such research
may help policymakers formulate appropriate policies for climate
education in schools and colleges that make use of simulation
tools to supplement conventional teaching (Meadows et al.,
2016). Furthermore, this research would help provide theoretical
and practical advancements in understanding the effectiveness of
repeated feedback through simulation tools as an intervention in
reducing misconceptions.

In what follows, we first present the background where we
highlight prior research and motivate our hypotheses. Next, we
report three experiments where we test how problem’s surface
and structural features, problem’s difficulty, and decision aids
help reduce misconceptions about climate change. In the first
experiment, we present how problems with surface or structural
training during DCCS help reduce misconceptions in the CS
task. In the second experiment, we investigate how problem
difficulty during DCCS training help reduce misconceptions in
the CS task. In the final experiment, we study how DCCS as a
decision aid helps in lowering correlation heuristic and violation
of mass balance misconceptions by allowing participants to test
different values of emissions and absorptions in a trial-and-
error procedure. We close the paper by discussing our results
and highlighting the implications of using simulation tools (like
DCCS) in education and policymaking against climate change.

BACKGROUND SECTION

Prior research in stock-flow problems concerning Earth’s climate
has analyzed reliance on correlation heuristic and violation of
mass balance in the CS task (Sterman and Sweeney, 2007;
Sterman, 2008; Dutt and Gonzalez, 2012a) (see Figure 1). In
the CS task, participants are asked to sketch CO2 emissions and
absorptions that would stabilize the CO2 concentration according
to a given scenario by the year 2100 (given in Figure 1A).
Participants are given the concentration’s starting value in the
year 2000 (Figure 1B), and its historic trends and emissions
between the years 1900 and 2000. Participants are asked to sketch
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FIGURE 1 | The Climate Stabilization (CS) task. Participants are given CO2

concentration stabilization scenario, and they are required to sketch the CO2

emissions and absorptions corresponding to the scenario. (A) The problem
presented shows increasing trajectory where CO2 increases and stabilizes by
2100. (B) Values of emission and absorption between year 1900 and 2000.
(C) A typical sketch by participants in the CS task relying on correlation
heuristic and violation of mass balance for the increasing trajectory (Source:
Dutt and Gonzalez, 2012a).

the CO2 emissions and absorptions shapes that would correspond
to the projected scenario of CO2 concentration between 2001 and
2100. Figure 1C shows an example of a participant that relied on
correlation heuristic, whereby he inferred that the shapes of the
CO2 emissions and concentration should look alike. Moreover,
as seen in Figure 1C, the participant commits violation of mass
balance in her response as she fails to make emissions equal to
absorption when the concentration reaches 2100. This paper uses

the CS task with different CO2 concentration trajectories and
cover stories to evaluate people’s reliance on correlation heuristic
and violation of mass balance misconceptions.

Furthermore, recent research has evaluated how repeated
feedback in DCCS helps reduce correlation heuristic and
violation of mass balance misconceptions (Moxnes and
Saysel, 2009; Dutt and Gonzalez, 2012a,b; Kumar and Dutt,
unpublished). As shown in Figure 2, DCCS is a dynamic replica
of the CS task, it is based on a simplified and adapted climate
model (Dutt and Gonzalez, 2012b), and it has been inspired by
generic dynamic stocks-and-flows tasks (Gonzalez et al., 2005;
Gonzalez and Dutt, 2011). In DCCS participants set yearly CO2
emissions and absorptions and press “Make Decision” button.
Upon pressing the “Make Decision” button, the system moves
forward a certain number of years. Participants need to maintain
their CO2 concentration at the red goal line in the tank (which
represents the atmosphere) and follow the CO2 concentration
trajectory shown in the bottom left panel.

Although DCCS helps reduce people’s misconceptions
compared to a no-DCCS intervention (Dutt and Gonzalez,
2012a); however, little is currently known on how this reduction
is influenced by problem’s surface and structural features,
problem’s difficulty, and use of decision aids. The goal of this
paper is to investigate the role of these factors in reducing
people’s misconceptions concerning the climate system.

First, we propose to create heterogeneous problems during
DCCS training and transfer participants from DCCS training
to similar/different problems in the CS task. The similarity
or differences in problems between training and transfer will
allow us to test participants’ surface or structural learning.
According to the heterogeneity of practice hypothesis (Gonzalez
and Madhavan, 2011), we expect problems with surface or
structural training during DCCS training to likely produce more
effective transfer of knowledge and improved performance in the
following CS task. Also, because of the procedural reinstatement
principle (Healy et al., 2005), we expect better performance when
problems in the CS task are similar in structure or surface features
to those that are learned during DCCS training.

Moreover, if people are subjected to difficult problems in
DCCS, then they would likely be able to reduce their correlation
heuristic and violation of mass balance misconceptions in the
CS task due to the difficulty hypothesis (Schneider et al., 2002;
Healy et al., 2005; Young et al., 2011). However, on account of
cognitive load theory and people’s bounded working memory
capacity (Simon, 1959; Sweller, 1994; De Jong, 2010), it is also
likely that if people are subjected to difficult problems in DCCS,
then they would not be able to reduce their correlation heuristic
and violation of mass balance misconceptions in the CS task.

Another factor that is likely to influence people’s
misconceptions about climate system is the use of simulation
tools as decision aids (Jessup et al., 2008; Camilleri and Newell,
2011; Lejarraga and Gonzalez, 2011). Thus, providing an
experiential DCCS decision aid side-by-side to the CS task is
likely to improve decision making in the CS task compared to
a condition without the decision aid. In the next section, we
detail experiments where we evaluated the influence of problem’s
surface and structural features, problem’s difficulty, and use of
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FIGURE 2 | The Dynamic Climate Change Simulator (DCCS) task. DCCS is a dynamic replica of the CS task. (1) Participants set yearly CO2 emissions and
absorptions and press “Make Decision” button. (2) The system now moves forward a certain number of years. (3) Participants need to maintain their CO2

concentration at the red goal line in the tank (which represents the atmosphere) and follow the CO2 concentration trajectory shown in the bottom left panel (Source:
Dutt and Gonzalez, 2012a).

decision aids on people correlation heuristic and violation of
mass balance misconceptions.

EXPERIMENT 1: INFLUENCE OF
SURFACE AND STRUCTURAL
FEATURES IN REDUCING STOCK-FLOW
MISCONCEPTIONS

In the first experiment, we test the influence of learning of
surface and structural features in DCCS for reducing people’s
misconceptions against climate change. Here, we will train people
on heterogeneous problems in DCCS, which are diverse in
surface and structural features. According to the heterogeneity of
practice hypothesis (Gonzalez and Madhavan, 2011), one expects
problems with surface or structural training during DCCS would
likely produce more effective transfer of knowledge and improved
performance in the CS task.

Methods
Participants
Participants were recruited through an email advertisement
for a climate study at Indian Institute of Technology Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
Technology Mandi with a written informed consent from all

participants. Participation was voluntary and all participants
gave written informed consent before starting their study.
There were 100 participants in all (74 males and 26 females).
Ages ranged from 18 to 26 years (average = 21 years;
SD = 1.5 years). All participants were students from Science,
Technology, Engineering, and Mathematics backgrounds (73%
undergraduate, 19% masters, and 8% doctoral). They were
randomly assigned to one of the experimental conditions
involving DCCS and CS tasks. Participants were paid a flat fee
of INR 50 (approximately 0.9 USD) for their participation after
they completed the study.

Experimental Design
Participants were randomly assigned to one of four between-
subjects conditions (N = 251 in each condition): CS-Surface,
CS-Structure, DCCS-Surface, and DCCS-Structure. In both
DCCS-Surface and DCCS-Structure conditions, participants
played 2-rounds of DCCS repeatedly with heterogeneous
problems that were either based upon surface features or
structural features and were then transferred to the CS task
immediately. In the CS-Surface and CS-Structure conditions,
participants played an unrelated task for the average time it took
to complete 2-rounds in DCCS and they were then transferred to

1A power calculation with alpha level 0.05 and beta level 0.20 revealed a minimum
sample size of 22. Thus, sample sizes of more than 22 were adequate for analyses
reported in this paper (Faul et al., 2007)
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the CS task immediately. Heterogeneity in problems was either
based upon surface features or structural features.

Surface features refer to the dimensions of emissions,
absorptions, and concentration; and, the cover-story used in
DCCS. In the DCCS-Surface condition, participants first tackled
Figure 1’s problem in each of the two rounds repeatedly in
DCCS, however, the problem presented in each round differed
randomly in the cover story and units used (i.e., in surface
features). As shown in Figure 3, we used a glucose cover
story (DCCS-Gluc; see Figure 3A; inflow = glucose intake,
outflow = glucose metabolized, and accumulation = glucose
concentration in blood over 100 time periods) and a temperature
cover story (DCCS-Temp; see Figure 3B; inflow = heating,
outflow = cooling and accumulation = temperature in a
room over 100 time periods). In each of these two problems,
participants controlled their accumulation trajectory in DCCS
along a stabilization trajectory by making inflow and outflow
decisions every 5 time periods repeatedly. After finishing two
rounds in DCCS, participants were transferred to the CS task
where they attempted two problems that were presented in a
random order. Both these problems corresponded to Figure 1’s
problem, where one of the problems was presented with the
climate cover story (CS-Climate; i.e., just like Figure 1’s problem
and different from problems presented during DCCS training),
while the other problem was presented with the temperature
cover story (CS-Temp; i.e., similar to one of the problems during
the DCCS training). In both problems, participants needed to
sketch the shape of inflow and outflow that corresponded to the
accumulation stabilization scenario. The CS-Surface condition
contained the same two problems as part of the CS task in the
DCCS-Surface condition; however, the CS-Surface condition did
not include DCCS training prior to the CS task. In the CS-Surface
condition, participants played an unrelated Tetris game before
performing in CS tasks for a duration that equaled the time taken
to finish 2-rounds of DCCS performance in the DCCS-Surface
condition.

Structural features refer to how emissions and absorptions
cause a change in CO2 concentration under different CO2
concentration scenarios in DCCS. In the DCCS-Structure
condition, participants first performed in two different climate
problems presented randomly in DCCS. Each problem provided
a different CO2 stabilization trajectory, where CO2 concentration
increased from 765GtC in 2000 to stabilize at 936GtC by 2100 or
a year before. In one of these DCCS problems, the stabilization
occurred in year 2100 (Figure 1’s problem; DCCS-2100). In
the other problem, the stabilization at 936GtC occurred much
earlier in years 2070 (DCCS-2070), respectively, and the 936GtC
value was maintained till the end year 2100 (see Figure 4A
for the shape of the CO2 concentration curve). In each of the
two DCCS problems, participants were asked to control the
CO2 concentration to the stabilization trajectory over a 100-
year period by making emission and absorption decisions every
5 years, repeatedly. Once participants completed 2-rounds in
DCCS, they were transferred to the CS task immediately where
participants attempted two problems presented in a random
order. One of these two problems were Figure 1’s climate
problem (CS-2100-Inc; i.e., like one of the problems in the

DCCS training), and the other problem was Figure 4B’s climate
problem (CS-2100-Dec; i.e., different from all problems in the
DCCS training). In both CS problems, participants needed
to sketch the shape of CO2 emissions and absorptions that
corresponded to the CO2 concentration stabilization scenario.
The CS-Structure condition contained the same two problems
in the CS task of the DCCS-Structure condition and did
not include training in DCCS. In the CS-Structure condition,
participants played an unrelated Tetris game before performing
the CS task for a duration that equaled the time taken to
finish 2-rounds of DCCS performance in the DCCS-Structure
condition.

The CS-2100-Inc, CS-2100-Dec, CS-Temp, and CS-Climate
conditions formed the control groups in the experiment.
The DCCS-2070, DCCS-2100, DCCS-Temp, and DCCS-Gluc
formed the training groups in the experiment. The CS-2100-
Inc (DCCS), CS-2100-Dec (DCCS), CS-Temp (DCCS), and
CS-Climate (DCCS) formed the test groups in the experiment.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of participants
committing violation of mass balance. A participant relied on
correlation heuristic when the correlation coefficient between
CO2 emissions and CO2 concentration during the period
2000–2100 was greater than or equal to 0.8. A participant
committed violation of mass balance for the increasing trajectory
stabilizing in 2100 (2070), if CO2 emissions were less than CO2
absorptions before year 2100 (2070) or CO2 emissions were
not within ± 0.5GtC of CO2 absorptions in 2100 (2070 and
beyond). A participant committed violation of mass balance for
the decreasing trajectory stabilizing in 2100, if CO2 emissions
were greater than CO2 absorptions before year 2100 or CO2
emissions were not within ± 0.5GtC of CO2 absorptions in
2100. Because of heterogeneity in surface or structural features
in DCCS, we expected participants to possess fewer correlation
heuristic and violation of mass balance misconceptions in
CS conditions following DCCS compared to CS conditions
without DCCS exposure. We used an alpha level of 0.05 and
a power of 0.80 for our statistical analyses. The dataset for the
experiment has been provided as part of Supplementary Data
Sheet S1.

Procedure
Participants were randomly assigned to different conditions and
given instructions about the study. Participants were told about
the goal that they had to achieve and they could ask clarification
questions, if any, before beginning their experiment. In the
DCCS-Surface and DCCS-Structure conditions, participants first
performed 2-rounds in DCCS on a desktop computer and then
they were transferred to CS tasks, where the CS tasks were given
using a pencil-and-paper format. However, in the CS-Surface
and CS-Structure conditions, participants first performed an
unrelated Tetris task and then they were immediately transferred
to CS tasks, which were given using a pencil-and-paper format.
In the CS task, participants had to sketch CO2 emissions
and absorptions corresponding to the given CO2 concentration
trajectory. On completion of the CS task, participants were
thanked and paid for their participation.
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FIGURE 3 | Dynamic Climate Change Simulator tasks in the DCCS-Surface condition where participants need to decide the inflow and outflow values every 5 time
periods such that the accumulation (Glucose Concentration or Temperature) followed the red trajectory in the bottom-left Figure. (A) DCCS with the glucose cover
story (DCCS-Gluc). (B) DCCS with the temperature cover story (DCCS-Temp).

Results
Correlation Heuristic
We compared the correlation heuristic reliance between control
groups and test groups in the structure conditions. Figure 5

shows the proportion of participants relying on correlation
heuristic in CS tasks and DCCS in the DCCS-Structure
and CS-Structure conditions. Furthermore, Table 1 shows the
comparison of different conditions and the associated inferential
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FIGURE 4 | The CO2 concentration trajectory given to participants in the
DCCS-Structure condition. (A) The increasing CO2 concentration trajectory,
where stabilization occurs in year 2070 (DCCS-2070; CS-2100-Inc). (B) The
decreasing CO2 concentration trajectory, where stabilization occurs in the
year 2100 (CS-2100-Dec).

statistics for correlation heuristic reliance. As seen in Table 1,
the reliance on correlation heuristic was statistically smaller
in CS-2100-Dec (DCCS) condition compared to CS-2100-Dec
condition. Likewise, the reliance on correlation heuristic was
statistically smaller in CS-2100-Inc (DCCS) condition compared
to CS-2100-Inc condition. Furthermore, the reliance was similar
in CS-2100-Dec and CS-2100-Inc conditions. Similarly, the
reliance on correlation heuristic was similar in CS-2100-Dec
(DCCS) task and CS-2100-Inc (DCCS) condition.

Next, we compared the correlation heuristic reliance between
the control group and the test group in the surface conditions.
Figure 6 shows the proportion of participants relying on
correlation heuristic in CS tasks and DCCS in the DCCS-Surface
and CS-Surface conditions. As seen in Table 1, the reliance
on correlation heuristic was statistically smaller in CS-Temp
(DCCS) condition compared to CS-Temp condition. Likewise,
reliance was statistically smaller in CS-Climate (DCCS) condition
compared to CS-Climate condition. Furthermore, the reliance on
correlation heuristic was similar in CS-Temp condition and CS-
Climate condition. Similarly, reliance on correlation heuristic was
similar in CS-Climate (DCCS) condition and CS-Temp (DCCS)
condition.

Last, we compared the correlation heuristic reliance between
control groups and test groups across the surface and structure

conditions. The reliance on correlation heuristic was statistically
smaller in CS-2100-Inc condition compared to CS-Climate
condition. However, the reliance on correlation heuristic was
similar in CS-2100-Inc (DCCS) condition compared to CS-
Climate (DCCS) condition.

Overall, in agreement with our expectations, the proportion
of participants relying on correlation heuristic was statistically
smaller in DCCS-Structure and DCCS-Surface conditions
compared to CS-Structure and CS-Surface conditions,
respectively. Also, the correlation heuristic proportions were
similar in the CS-2100-Inc (DCCS) and CS-Climate (DCCS)
conditions. This latter finding suggested that both the structure
and surface features were similar in their ability to reduce people’s
correlation heuristic misconceptions.

Violation of Mass Balance
We compared the proportion of participants commiting violation
of mass balance between control groups and test groups
across the structure conditions. Figure 7 shows the proportion
of participants committing violation of mass balance in CS
tasks and DCCS in the DCCS-Structure and CS-Structure
conditions. Furthermore, Table 2 shows the comparison of
different conditions and the associated inferential statistics for
mass balance violation. As seen in Table 2, the proportion
of violation of mass balance was statistically smaller in
the CS-2100-Dec (DCCS) condition compared to the CS-
2100-Dec condition. Furthermore, the proportion of violation
of mass balance was statistically smaller in CS-2100-Inc
(DCCS) condition compared to CS-2100-Inc condition. The
proportion of violation of mass balance was similar in
CS-2100-Inc (DCCS) condition and CS-2100-Dec (DCCS)
condition. Similarly, the proportion of violation of mass
balance was similar in CS-2100-Inc condition and CS-2100-Dec
condition.

Next, we compared the violation of mass balance between
control groups and test groups across the surface conditions.
Figure 8 shows the proportion of participants committing
violation of mass balance in CS tasks and DCCS in the
DCCS-Surface and CS-Surface conditions. As seen in Table 2,
the proportion of violation of mass balance was statistically
smaller in CS-Temp (DCCS) condition compared to CS-
Temp condition. Likewise, the proportion of violation of mass
balance was statistically smaller in CS-Climate (DCCS) condition
compared to CS-Climate condition. Furthermore, the proportion
of violation of mass balance was similar in the CS-Temp
condition and CS-Climate condition. Similarly, the proportion
of violation of mass balance was similar in CS-Climate (DCCS)
condition and CS-Temp (DCCS) condition.

Last, we compared the violation of mass balance across the
surface and structure conditions. The proportion of violation of
mass balance was similar in CS-2100-Inc condition compared
to CS-Climate condition. Similarly, the proportion of violation
of mass balance was similar in CS-2100-Inc (DCCS) condition
compared to CS-Climate (DCCS) condition. This latter finding
suggested that both the structure and surface features were
similar in their ability to reduce people’s violation of mass balance
misconceptions.
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FIGURE 5 | Proportion of participants relying on correlation heuristic in CS tasks and DCCS in CS-Structure and DCCS-Structure conditions. The CS-2100-Dec
(DCCS) task and CS-2100-Inc (DCCS) task refer to CS tasks following the DCCS performance in the DCCS-Structure condition. The error bars represent 95%
confidence interval around the point estimate.

TABLE 1 | Comparison of different conditions involving correlation heuristic
reliance among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS-2100-Dec (DCCS) (0.32) <

CS-2100-Dec (0.76)
9.74 <0.001 0.44

CS-2100-Inc (DCCS) (0.28) <

CS-2100-Inc (0.56)
4.02 0.04 0.28

CS-2100-Dec (0.76) ∼

CS-2100-Inc (0.56)
2.23 0.14 0.21

CS-2100-Dec (DCCS) (0.28) ∼

CS-2100-Inc (DCCS) (0.32)
0.09 0.76 0.04

CS-Temp (DCCS) (0.24) <

CS-Temp (0.96)
27.00 <0.001 0.73

CS-Climate (DCCS) (0.44) <

CS-Climate (0.92)
13.24 <0.001 0.51

CS-Temp (0.96) ∼ CS-Climate
(0.92)

0.36 0.55 0.08

CS-Temp (DCCS) (0.24) ∼

CS-Climate (DCCS) (0.44)
2.23 0.14 0.21

CS-2100-Inc (0.56) <

CS-Climate (0.92)
8.42 <0.001 0.41

CS-2100-Inc (DCCS) (0.28) ∼

CS-Climate (DCCS) (0.44)
1.39 0.24 0.17

The number in the bracket represents the proportion of participants relying on
correlation heuristic. The symbol ∼ indicates that the proportions in two conditions
were similar to each other.

Thus, overall, the experience gained in DCCS helped
participants to reduce mass balance violations. Furthermore,
the violation of mass balance reduction helped participants to

perform better in the following CS task in the DCCS conditions
compared to that in the CS conditions in both structure and
surface condition.

Discussion
The comparison of the problems in the CS tasks of DCCS
condition and CS condition allowed us to measure the
effectiveness of the surface or structural heterogeneity
in reducing correlation heuristic and violation of mass
balance misconceptions. In both the surface and structure
conditions, misconceptions related to correlation heuristic and
violation of mass balance reduced significantly in the CS tasks
following DCCS compared to CS tasks without exposure in
DCCS.

First, we found that when we changed the problem’s
structural features between DCCS and the following CS task (i.e.,
change the way CO2 emissions and absorptions affect the CO2
concentration), misconceptions reduce significantly in the CS
task post DCCS performance. This finding agrees with recent
research that showed that structural knowledge helped people
reduce their correlation heuristic and violation of mass balance
misconceptions in both cases when problems encountered in
the CS task are structurally similar or different compared to
those presented in DCCS (Kumar and Dutt, unpublished). In our
study, when people attempt to follow different trajectories of CO2
concentration in DCCS, then this exposure to heterogeneous
system dynamics likely enables them to learn that the CO2
concentration increases when CO2 emissions are greater than
CO2 absorptions, decreases when CO2 emissions are smaller than
CO2 absorptions, and stabilizes when CO2 emissions equal CO2
absorptions.
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FIGURE 6 | Proportion of participants relying on correlation heuristic in surface conditions. The CS-Temp (DCCS) and CS-Climate (DCCS) refer to CS tasks following
the DCCS performance in the DCCS-Surface condition. The error bars represent 95% confidence interval around the point estimate.

FIGURE 7 | Proportion of participants committing violation of mass balance in CS tasks and DCCS in CS-Structure and DCCS-Structure conditions. The
CS-2100-Dec (DCCS) task and CS-2100-Inc (DCCS) task refer to CS tasks following the DCCS performance in the DCCS-Structure condition. The error bars
represent 95% confidence interval around the point estimate.

Second, we found that when we changed the problem’s surface
features in DCCS, then misconceptions also reduced significantly
in the CS task post DCCS performance. One likely reason for this
finding is that people get to learn via DCCS that the same system
dynamics applies across different dimensions and cover stories.
Thus, they could transfer this learning in CS tasks post DCCS
performance.

Overall, our results agree with the procedural reinstatement
principle (Healy et al., 2005), where we found improved
performance when problems in the CS task were similar in

structure or surface features to those that were learned during
DCCS training (prior to the CS task). Also, our results agree
with the heterogeneity of practice hypothesis (Gonzalez and
Madhavan, 2011), where we found that problems with surface
or structural training during DCCS were able to produce more
effective transfer of knowledge and improved performance in the
CS task.

There were some differences in the curve shapes and
cover stories used between tasks across surface and structure
conditions. Thus, we could not compare all tasks across these
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TABLE 2 | Comparison of different conditions involving violation of mass balance
among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS-2100-Dec (DCCS) (0.40) <

CS-2100-Dec (0.76)
6.65 <0.001 0.36

CS-2100-Inc (DCCS) (0.48) <

CS-2100-Inc (0.84)
7.22 <0.001 0.38

CS-2100-Dec (0.76) ∼

CS-2100-Inc (0.84)
0.50 0.48 0.10

CS-2100-Dec (DCCS) (0.40) ∼

CS-2100-Inc (DCCS) (0.48)
0.33 0.57 0.08

CS-Temp (DCCS) (0.20) <

CS-Temp (0.92)
26.30 <0.001 0.72

CS-Climate (DCCS) (0.24) <

CS-Climate (0.88)
20.78 <0.001 0.64

CS-Temp (0.92) ∼ CS-Climate
(0.88)

0.22 0.64 0.07

CS-Temp (DCCS) (0.20) ∼

CS-Climate (DCCS) (0.24)
0.12 0.74 0.05

CS-2100-Inc (0.84) ∼

CS-Climate (0.88)
0.17 0.68 0.06

CS-2100-Inc (DCCS) (0.48) ∼

CS-Climate (DCCS) (0.24)
3.13 0.07 0.25

The number in the bracket represents the proportion of participants committing
violation of mass balance. The symbol ∼ indicates that the proportions in two
conditions were similar to each other.

conditions. However, upon comparing tasks that were similar in
their curve shapes and cover stories used, we did find a similar
reduction in correlation heuristic and violation of mass balance
misconceptions across the surface and structure conditions.

Overall, these results indicate that both surface and structural
heterogeneity is equally powerful in reducing people’s stock-flow
misconceptions.

Although the problems used in the current experiment created
learning of structural and surface features for participants, there
may be other ways of creating effective training conditions.
However, as part of future work we would like to compare
structure and surface heterogeneity with homogenous
conditions. For example, one other way learning could be
influenced during DCCS training is by varying the difficulty
level of problems in DCCS. The problem difficulty could be
varied in DCCS based upon the shape of CO2 concentration
trajectory that participants are asked to follow in DCCS. The
next experiment explores the effects of problem difficulty in
reducing correlation heuristic and violation of mass balance
misconceptions.

EXPERIMENT 2: EFFECT OF DIFFICULTY
OF PROBLEMS IN REDUCING
STOCK-FLOW MISCONCEPTIONS

Another way in which training conditions might differ is by the
difficulty of problems encountered. For example, school children
may be trained on simple and difficult problems in the classroom
to prepare them for different problems in their exam. According
to the difficulty hypothesis (Schneider et al., 2002; Young et al.,
2011), transfer performance in the CS task should improve when
training is conducted using difficult climate problems in DCCS
compared to simple problems. However, it is also possible that
due to the predictions from cognitive load theory (Sweller, 1994;
De Jong, 2010), difficult training problems in DCCS may not lead

FIGURE 8 | Proportion of participants committing violation of mass balance in surface conditions. The CS-Temp (DCCS) and CS-Climate (DCCS) refer to CS tasks
following the DCCS performance in the DCCS-Surface condition. The error bars represent 95% confidence interval around the point estimate.
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to reductions in stock-flow misconceptions compared to simple
training problems.

Methods
Participants
Participants were recruited through an email advertisement
for a climate-study at Indian Institute of Technology, Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
Technology Mandi with a written informed consent from all
participants. Participation was voluntary and all participants gave
written informed consent before starting their study. There were
90 participants in all (78 males and 12 females). Ages ranged
from 18 to 25 years (average = 23 years; SD = 1.4 years).
All participants were from Science, Technology, Engineering,
and Mathematics backgrounds (88% undergraduate, 9% masters,
and 3% doctoral). They were randomly assigned to one of
the experimental conditions involving DCCS and CS tasks.
Participants were paid a flat fee of INR 50 (approximately 0.9
USD) for their participation after they completed the study.

Experimental Design
Participants were randomly assigned to one of the following
three between-subjects conditions (N = 30 in each condition):
DCCS-Difficult, DCCS-Easy and CS. In the DCCS-Difficult and
DCCS-Easy conditions, participants first performed 1-round
in DCCS and were immediately transferred to the CS task.
In the DCCS-Easy and DCCS-Difficult conditions, in DCCS,
participants controlled the CO2 concentration to the stabilization
trajectory in each round by making inflow and outflow decisions
every 5 time periods repeatedly. In the DCCS-Easy condition,
the DCCS used Figure 1’s problem. However, in the DCCS-
Difficult condition, the DCCS used Figure 9’s problem. The
shape of CO2 concentration scenario in Figure 9’s problem was
more complex compared to that in Figure 1’s problem (although
the CO2 concentration in both problems had about the same
values and direction of movement over time). The complexity of
the concentration curve made Figure 9’s problem more difficult
compared to Figure 1’s problem. After participants finished

FIGURE 9 | The CO2 concentration stabilization trajectory to be used as the
difficult problem.

performing in DCCS, they were transferred to a different problem
in the CS task. In the CS condition, however, participants
played an unrelated Tetris task for the average time it took to
complete 1-round in the DCCS task (in the conditions involving
DCCS) and were transferred to the CS task immediately. In CS
tasks across all conditions, participants attempted the problem
shown in Figure 4B, where they sketched the shape of CO2
emissions and absorptions that corresponded to a decreasing
CO2 concentration stabilization trajectory between 2001 and
2100. In this experiment, the CS condition formed the control
group, the DCCS-Easy and DCCS-Difficult conditions formed
the training groups, and the CS (DCCS-Easy) and CS (DCCS-
Difficult) formed the test groups.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of participants
committing violation of mass balance. The coding used to classify
participants as relying on correlation heuristic and committing
violation of mass balance across the control, training, and test
groups was the same as that used in Experiment 1. The alpha and
power levels were same as reported in experiment 1. The dataset
for the experiment has been provided as part of Supplementary
Data Sheet S1.

Procedure
Participants were randomly assigned to different conditions
and given instructions about the study. Participants were told
about the goal that they had to achieve and they could ask
clarification questions, if any, before beginning their experiment.
In the DCCS-Easy and DCCS-Difficult conditions, participants
performed 1-round in DCCS on a desktop computer and
then they were transferred to CS tasks, where the CS tasks
were given using a pencil-and-paper format. However, in the
CS condition, participants first performed an unrelated Tetris
task and then they were immediately transferred to the CS
task, which was given using a pencil-and-paper format. In
the CS task, participants had to sketch CO2 emissions and
absorptions corresponding to the CO2 concentration trajectory.
On completion of the CS task, participants were thanked and paid
for their participation.

Results
Correlation Heuristic
We compared the correlation heuristic reliance between the
control group and the test groups across the easy and difficult
conditions. Figure 10 shows the proportion of participants
relying on correlation heuristic in CS tasks and DCCS in the
DCCS-Easy, DCCS-Difficult, and CS conditions. Furthermore,
Table 3 shows the comparison of different conditions and the
associated inferential statistics for correlation heuristic reliance.
As seen in Table 3, the reliance on correlation heuristic was
similar across the CS tasks in the CS condition and the
DCCS-Difficult condition. Similarly, the reliance on correlation
heuristic was similar across the CS tasks in the CS condition
and the DCCS-Easy condition. Furthermore, the proportion of
participants relying on correlation heuristic was similar across
the CS tasks in the DCCS-Easy condition and the DCCS-Difficult
condition.
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FIGURE 10 | Proportion of participants relying on correlation heuristic in three conditions: DCCS-Easy, DCCS-Difficult, and CS conditions. The CS (DCCS-Easy) task
and CS (DCCS-Difficult) task refer to CS tasks following the DCCS performance in the DCCS-Easy and DCCS-Difficult conditions. The error bars represent 95%
confidence interval around the point estimate.

TABLE 3 | Comparison of different conditions involving correlation heuristic
reliance among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS (0.60) ∼ CS (DCCS-Difficult) (0.50) 0.61 0.44 0.10

CS (0.60) ∼ CS (DCCS-Easy) (0.63) 0.07 0.79 0.03

CS (DCCS-Easy) (0.63) ∼ CS (DCCS-Difficult) (0.50) 1.09 0.29 0.13

The number in the bracket represents the proportion of participants relying on
correlation heuristic. The symbol ∼ indicates that the proportions in two conditions
were similar to each other.

Violation of Mass Balance
We compared the committing of violation of mass balance
between the control group and the test groups across the easy
and difficult conditions. Figure 11 shows the proportion of
participants committing violation of mass balance in CS tasks
and DCCS in DCCS-Easy, DCCS-Difficult, and CS conditions.
Table 4 shows the comparison of different conditions and the
associated inferential statistics for mass balance violation. As seen
in Table 4, results indicated that the proportion of violation of
mass balance was similar across the CS tasks in the CS condition
and the DCCS-Difficult condition. Furthermore, the proportion
of violation of mass balance was similar across the CS tasks in
the CS condition and the DCCS-Easy condition. Likewise, the
proportion of violation of mass balance was similar across the
CS tasks of the DCCS-Easy condition and the DCCS-Difficult
conditions.

Overall, in agreement with the expectations from cognitive
load theory, the proportion of participants relying on CH and
committing violation of mass balance were similar in the CS tasks
of the DCCS-Difficult condition and the DCCS-Easy condition.

Discussion
Variation in problem difficulty could be another way of
enabling learning among people that reduces their stock-flow
misconceptions. In this experiment, we varied problem difficulty
in terms of the shape of the CO2 concentration trajectory: smooth
(simple) or curvilinear (difficult). We found that people could not
reduce their correlation heuristic misconceptions after exposure
to difficult climate problems in DCCS compared to those who
were either not provided DCCS training or were only exposed to
easy climate problems in DCCS. Similarly, the same intervention
did not reduce the violation of mass balance misconceptions: The
committing of violation of mass balance remained the same after
DCCS training (among both easy and difficult problems) in the
CS task compared to conditions where the CS task was given
without exposure in DCCS. The lack of reduction in correlation
heuristic and violation of mass balance misconceptions could be
attributed to cognitive load theory (Simon, 1991; Sweller, 1994;
De Jong, 2010). As per cognitive load theory, it is possible that
the processing of different elements like emission, absorption,
and the curvilinear concentration in the DCCS task required too
much working memory capacity. Due to the cognitive overload
and bounded memory capacity, participants were not able to
reduce their correlation heuristic and violation of mass balance
misconceptions.
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FIGURE 11 | Proportion of participants committing violation of mass balance in three conditions: DCCS-Easy, DCCS-Difficult, and CS conditions. The CS
(DCCS-Easy) task and CS (DCCS-Difficult) task refer to CS tasks following the DCCS performance in the DCCS-Easy and DCCS-Difficult conditions. The error bars
represent 95% confidence interval around the point estimate.

TABLE 4 | Comparison of different conditions involving violation of mass balance
among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS (0.90) ∼ CS (DCCS-Difficult) (0.83) 0.58 0.45 0.10

CS (0.90) ∼ CS (DCCS-Easy) (0.83) 0.58 0.45 0.10

CS (DCCS-Easy) (0.83) ∼ CS (DCCS-Difficult) (0.83) 0.00 1.00 0.00

The number in the bracket represents the proportion of participants committing
violation of mass balance. The symbol ∼ indicates that the proportions in two
conditions were similar to each other.

Our results in this experiment did not agree with the
expectations from the difficulty hypothesis (Schneider et al.,
2002; Young et al., 2011). Perhaps, the shape of the difficult
CO2 concentration trajectory was not difficult enough in making
people learn reduce their stock-flow misconceptions. Although
we can only speculate currently, a more challenging CO2
concentration trajectory in DCCS that gives exposure to people
about increase, decrease, and stabilization of accumulation may
help reduce people’s misconceptions.

Beyond testing the difficulty of problems and their
effectiveness in DCCS, another way for reducing correlation
heuristic and violation of mass balance misconceptions could
be by using simulation tools as side-by-side decision aids (e.g., a
computer or calculator). The focus of the next experiment is to
evaluate how DCCS could be used as a side-by-side decision aid
in reducing stock-flow misconceptions.

EXPERIMENT 3: EFFECT OF DECISION
AIDS IN REDUCING STOCK-FLOW
MISCONCEPTIONS

There are numerous situations in life like during schooling
when students make use of decision aids (e.g., computers and
calculators) to assist them in solving complex mathematical
problems. Similarly, climate-scientists and climate-policymakers
are likely to use decision aids (e.g., simulation tools) while
formulating future greenhouse gas emission policies. For
example, to evaluate the effects of future emission policies on
the CO2 concentrations and global temperatures we may need
to rely upon decision aids. In simple descriptive binary-choice
decision tasks, when participants are provided with experiential
decision aids, they tend to rely on the experience gained in
these aids in making descriptive decisions and improving their
decision making (Jessup et al., 2008; Camilleri and Newell, 2011;
Lejarraga and Gonzalez, 2011). The aim of this experiment is to
evaluate the effectiveness of decision aids in reducing people’s
misconceptions when they have at their disposal an aid that
simulates future CO2 concentrations by assuming different CO2
emission policies.

Methods
Participants
Participants were recruited through an email advertisement
for a climate-study at Indian Institute of Technology Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
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Technology Mandi with a written informed consent from all
participants. Participation was voluntary and all participants
gave written informed consent before starting their study. There
were 60 participants in all (52 males and 08 females). Ages
ranged from 18 to 26 years (average = 22 years; SD = 1.5 years).
All participants were from Science, Technology, Engineering,
and Mathematics backgrounds (85% undergraduate, 12%
masters, and 3% doctoral). They were randomly assigned
to one of the conditions involving DCCS and CS tasks.
Participants were paid a flat fee of INR 50 (approximately
0.9 USD) for their participation after they completed the
study.

Experimental Design
Participants were randomly assigned to one of two between-
subjects conditions (N = 30 in each condition): Aid and No-
aid. In the Aid condition, participants could use DCCS side-
by-side as a decision aid while sketching the CO2 emissions
and absorptions in the CS task; however, in the No-aid
condition, participants only sketched the CO2 emissions and
absorptions in the CS task and they did not use DCCS. In
the Aid condition, participants could use DCCS anytime to
enter 10-yearly emission and absorption values over a period
of 100 years (i.e., a total of 10 values for each of the emissions
and absorptions) and simulate the resulting CO2 concentration.
The DCCS simulated the entered emissions and absorptions
rapidly within 1 to 2 seconds. Participants could then reset
DCCS to the year 2000 and simulate a different set of emission
and absorption values. In the Aid condition, participants could
use DCCS as many times as they wanted to before they
sketched the CO2 emissions and absorptions in the CS task.
Also, the number of times participants used the DCCS as a
decision aid was recorded in the Aid condition. In the No-
aid condition, participants were asked to play a Tetris game
for an amount time that equaled the time that participants
took to use DCCS in the Aid condition. The No-aid condition
formed the control group and the Aid condition formed the test
group.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of
participants committing violation of mass balance. In the
Aid condition, the correlation heuristic and violation of mass
balance misconceptions were analyzed in DCCS by using the
averaged emission and absorption trajectory, where the average
was computed across the number of times DCCS was used as a
decision aid. In both Aid and No-aid conditions, participants
attempted a single problem in the CS task and that was the one
shown in Figure 4B. The coding used to classify participants
as relying on correlation heuristic and committing violation
of mass balance across the control and test groups was the
same as that used in Experiment 1. Because of the presence of
DCCS, we expected smaller proportions of correlation heuristic
and violation of mass balance in the CS task in Aid condition
compared to the No-aid condition. The alpha and power levels
were the same as reported in experiment 1. The dataset for the
experiment has been provided as part of Supplementary Data
Sheet S1.

Procedure
Participants were randomly assigned to different conditions and
given instructions about the study. Participants were told about
the goal in the CS task: to sketch the CO2 emission and absorption
trajectories that would correspond to the CO2 concentration
trajectory. Participants could ask clarification questions, if any,
before starting their study. In the Aid condition, participants
were encouraged to use DCCS as a decision aid side-by-side
the CS task. However, in the No-aid condition, participants
first performed in the unrelated Tetris task and then they were
immediately transferred to the CS task. On completion of the CS
task, participants were paid for their participation.

Results
First, we analyzed the number of times DCCS was used as
a decision aid in the Aid condition. Results revealed that
participants used DCCS between 1 time and 7 times in the Aid
condition (average = 3 times, SD = 1.4 times).

Correlation Heuristic
We compared the correlation heuristic reliance between the CS
tasks across the Aid and No-aid conditions. Figure 12 shows
the proportion of participants relying on correlation heuristic
in the Aid and No-aid conditions. Results revealed that reliance
on correlation heuristic was statistically smaller in the CS task
of Aid condition compared to the CS task of No-aid condition
[0.30 < 0.60, χ2 (1) = 5.46, p = 0.02, ϕ = 0.30]. The proportion of
participants relying on correlation heuristic in DCCS was close
to 0.30. The correlation between the number of times DCCS was
used and reliance on correlation heuristic in the CS task was small
and insignificant (r = 0.14, p = 0.41).

Violation of Mass Balance
We compared the committing of violation of mass balance
between the CS tasks across the Aid and No-aid conditions.
Figure 13 shows the proportion of participants committing
violation of mass balance in the Aid and No-aid conditions.
Results indicated that violation of mass balance was statistically
smaller in the CS task of Aid condition compared to the CS task of
No-aid condition [0.43 < 0.90, χ2 (1) = 14.70, p = 0.00, ϕ = 0.49].
The proportion of participants committing violation of mass
balance in DCCS was close to 0.85. The correlation between the
number of times DCCS was used and committing of violation of
mass balance in the CS task was small and insignificant (r = 0.08,
p = 0.62).

Overall, in agreement with our expectations, the proportion
of participants relying on correlation heuristic and committing
violation of mass balance was statistically smaller in Aid
condition compared to No-aid condition.

Discussion
Simulations tools may provide effective side-by-side decision aids
that enable people to reduce their stock-flow misconceptions.
Results revealed that DCCS served as an effective side-by-side
decision aid and enabled people to reduce their correlation
heuristic and violation of mass balance misconceptions compared
to those conditions where DCCS was not present.
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FIGURE 12 | Proportion of participants relying on correlation heuristic in the Aid and No-aid conditions. The error bars represent 95% confidence interval around the
point estimate.

FIGURE 13 | Proportion of participants committing violation of mass balance in the Aid and No-Aid conditions. The error bar represents the 95% confidence interval
around the point estimate.

One likely reason for the effectiveness of DCCS as a decision
aid could be that DCCS enables people to try different scenarios
related to how CO2 emissions and absorptions influence the
trajectory of CO2 concentration (Dörner, 1996; Cronin et al.,
2009; Dutt, 2011). Thus, people could use DCCS to try different
CO2 emissions and absorptions values and observe their effect on
the resulting CO2 concentration trajectories. This trial-and-error
learning in DCCS is consistent with literature on experienced-
based decisions (Jessup et al., 2008; Camilleri and Newell, 2011;
Lejarraga and Gonzalez, 2011). For example, according to Jessup
et al. (2008), when participants are provided with experiential
decision problems, they tend to rely on the experience gained in
these problems in making decisions and improve their decision
making. Similarly, the experience gained in DCCS enables
participants to improve their decision-making in the CS task.

Furthermore, in our results, participants used DCCS between
1 time and 7 times before while attempting the CS task. This use
of DCCS agrees with that reported in literature (Hertwig et al.,
2004; Cronin et al., 2009). For example, Cronin et al. (2009) gave
a stock-flow problem where participants needed to determine the
maximum and minimum stock levels across multiple attempts. In
each attempt, participants wrote answers to stock questions and
they were given feedback on whether their answers were correct
or incorrect. According to Cronin et al. (2009), due to the correct-
incorrect feedback, more than 70% of the participants were able
to answer the stock questions correctly by the fifth attempt (i.e.,
between one and nine attempts). Similarly, in agreement with
our results, Hertwig et al. (2004) have shown that people explore
different options presented to them about 7 times before choosing
an option for real.
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GENERAL DISCUSSION

In this paper, we started with the general hypothesis that
heterogeneity in surface, structure, and problem difficulty in
simulation tools as well as the use of the simulation tools
as decision aids will be helpful in reducing public stock-
flow misconception about Earth’s climate. Across the first two
experiments, we evaluated how the DCCS enables people to
reduce their climate misconceptions because of heterogeneity due
to surface and structural features as well as problem difficulty.
Also, in a third experiment, we evaluated how DCCS as a
side-by-side decision aid helps people to reduce their climate
misconceptions. Overall, our results could be explained based
upon theoretical arguments concerning the heterogeneity of
practice hypothesis (Gonzalez and Madhavan, 2011), procedural
reinstatement principle (Schneider et al., 2002; Healy et al., 2005;
Young et al., 2011), cognitive load theory (Sweller, 1994; De
Jong, 2010), and decisions from experience (Jessup et al., 2008;
Camilleri and Newell, 2011; Lejarraga and Gonzalez, 2011).

First, our findings suggest that simulation tools for Earth’s
climate (like DCCS) are effective in causing learning of
both structural features and surface features in problems.
In our experiment, people were not given full-information
on the formulations connecting emission, absorption, and
concentration (Dörner, 1996). These relationships were
something that participants had to learn over time while
performing in DCCS (Dörner, 1996). Based upon our results,
simulation tools like DCCS not only enable people to learn
the generality of problems across units and dimensions but
also the generality of problems across how inputs and outputs
influence the accumulation (Dörner, 1996; Sutton and Barto,
1998; Gonzalez et al., 2003; Dutt and Gonzalez, 2015).

Dutt and Gonzalez (2015) have provided a cognitive account
based upon Instance-based Learning Theory (IBLT) on how
learning occurs as a dynamic task (like DCCS) due to the
focus on process measures and outcome measures. In agreement
with Dutt and Gonzalez (2015)’s account, when people come
across elements like emission, absorption, and concentration in
DCCS, they create instances (or experiences) in their memory.
Several experiences get created due to the repeated interaction
in DCCS concerning emission, absorption, and concentration
values. However, among these instances those instances that
allow people to make their CO2 concentration come closer to
the goal are the ones that likely get reinforced over time. While
performing the CS task, people retrieve these reinforced instances
from memory to make improved decisions. Thus, people likely
use their reinforced knowledge acquired in DCCS to draw correct
trajectories of emissions and absorptions corresponding to the
different concentration curves.

Furthermore, our results revealed that the use of complex
curve shapes in simulation tools (i.e., problem difficulty),
however, did not help participants to reduce their stock-
flow misconceptions. This result could be explained based
upon the additional working memory capacity requirements to
process complex interaction of different elements like emissions,
absorptions, and concentrations (Dörner, 1996). In agreement
with cognitive load theory, as our working memory is bounded

(Simon, 1959), people may not be able to process the complex
interactions, especially when the concentration curve shapes are
complex.

We found that the difficulty hypothesis was unable to account
for the findings in the second experiment. One likely reason for
this observation could be that the tasks used in our study are
different from those that were used for showcasing the difficulty
hypothesis (Healy et al., 2005). In literature, the difficulty
hypothesis has been showcased using a duration production
task in which the dependent measure was reaction time and
not the inflow, outflow, and stock. In DCCS, however, the
main dependent variables of interest were the inflow, outflow,
and stock. Still, another likely reason for the inability of the
difficulty hypothesis could be the trajectory of the stock curve
used in the difficult condition. It is likely that the stock shapes
used in the difficult condition were not difficult enough to
cause learning of the underlying relationship between emissions,
absorptions, and concentration. Future research should test
the learning from complex concentration curves in simulation
tools by trying scenarios with concentration curves of different
difficulty (Dörner, 1996). Perhaps, stock-flow problems with
more challenging CO2 accumulation curves would be more likely
to help reduce correlation heuristic and violation of mass balance
misconceptions.

We also found that the stock-flow misconceptions did not
reduce when the concentration curve shape in DCCS was simple
compared to when people were not exposed to DCCS at all.
Thus, overall, this result disagrees with those reported in the
first and second experiment, where performance in DCCS caused
people to reduce their stock-flow misconceptions compared to
conditions where participants were not exposed to DCCS. One
likely reason for the disagreement could be the number of
repetitions of DCCS given in the second experiment (equal to
one) compared to other experiment (multiple). Although we can
only speculate currently, but, perhaps, more repetitions of DCCS
in simple and difficult conditions could lead people to reduce
their stock-flow misconceptions. This hypothesis needs to be
tested as part of future research.

Our findings have important implications for real-world
climate education as well as climate policymaking. First, as
simulation tools like DCCS likely create both surface and
structure learning, they are ideal for educating students from
kindergarten to standard 12th about stock-flow problems
(Gonzalez and Wong, 2012; Meadows et al., 2016). Thus, the use
of simulation tools should be encouraged in schools for learning
about Earth’s climate, especially when students are exposed to
concepts like the carbon-cycle and climate change.

Third, the use of simulation tools as decision aids should be
encouraged for both climate education and policy analyses. Here,
simulation tools can be used as a side-by-side decision aid that
provides people the ability to test different hypotheses concerning
emissions, absorptions, and concentrations. Also, policymakers
could use simulation tools like DCCS for climate policy analyses
and to evaluate how different CO2 emission and absorption
trajectories impacts CO2 concentrations and global temperatures.
One expects improved policy analyses with repeated iterations in
simulation tools.
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The current investigation on the use of simulation tools has
revealed promising results. However, there are several research
questions to pursue as part of research in the immediate
future. Although different structural and surface training was
taken into account, comparison with homogenous condition
was not made. As part of future research, we would like
to compare different structural and surface heterogeneous
condition with homogeneous conditions. For example, it would
be interesting to analyze how heterogeneity in structure,
surface, and problem difficulty interacts with people’s science
education and other demographic variables. Also, how a
group of decision-makers (in contrast to single decision-
makers) may improve their correlation heuristic and violation
of mass balance misconceptions via simulation tools as well
as how these groups show learning of structure, surface, and
difficulty? Still, how people who improve their understanding
of Earth’s climate in problems with a single accumulation (CO2
concentration) improve their decision-making in problems with
two or more accumulations (e.g., CO2 concentration and global
temperatures)? It would be interesting to investigate whether it
is people’s conscious or unconscious learning that improves due
to the use of simulation tools? And, whether people are really
learning something about climate change or just learning to use
the DCCS tool to complete the CS task?

Prior research has also reported that a part of the stock-
flow misconceptions in the CS task could be because of
the format of presentation of material concerning emissions,
absorptions, and concentration (Fischer et al., 2015). As per
Fischer et al. (2015), the use of verbal formats of presentation
of stock-flow problems may help reduce some of the stock-
flow misconceptions concerning reasoning about stocks. Thus,
as part of future research, it would be interesting to test the
effectiveness of the heterogeneity in structure, surface, and
problem difficulty as well as the extent of learning (conscious
or unconscious) in different verbal and non-verbal stock-flow
problem formats.

As part of our future work, we would like to answer some
of these open-ended questions by involving complex stock-flow
problems that vary in their complexity in terms of the number
of stock and flows and nature of stock and flows (Frensch and

Funke, 2014). Also, how the increasing complexity of stock-
flow problems may interact with the format of presentation of
stock-flow problems to influence people’s reduction in stock-
flow misconceptions (Fischer et al., 2015). Furthermore, one
also needs to go deeper to understand the memory processes
underlying the learning of structure and surface features in DCCS
(Dörner, 1996). Thus, one also needs to evaluate how certain
computational models based upon theories of cognition are likely
to provide an account of the changes in memory processes in
simulation tools (Gonzalez et al., 2003; Gonzalez and Dutt, 2011).
We plan to undertake some of these research questions as part of
our immediate research on the theme of learning via simulation
tools.
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