
ORIGINAL RESEARCH
published: 15 March 2018

doi: 10.3389/fpsyg.2018.00345

Frontiers in Psychology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 345

Edited by:

Rufin VanRullen,

Université Toulouse III Paul Sabatier,

France

Reviewed by:

Andrea Alamia,

UMR5549 Centre de Recherche

Cerveau et Cognition (CerCo), France

Bill Lotter,

Harvard University, United States

*Correspondence:

Eiji Watanabe

eijwat@gmail.com;

eiji@nibb.ac.jp

Specialty section:

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Psychology

Received: 12 December 2017

Accepted: 28 February 2018

Published: 15 March 2018

Citation:

Watanabe E, Kitaoka A, Sakamoto K,

Yasugi M and Tanaka K (2018) Illusory

Motion Reproduced by Deep Neural

Networks Trained for Prediction.

Front. Psychol. 9:345.

doi: 10.3389/fpsyg.2018.00345

Illusory Motion Reproduced by Deep
Neural Networks Trained for
Prediction
Eiji Watanabe 1,2*, Akiyoshi Kitaoka 3, Kiwako Sakamoto 4,5, Masaki Yasugi 1 and

Kenta Tanaka 6

1 Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan, 2Department of Basic Biology, The

Graduate University for Advanced Studies (SOKENDAI), Miura, Japan, 3Department of Psychology, Ritsumeikan University,

Kyoto, Japan, 4Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Miura,

Japan, 5Division of Integrative Physiology, National Institute for Physiological Sciences (NIPS), Okazaki, Japan, 6 Sakura

Research Office, Wako, Japan

The cerebral cortex predicts visual motion to adapt human behavior to surrounding

objects moving in real time. Although the underlying mechanisms are still unknown,

predictive coding is one of the leading theories. Predictive coding assumes that the

brain’s internal models (which are acquired through learning) predict the visual world at all

times and that errors between the prediction and the actual sensory input further refine

the internal models. In the past year, deep neural networks based on predictive coding

were reported for a video prediction machine called PredNet. If the theory substantially

reproduces the visual information processing of the cerebral cortex, then PredNet can

be expected to represent the human visual perception of motion. In this study, PredNet

was trained with natural scene videos of the self-motion of the viewer, and the motion

prediction ability of the obtained computer model was verified using unlearned videos.

We found that the computer model accurately predicted the magnitude and direction

of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented

the rotational motion for illusion images that were not moving physically, much like

human visual perception. While the trained network accurately reproduced the direction

of illusory rotation, it did not detect motion components in negative control pictures

wherein people do not perceive illusory motion. This research supports the exciting

idea that the mechanism assumed by the predictive coding theory is one of basis of

motion illusion generation. Using sensory illusions as indicators of human perception,

deep neural networks are expected to contribute significantly to the development of brain

research.
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INTRODUCTION

Deep neural networks (DNNs), which have been developed with reference to the network structures
and the operational algorithms of the brain, have achieved notable success in a broad range of
fields (LeCun et al., 2015; Schmidhuber, 2015), including computer vision, in which they have
produced results comparable to and in some cases superior to human experts (He et al., 2015;
Silver et al., 2017). When development began, the most successful DNNs for computer vision
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relied on supervised learning from large sets of labeled training
images. However, the human brain, particularly the cerebral
cortex, learns the world at least partially in an unsupervised
manner (otherwise known as self-supervised learning, Hinton
et al., 1995; Bengio, 2013). These theories based on unsupervised
learning suggested that the brain distills the spatiotemporal
structure of objects from visual information that is constantly
obtained in real time and predicts the future positions and figures
of the moving objects. It is assumed that the predictive ability of
sensory perception interpolates inevitable neural delay and that
human behaviors are adapted to the world that is progressing in
real time (Nijhawan, 2008; Heeger, 2017).

DNNs functioning in an unsupervised learning manner
similar to the cerebral cortex have been gradually developed.
Using auto-encoder networks or generative adversarial networks
incorporating recurrent memory cells (long-short-term-
memory, LSTM), it is becoming possible to predict the future
state of an object in moving images (Mathieu et al., 2015;
Srivastava et al., 2015; Lotter et al., 2016; Vondrick et al.,
2016; Villegas et al., 2017a,b), although only several video
frames ahead. A DNN called PredNet (Lotter et al., 2016)
has been intrinsically designed according to the predictive
coding theory (Rao and Ballard, 1999; Friston and Kiebel, 2009;
Shipp, 2016), which is one of the most influential hypotheses
that can comprehensively explain the information-processing
mechanism of the visual system of the cerebral cortex (see the
discussion section). PredNet learns to predict future frames
in a video sequence, with each layer in the network making
local predictions using backward information from upper
layers and forwarding only the difference values from those
predictions to subsequent upper network layers (Figure 1).
This artificial network is essentially comparable to the theory of
brain’s visual processing of predictive coding, in which backward
connections from higher- to lower-order visual cortical areas
carry predictive information, whereas the forward connections
carry the difference values between the predictions and actual
lower-level activities. It is hypothesized that the brain endeavors
is to minimize such difference values (Rao and Ballard, 1999;
Friston and Kiebel, 2009; Shipp, 2016).

While human visual prediction is extremely accurate,
“mistakes” are occasionally made, such as in the case of visual
illusions. For example, motion illusion is one of the visual
illusions in which we perceive motion that is different from that
of the physical stimulus. In the most prominent case represented
by the rotating snake illusion (Figure 2), the perception of
motion arises from a completely static image (Kitaoka and
Ashida, 2003; Conway et al., 2005). Despite being a still image,
the rotating snake illusion induces strong perception motion in
humans, cats (Bååth et al., 2014), and even fish (Gori et al.,
2014). Concerning this notable static stimulus, neurological and
psychological studies suggest that both ocular motion and the
information processing of the cerebral cortex are responsible for
the perception of illusory motion (Hisakata andMurakami, 2008;
Kuriki et al., 2008; Ashida et al., 2012). Predictive coding theory
has been suggested to be a theoretical mechanism to generate
illusions (Notredame et al., 2014; Nour and Nour, 2015; Raman
and Sarkar, 2016; Shipp, 2016), including several motion illusions
(Watanabe et al., 2010; Edwards et al., 2017). If the predictive

Representation Prediction

Target
Error

Output (Input to Target)

Input (Output from Error or Training Data)

From Representation

To Representation

FIGURE 1 | A schematic diagram of PredNet (a modification of Figure 1 in

Lotter et al., 2016). Illustration of information flow within a single layer is

presented. Vertical arrows represent connections with other layers. Each layer

consists of “Representation” neurons, which output a layer-specific

“Prediction” at each time step, which is subtracted from “Target” to produce

an error, which is then propagated laterally and vertically in the network.

External data or a lower-layer error signal is input to “Target.” In each layer, the

input information is not processed directly, and the prediction error signal is

processed.

coding theory explains these illusions, one might except that
PredNet would also include “mistakes” similar to those associated
with visual illusions for human.

It is worth considering whether indicators such as visual
illusions can be reproduced in DNNs as models of the brain. The
visual illusions that have been used to analyse the mechanism
of visual processing in ordinary brains and to study psychiatric
disorders (Gori et al., 2016) may contribute to the study of DNNs
as models of the brain. As another viewpoint, DNN technologies
are now being applied in the real world. To understand the risks
of DNNs, it is therefore critical to know whether DNNs would be
misled by the same visual illusions as humans. The visual illusion
reflects the constraints operating in the visual system to support
the valid formation of visual representations of our external
environment and may be a legitimate adaptation to our living
environment (Eagleman, 2001); however, such misperception
could constitute a fatal mistake, depending on the application of
DNNs.

For both purposes, videos of self-motion of viewers were input
to PredNet to allow it to learn the spatiotemporal structure of the
world via unsupervised learning. We then investigated whether
the trained networks could predict a simple rotational motion
of a propeller. Next, the rotating snake illusion, which PredNet
had not experienced, was input to the trained networks, and we
examined whether the prediction image contained an illusionary
motion element.

METHODS

Learning Videos and Generating Predicted
Images by DNN
PredNet (Lotter et al., 2016), written in Keras (Chollet, 2015),
was ported to Chainer (Tokui et al., 2015), and reconstructed
for convenience (https://doi.org/10.6084/m9.figshare.5483710).
According to previous results (Lotter et al., 2016) of a random
hyperparameter search for learning of a natural image sequence,
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FIGURE 2 | Akiyoshi Kitaoka’s rotating snake illusions (the left 2 panels). In the case of the single-ring version, most people perceive a counter-clock wise motion. In

the case of the four-ring version, people perceive clockwise or counter-clockwise motion depending on color alignment. Negative controls (non-illusions) for which

people perceive no motion are presented in the right 2 panels. The resolution of all images is width 160 and height 120 pixels. For prediction, the same consecutive 20

images were input to the trained networks. To experience stronger illusory motion perception, please refer to “Akiyoshi’s illusion pages,” http://www.ritsumei.ac.jp/~

akitaoka/index-e.html.

a four-layer model with 3× 3 filter sizes for all convolutions and
stack sizes per layer of 3, 48, 96, and 192 was adopted. Model
weights were optimized using an Adam algorithm (Kingma
and Ba, 2014) with default parameters. Models were trained
with mean-squared error using videos from the First-Person
Social Interactions Dataset (Fathi et al., 2012), which contains
day-long videos of eight subjects spending their day at Disney
World Resort in Orlando, Florida. The cameras were mounted
on a cap worn by the subjects. Eight randomly selected videos
from five subjects (Alin 1 and 2, Denis 1, Hussein 1, Michael
2 and 3, and Munehiko 2 and 3) were down-sampled and
formatted to MP4 (width of 160 × height of 120 pixels, 30
fps, https://doi.org/10.6084/m9.figshare.5483668.v1) and were
reformatted to serial still JPEG images (160 × 120 pixels). In
total, the training set consisted of ∼530K images. Each image
set derived from eight videos was sequentially input to the
network. Model was updated every 20 consecutive images (batch)
by backpropagation using the last prediction error of batch.
In an experiment (Figure 5), mirrored (horizontally inversed)
images were used for training. Training lasted ∼10 h on a GPU
(GTX-1080, NVIDIA). For the PredNet predictions, there were
six testing stimuli: cw rotating propeller, ccw rotating propeller,
static propeller, mirrored cw rotating propeller (becomes ccw),
mirrored cw rotating propeller (becomes ccw), and rotating
snake illusion. In each case, the stimuli were made as 20 frame

sequences and the first three PredNet predictions were defined
as P1, P2, and P3. The trained network predicted the 21st
image (P1) with reference to 20 consecutive images (T1 to
T20). Next, it predicted the 22nd image (P2) with reference
to 21 consecutive images (T1 to T21) using P1 as the image
of T21. The same was the case with P3. Test images (JPEG
format, 160 × 120 pixels) were down-sampled from videos of
rotating propellers (Figure 3, clockwise and counter-clockwise at
15 rpm, 1280× 720 pixels, 30 fps) and sampled from the rotating
snake illusions (160 × 120 pixels)(https://doi.org/10.6084/m9.
figshare.5483680.v1). The program for prediction is incorporated
in the above Chainer program for training. At the time step
after inputting 20 image sequences of the above-mentioned test
stimuli, the activation patterns of the hidden units of PredNet
layers were visualized. Visualization was performed using a self-
made converter program (https://doi.org/10.6084/m9.figshare.
5483710.v1) and TensorBoard in TensorFlow (Version 1.2.1)
(Abadi et al., 2016). As a reference for the discussion, we have
provided the activation patterns of two particular units out of 181
hidden units (Figures 11, 12).

Optical Flow Analysis
Motion vectors observed between two consecutive predicted
images (P1/P2 or P2/P3) were measured through optical flow
analysis, in which optical flow vectors were calculated by
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FIGURE 3 | Rotating propeller. For prediction, a series of 20 consecutive images was input to the trained networks. The first 5 consecutive images are presented

here. Resolution of all figures is width 160 and height 120 pixels. The original videos are available at https://doi.org/10.6084/m9.figshare.5483680.v1.
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FIGURE 4 | Predicted motion found in the rotating propellers. (A) Optical flow vectors detected between a pair of the first/second consecutive predictive images

(P1/P2) of the rotating propellers (15 rpm). (B) Mirrored images of the rotating propellers were used as test stimuli. In other words, the cw of A and the ccw of B are

derived from the same video, and the ccw of (A) and the cw of (B) are derived from the same video. Six optical flow vectors were detected in each pair of predicted

images. Mean angular velocity was calculated from the optical flow vectors. A positive sign was assigned to clockwise rotation. The results of the clockwise propeller

are presented in red, and the results of the counter-clockwise propeller are presented in blue. The rotation rate of 15 rpm is approximately comparable to 5.23 rad (×

0.01). Error bars indicate standard errors, and the slanted zero horizontal lines appear to a kind of café wall illusion.

the Lucas-Kanade method (Lucas and Kanade, 1981) using
a customized Python program (https://doi.org/10.6084/m9.
figshare.5483716.v1, window size 50, quality level 0.3). The
rotation center of the propeller was calculated from the motion
picture of the propeller by the ImageJ Java program (Schneider
et al., 2012). The provisional rotation center of the rotating snake
illusion was taken as the center of the ring. The coordinates of
the calculated optical flow vectors were transformed into the
coordinate system of the original videos or the still images, and

the angular velocity was then calculated from the transformed
coordinates and the provisional rotation center. The angular
velocities calculated from optical flow vectors were averaged for
each consecutive pair of the predicted images. A positive sign
was assigned for cw rotation. To analyse the differences based
on the type of input images, values from 400 to 1000K (number
of images) trained networks were averaged (Figure 6), since the
illusory motion predicted by the trained networks was observed
over 400K in trained networks (Figure 8). Significant differences
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FIGURE 5 | Models trained with mirrored videos also predicted motion in the rotating propellers. (A) The DNNs were trained using mirrored images of the videos of

self-motion of viewers. Predicted angular velocities of propellers were calculated as in Figure 4A. (B) Mean angular velocities (P1/P2) derived from 400 to 1000K

trained networks were averaged (n = 7) and set to absolute values. Error bars indicate standard errors. Asterisks indicate a significant difference (p < 0.01).
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FIGURE 6 | Predicted motion detected in the rotating propellers and the illusions. Mean angular velocities derived from 400 to 1000K trained networks were

averaged (n = 7). Error bars indicate standard errors. Asterisks indicate a significant difference (p < 0.01).

between the mean values were analyzed using unpaired t-tests
(one-tailed Welch’s t-test or Student’s t-test).

RESULTS

First, to determine whether the trained networks of PredNet
are capable of predicting the real motion of an object, videos
of propellers rotating at 15 rpm (Figure 3, clockwise [cw]
and counter-clockwise [ccw]) and 0 rpm (Figure 3) were
input to the trained networks and used to produce three
consecutive predicted images (P1, P2, and P3). Using optical flow
analysis, the motion vectors generated between two consecutive
predicted images (P1/P2, P2/P3) were quantified, and the angular
velocity with the center of propeller rotation was calculated.
Figure 4A presents the magnitude of the detected angular
velocity of P1/P2. The network models trained with more than
40K training images predicted rotational motion for both cw
and ccw direction, and the direction of the angular velocity
corresponding to the direction of propeller rotation was extracted

(Supplementary Movies). The predicted rotation motion of
P1/P2 was significantly stronger in the ccw direction than
in the cw direction (Figure 5B, p < 0.01, t = 4.95, degrees
of freedom = 12, comparing average absolute values). Using
mirrored images of the rotating propellers, a similar experiment
was conducted (Figure 4B). Results similar to those of the
experiment using the original image were obtained, but the
predicted rotation motion of P1/P2 was significantly stronger in
the cw direction than in the ccw direction (Figure 5B, p < 0.01,
t = 2.82, degrees of freedom = 12, comparing average absolute
values). In experiments wherein training was performed with a
mirror image set (Figure 5A), the pattern of asymmetry did not
change (Figure 5B, p < 0.01, t = 5.17, degrees of freedom = 12,
comparing average absolute values). The propeller had a subtle
asymmetrical shape along the direction of rotation. Therefore,
the trained DNNs appeared to respond sensitively to the subtle
differences. The magnitude of the optical flow vectors close to
the rotation center was smaller than that at the periphery, which
reflects the relative moving distance observed in each part of
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FIGURE 7 | Optical flow vectors detected in the rotating propellers. The vectors were obtained between a pair of the first/second consecutive predictive images

(P1/P2) of the rotating propellers. Red bars denote the direction and magnitude of vectors, yellow dots denote the start points of the vectors. To aid visualization, the

magnitude of the vectors was amplified 30 times. The vectors were written over the P2 images (width 160, height 120 pixels). A network trained with 500K video

frames was used for prediction.
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FIGURE 8 | Predicted motion found in the illusion. Optical flow vectors detected between a pair of consecutive predictive images (P1/P2) of the illusion. The mean

angular velocity was calculated from the optical flow vectors. A positive sign was assigned to clockwise rotation. One hundred optical flow vectors were detected in

each pair of images. Error bars indicate standard errors. Although the reason was unknown, unidirectional optical flows were observed in a wide area of the predicted

images from 100 to 300K. The magnitude of optical flows was biased by location. The apparent positive angular velocities from 100 to 300K appeared to be caused

by the bias.

the propeller in the video (Figure 7). The rotational motion also
existed in P2/P3 but became extremely small (Figure 6). In the
cases of P2/P3, a significant difference was detected only between
ccw and 0 rpm (p < 0.01, t = −2.951, degree of freedom = 12)
and not between cw and 0 rpm (p = 0.156, t = 1.088, degrees
of freedom = 12). The smaller effect observed in P2/P3 is
simply due to the fact that P2/P3 started predicting from a
frame that was temporally latter than P1/P2. In the original
description of PredNet (Lotter et al., 2016), the test videos used
for prediction were the same type of videos used for learning (e.g.,
car-cam video vs. car-cam video). In this study,∼5 h of videos of
viewer self-motion were input to PredNet for learning without
supervision of the rotating propeller. PredNet was still capable
of predicting not only the shape and colors of the propellers but
also the direction of propeller rotation, indicating that PredNet
successfully generalized the spatiotemporal structure of moving
objects as predictive information within the network.

For the next predictive trained networks generated, 20
serial pictures (repeating files of the same still images) of the
rotating snake illusion were input into the trained networks with
output prediction for three consecutive images. The optical flow
analysis revealed that rotational motion was detected on the
images generated by the trained networks when ∼400K video
frames or more were learned (Figures 8, 9, and Supplementary
Movies). To generate rotational motion for pictures of an
illusion, longer training times were required than for the rotation
prediction of the propeller. The results suggested that the
performance of hidden units involved in the reproduction of
the illusory motion continued to be refined during training
with 40 to 300K images. It is an interesting question whether
hidden units involved in the illusory motion have emerged
as refinements of hidden units related to propeller rotation,
or whether they emerged independently as different hidden
units from propeller rotation. It will be useful to analyse
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FIGURE 9 | Optical flow vectors detected in the illusion. Optical flow vectors detected between a pair of consecutive predictive images (P1/P2 or P2/P3) of the illusion.

The magnitude of the vectors was amplified 60 times. The left is a single ring of the rotating snake illusion, and the right is a negative control image. The vectors were

imposed over the P2 or P3 images or black background (width 160, height 120 pixels). A network trained with 500K video frames was used for prediction.

the time series change of the characteristics of the hidden
units.

The direction of the rotational motion predicted for the
illusion was in agreement with the rotation direction of illusory
motion perceived by humans (Figures 8, 9). When negative
control static images (Figures 8, 9) containing the same shape
and color sequence (blue-black-yellow-white or white-yellow-
black-blue) as the rotating snake illusion for which humans
do not perceive illusory motion were input to the trained
networks, rotational motions other than small optical flows were
not predicted for the negative controls (Figures 8, 9). When
the rotating snake illusion including four illusionary rings in a
single image was input to the trained networks, rotating motion
was detected in all four rings in the predicted images in the
cases of P1/P2 and P2/P3 (Figure 10). The cw and ccw rotating
motion were detected simultaneously in the single image, which
coincided again with the rotation direction perceived by humans.
In the case of four rings experiment (Figure 10), the detected
optical flows were concentrated to peripheral region of a ring as
compared with the one ring experiment (Figure 9). Regardless of
whether it was an image of one ring or an image of four rings, a
single image was composed of 160 width × 120 height pixels. In
other words, in the case of the four rings, one ring was composed
of only 40 width x 30 height pixels. The central region of a
ring of the rotating snake illusion was drawn with smaller-sized
basic elements than the peripheral region. Therefore, we assumed
that the generation of the predicted illusory motion depends on
the size of the basic elements. In the case of the four rings in
the negative control still images, only a small optical flow that
differed from rotation was detected (Figure 10).

DISCUSSION

The DNN that predicted the motion vectors of the unlearned
rotating propeller also predicted the rotational motion in the

Illusion Non-Illusion
P2

 / P
3

FIGURE 10 | Predicted motion in two rotation directions in the illusion. Optical

flow vectors detected between consecutive predictive images (P2/P3) of the

illusion (Left). Right panels are the non-illusion control. The vectors were

imposed over the P3 image or black background. The magnitude of the

vectors was amplified 180 times. A significantly larger value (0.081 ± 0.0017)

was observed in the illusion (p < 0.01, t = 37.53, degree of freedom = 127)

than in the non-illusion control (mean magnitude of optical flow vectors, 0.013

± 0.00064 pixels). The mean of magnitudes (0.080 ± 0.0025) of the vectors

detected by the counter clockwise rings of the illusion was not significantly

different from the value (0.081 ± 0.0023) of the clockwise rings (p = 0.390,

t = −0.281, degree of freedom = 98).

rotating snake illusion, in manner similar to human perception.
Previous fMRI studies demonstrated that the rotating snake
illusion activated V1 to MT areas of the cerebral cortex (Kuriki
et al., 2008; Ashida et al., 2012), which are commonly activated
when detecting actual moving objects and global movement in
the background. In order to compare the current results to those
based on knowledge of the physiology of the human brain, the
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FIGURE 11 | Activation patterns of the hidden units of DNNs can be visualized (a lower layer). Samples of the activation patterns of receptive fields in a lower

convolution LSTM layer are presented (R-Layer0/ConvLSTM/Variable_1_3_120_160_float32_29, refer to image data numbers of TensorBoard). A network trained with

500K video frames was used for prediction. Twenty consecutive images were input to the trained networks, and visualization was then performed using TensorBoard.

In this layer, there are three channels with a 120 (width) × 160 (height) pixel image. In the cw illusion, horizontal inversion pictures of the single-ring illusion (ccw)

presented in Figure 2 were used as input pictures. Note that noisy random patterns are specifically observed in “Non-Illusion”.

DNNs were oversimplified, but it is noteworthy that the DNNs
based on a theory of the cerebral cortex reproduced illusory
motion in a manner similar to human perception. However,
although the current experimental results were notable, they
did not accurately reproduce the illusory motion perceived by
humans. For instance, since illusory rotation of a ring wherein
human direct attention is not induced, four simultaneous
rotations of the rings presented in Figure 10 are extremely
unlikely to occur in a similar manner as human perception
(Hisakata and Murakami, 2008). Moreover, the speed of the
rotational motion perceived in each ring varies from moment to

moment. It may be better to think of PredNet as an abstractive
reproduction of a small part of the biological aspects of visual
information processing.

In order to verify these phenomena by DNNs, it is at least
necessary to reproduce the functional division of the central
visual field with a high resolution and the peripheral visual
field with a low resolution. Attempts have also been made to
incorporate the mechanism that distinguishes between a central
visual field and a peripheral visual field into DNNs (Wang and
Cottrell, 2017). An application of the DNN will be interesting
as a future subject. As mentioned in the introduction section,
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Non-
Illusion

Illusion
(ccw)

Propeller
(cw)

Propeller
(ccw)

Illusion
(cw)

FIGURE 12 | Activation patterns of the hidden units of DNNs can be visualized (an upper layer). Samples of the activation patterns of receptive fields in an upper

convolution LSTM layer are presented (R-Layer1/ConvLSTM/Variable_1_48_60_80_float32_30, refer to image data numbers of TensorBoard). A network trained with

500K video frames was used for prediction. Twenty consecutive images were input to the trained networks, and visualization was performed by TensorBoard. In this

layer, there are 48 channels with a 60 (width) × 80 (height) pixel image. Note that noisy random patterns are specifically observed in “Non-Illusion,” and that a different

pattern appears between the cw and ccw groups.

various methods have been devised for deep learning machines
that conduct video prediction (Mathieu et al., 2015; Srivastava
et al., 2015; Lotter et al., 2016; Vondrick et al., 2016; Villegas
et al., 2017a,b), including CNN-LSTM Encoder-Decoder used as
a control in the original paper of PredNet (Lotter et al., 2016).
By analyzing the DNNs other than PredNet, we will be able to
deepen understanding of the mechanism by which the illusory
motion is predicted.

Nevertheless, it is remarkable that the DNN “perceives” the
parameters of the physical world as distorted. The information
processing of the brain generates illusions not only on
visual motions but also on many other parameters, such as
the brightness, positions, shapes, colors, sizes, and so on.
Determining that the DNN experiences these illusions requires
additional investigation, but to use DNN technology in the real
world introduces the possibility that these illusions could create
errors associated with substantial risks. Users must be aware of
this possibility.

The cerebral cortex related to vision is divided into multiple
functional areas. Connection between these areas is not a one-
way neural network from V1, which is close to the input source
of the senses to higher-order areas, but is a reciprocal neural
network that allows information to flow in both directions
(Friston, 2005; Muckli and Petro, 2013). Based on the anatomical
and physiological knowledge derived from primates, a basic

theory of predictive coding was proposed from the viewpoint of
computation theory (Kawato et al., 1993). The theory postulated
that the higher-order regions of the cortex encoding the inverse
model of the visual world transmit the prediction signal toward
the lower-order regions and that each region detects the
prediction error in reference to the sensory signals derived from
the input source. Later, this theory was widely applied in the
field of neuroscience (Rao and Ballard, 1999; Friston and Kiebel,
2009) and has been also developed as “free energy theory,”
which is based on a variational Bayesian method (Friston and
Kiebel, 2009; Bogacz, 2017). The concept can be applied to
more than just the cerebral cortex. For example, it has been
hypothesized that the cerebellum performs predictive learning
in association with the cerebral cortex (cerebro-cerebellar loops)
and seems to contribute not only to sensory motor control but
also to attention, language, social cognition, and other functions
(Butcher et al., 2017; Sokolov et al., 2017). Although it may not
be strictly predictive coding, the dopamine signal originating
from the midbrain is thought to code “prediction errors of
reward learning,” and a similar learning algorithm to that of the
cortex seems to be used even if the time from the start of the
behavior to the result is relatively long (Schultz, 1998; Schultz and
Dickinson, 2000; Keiflin and Janak, 2015; Diederen et al., 2017;
Nasser et al., 2017). Therefore, although PredNet was made for
engineering purposes, it is expected to become one of the key
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tools in the future for studying the operational principles of the
brain. The predictive coding theory was also expected to be a
theoretical mechanism to generate illusions (Notredame et al.,
2014; Nour and Nour, 2015; Raman and Sarkar, 2016; Shipp,
2016) and was used as an explanation for certain motion illusions
(Watanabe et al., 2010), of bi-stable perception (Weilnhammer
et al., 2017) and of an apparent motion illusion (Edwards et al.,
2017). The present result reveals the exciting idea that the
predictive coding theory accounts for a wide range of visual
illusions.

Since the learning methods of DNNs are visualized as
mathematical formulas and program codes and the resulting
trained networks can be observed (Figures 11, 12, for example),
DNNs can be expected to be powerful tools for verifying the
theories and hypotheses proposed in the research fields of
neuroscience and psychology (Kriegeskorte, 2015; Cichy et al.,
2016; Marblestone et al., 2016; VanRullen, 2017). Detailed
comparisons between the biological brain and DNNs with the
supervised learning method have been performed. In the context
of object recognition, stimulus representations developed by
the DNNs have been shown to account for neural signals in
primates inferior temporal cortex and in fMRI recording data
from the human ventral stream (Cadieu et al., 2014; Khaligh-
Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015).
Several DNNs were used as computational models for human
shape sensitivity; the output layers of the DNNs successfully
developed representations that closely related human shape
judgement (Kubilius et al., 2016). These reports suggested that
some fundamental processes that are shared across different
hardware have been captured by DNNs. Nevertheless, DNNs and
the brain are considerably different. The hardware components
are completely different, and computational algorithms that
are not found in the brain, such as back-propagation, are
used for DNNs. DNNs manufactured for engineering purposes
tend to advance their own evolution rather than remaining
close to the biological brain. Only by focusing on physiological
knowledge will it be possible to keep the DNN technology in
the research area of the biological brain. The present research
result suggests that neuroscientists and psychologists should not
underestimate the value of the method (VanRullen, 2017) to
call “Reverse Psychology.” Various types of sensory illusions
represented by visual illusions, at least, could be the lodestar
that supports the validity of DNNs as a tool for studies of the
brain.
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SUPPLEMENTAL MOVIES

A pair of consecutive predictive images was combined in AVI
movie format. A network trained with 500K video frames was
used for prediction.

Propeller_L.avi: Predictive images of the ccw-rotating
propeller.

Propeller_R.avi: Predictive images of the cw-rotating
propeller.

Propeller_Z.avi: Predictive images of the motionless-rotating
propeller.

Illusion_single.avi: Predictive images of the four rings non-
illusion.

Non_illusion_four.avi: Predictive images of the single ring
illusion.

Illusion_four.avi: Predictive images of the four rings illusion.
Non_illusion_single.avi: Predictive images of the single ring

non-illusion.
The movies were uploaded at https://doi.org/10.6084/m9.

figshare.5483689.v1.
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