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In sixth century BC, Pythagoras discovered the mathematical foundation of musical
consonance and dissonance. When auditory frequencies in small-integer ratios are
combined, the result is a harmonious perception. In contrast, most frequency
combinations result in audible, off-centered by-products labeled “beating” or
“roughness;” these are reported by most listeners to sound dissonant. In this paper,
we consider second-order beats, a kind of beating recognized as a product of
neural processing, and demonstrate that the data-driven approach of Recurrence
Quantification Analysis (RQA) allows for the reconstruction of the order in which
interval ratios are ranked in music theory and harmony. We take advantage of
computer-generated sounds containing all intervals over the span of an octave.
To visualize second-order beats, we use a glissando from the unison to the
octave. This procedure produces a profile of recurrence values that correspond to
subsequent epochs along the original signal. We find that the higher recurrence
peaks exactly match the epochs corresponding to just intonation frequency ratios.
This result indicates a link between consonance and the dynamical features of the
signal. Our findings integrate a new element into the existing theoretical models
of consonance, thus providing a computational account of consonance in terms
of dynamical systems theory. Finally, as it considers general features of acoustic
signals, the present approach demonstrates a universal aspect of consonance
and dissonance perception and provides a simple mathematical tool that could
serve as a common framework for further neuro-psychological and music theory
research.

Keywords: beating, recurrence quantification analysis, complex systems, non-linear signal analysis methods,
Devil’s staircase
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INTRODUCTION

Beating is the sensation that typically occurs when two sounds
with similar frequencies mutually interfere, giving rise to a
waveform with a rhythmic oscillation in amplitude. Following
the fundamental contribution of Helmholtz’s treatise, On the
Sensation of Tone (1954), first published in 1863, contemporary
explanations of consonance are grounded in the notions of
beating and complex tones—i.e., sounds displaying a broad array
of sinusoidal components (harmonics).

Roederer (2008, p. 35) provides an illuminating classification
of the effects of superposing two pure tones depending on
where in the listener’s auditory system the sounds become
entangled. The above mentioned beating is labeled by
Roederer as “first-order beating,” because it is processed
mechanically in the cochlear fluid and along the basilar
membrane. Evidence of the physiological basis of first-
order beating stems from the fact that its effect disappears
when sounds are played separately in different ears—i.e.,
dichotically. Another kind of first-order beating effect is
known as combination tones, which are produced by the
non-linear interaction of waves in narrow spaces, such as the
body of musical instruments or the inner ear. Combination
tones can be considered as the product of two sine waves.
A common example is the terzo suono theorized by Giuseppe
Tartini (see Lohri, 2016). If a and b are two frequencies
with a > b, then the terzo suono is a tone at frequency a–b
that is discernible only by the listener, because it is produced
inside the inner ear rather than being caused by external
air vibrations. Combination tones can be heard across
the octave at sound pressure levels (SPLs) of 80 dB or
higher, and across part of the octave at 50 dB SPL and
above.

At 80 dB (or higher) while maintaining the interval around
the octave, a distinct beating can be perceived. This disappears
when f 2 = 2f 1 (where f 1 and f 2 represent the two frequencies)
and reappears as long as the octave becomes mistuned by a
factor ε (i.e., f 2 = 2f 1 + ε). The beating frequency turns out
to be ε (Plomp and Levelt, 1965). Beating “is created by the
relatively quick changes produced by modulation frequencies in

the region between about 15 to 300 Hz” (Fastl and Zwicker,
2006, p. 257). Unlike first-order beats, the beating persists
when tones are fed dichotically, implying that, in this case,
beat perception is the result of neural processing. Hence, they
are defined as “second-order beats” (Roederer, 2008). Second-
order beating shows a modulation in the vibration pattern,
i.e., a periodic change in phase difference between the two
sounds that form the interval (Roederer, 2008, p. 49), although
no amplitude modulation is present. Second-order beats are
also called “beats of mistuned consonances” because they are
audible when pure tones are superposed to form a fifth (Plomp,
1976). In fact, whereas the vibration pattern of a correctly
tuned fifth (f 2 = 3/2 f 1) or fourth (f 2 = 4/3 f 1) is static,
the mistuned cases f 2 = 3/2 f 1 + ε and f 2 = 4/3 f 1 + ε

cause the vibration pattern to change periodically in form,
but not in amplitude. From the octave to the fifth and to
the fourth, the second-order beats become faster (beating
frequency being ε for the octave, 2ε for the fifth, and 3ε for
the fourth) as the vibration pattern grows in complexity (see
Figure 1).

Their neural origin makes second-order beats an excellent
phenomenon for investigating the link between the mathematical
description of the signals and their neural processing, and
consequently allows us to shed light on their perceived
“pleasantness.” To achieve a consistent picture of second-
order beats, it is fundamental to overcome the frequency–time
space representation trade-off and the related problem of non-
stationary signal characteristics.

Graphic representations of sound typically plot the course
of amplitude over time or report the relative amplitudes
of the different frequencies computed by the Fourier
Transform. Thus, there is no mention of time in the latter,
and no mention of frequency in the former. However, in
the actual hearing process, time and frequency are strictly
intermingled, because specific frequencies are processed at
specific moments. This fact suggests that we should focus on
the simultaneous analysis of time/frequency dimensions (Roads,
2001).

To determine the frequency of an oscillatory phenomenon,
we must count the number n of vibrations that occur within

FIGURE 1 | Amplitude (y axis) against time (x axis) for (A) Mistuned unison, a case of first-order beating (the interval ratio is 400/403 Hz, ε = 3, 3 beats). (B) Mistuned
octave at 803/400 Hz (ε = 3, 3 beats), a case of second-order beating. (C) Mistuned fifth at 603/400 Hz (ε = 3, the beats are 2ε), also a case of second-order beating.
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a set time interval 3t. As n is an integer, the minimum
error in measuring the frequency is one, thus generating
a kind of uncertainty principle in the form 3f ≥ 1/3t.
Increasing the precision of the frequency reclaims a wider
window in which to count the time, thus increasing the
indetermination of the instant in which the specific frequency
occurs.

It is possible to neglect the explicit consideration of time
and visualize tone relationships within the octave by computing
the ratio of two simultaneous frequencies and then plotting
the interval ratio against the amplitude. This is achieved by
forming a linear combination of two pure tone waves, a glissando
from the unison (f 1) to the octave (2f 1) and a firm wave
at frequency f 1. Similar stimuli were previously adopted by
Helmholtz (1954) and Kameoka and Kuriyagawa (1969a,b).
More recently, Piana (2007) provided a phenomenological
explanation of consonance and dissonance when moving from
the glissando and ruling out intervals and harmonics. In the
following, we propose a numerical approach to Helmholtz’s
glissando. Note that this approach maintains the time dimension
in terms of the determined sequence of interactions between
glissando and the fixed frequency. Focusing on these interactions
allows us to overcome the trade-off in the frequency–time
representation. For this purpose, we base our approach on
the concept of recurrence, a simpler and more fundamental
property of the signals with respect to the oscillation frequency
(Eckmann et al., 1987; Marwan et al., 2007). The degree
of recurrence of a series is estimated by the number of
times a signal comes back to an already visited state (see
section “Materials and Methods”), and can be computed by
the application of recurrence quantification analysis (RQA)
(Marwan et al., 2007). Estimating the recurrence rate avoids
any stationarity assumption, as the estimate is obtained by a
“computation window” sliding along the signal; the result is
a profile of recurrence values relative to subsequent epochs
along the original signal. This provides a model-free, discrete,
and local estimation of the recurrent properties of the series,
enabling a quantitative description of second-order beats. The
recurrence peaks exactly match the values of the interval
ratios corresponding to just intonation and are proportional
to the order of consonance of the intervals, thus providing
a link between consonance and the dynamical features of the
signal.

MATERIALS AND METHODS

Recurrence Quantification Analysis
The original idea of describing non-stationary signals (which
are not amenable to classical Fourier analysis) by means
of recurrence dates back to the work of Ruelle’s group
(Eckmann et al., 1987). The authors introduced recurrence
analysis as a purely graphical technique in the form of
recurrence plots (RP). Webber and Zbilut (1994) then converted
the RP approach into a quantitative technique (RQA) by
defining some non-linear descriptors of the RP. RQA has

been adopted for the assessment of time series structures
in fields ranging from molecular dynamics to physiology
and text analysis (Manetti et al., 1999; Orsucci et al., 2006;
Marwan et al., 2007). In the field of music research, RQA
has been successfully applied to song recognition (Serra
et al., 2009) and in the definition of an objective basis of
consonance of pure tones (Trulla et al., 2005). In general,
this non-linear technique is especially useful for quantifying
transient behavior far from the equilibrium (Trulla et al.,
1996).

RQA builds upon the computation of a distance matrix
between the rows (epochs) of the embedding matrix of the
signal of interest, with the lag defined by the method of
the first minimum of Mutual Information (Kennel et al.,
1992). Given a scalar time series {x(i) = 1; 2; 3;. . .}, an
embedding procedure generates a vector Xi = (x(i); x(i+L);. . .;
x(i+(m-1)L)), where m is the embedding dimension and
L is the lag. {Xi = 1; 2; 3;. . .; N} then represents the
multi-dimensional process of the time series (signal) as a
trajectory in m-dimensional space. RPs are symmetrical N × N
matrices in which a point is placed at (i; j) whenever a
point Xi on the trajectory is close to another point Xj. The
relative closeness between Xi and Xj is estimated by the
Euclidian distance between these two vectors. If the distance
falls below a threshold radius (r), the two vectors (epochs,
windows) are considered to be recurrent, and this is graphically
indicated by a dot. The value of r is usually set to 5–10%
of the average pairwise distances between epochs. Therefore,
RPs correspond to the symmetrical distance matrix between
the epochs (rows of the embedding matrix) of the signal
transformed into a binary 0/1 matrix by the action of a
threshold.

As an example, consider a time series A made up of 10
consecutive values: 7, 8, 10, 15, 6, 7, 9, 11, 10, 8. To observe
the recurrence structure of the series at the level of subsequent
epochs of length 3, we transform A into the embedding matrix
AE:

t0 t+1 t+2 epochs
7 8 10 ep1
8 10 15 ep2

10 15 6 ep3
15 6 7 ep4
6 7 9 ep5
7 9 11 ep6
9 11 10 ep7

11 10 8 ep8

Thus, the original series has been projected into a three-
dimensional space in which the variables (columns) are the
time-lagged original series and the statistical units (rows) are
the overlapping epochs. The second step is to compute the
Euclidean distances between the epochs. This generates the
following distance matrix AD:
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ep1 ep2 ep3 ep4 ep5 ep6 ep7 ep8 TIME

0 ep1

5.477226 0 ep2

8.602325 10.48809 0 ep3

8.774964 11.35782 10.34408 0 ep4

1.732051 7 9.433981 9.273618 0 ep5

1.41421 4.242641 8.3666 9.433981 3 0 ep6

3.605551 5.196152 5.744563 8.3666 5.09902 3 0 ep7

4.898979 7.615773 5.477226 5.744563 5.91608 5.09902 3 0 ep8

As the AD elements correspond to the Euclidean distances
between corresponding epochs, the diagonal values are 0, and the
symmetric character of the distances implies the matrix can be
written in lower-triangular form.

We now specify that two epochs are recurrent if their
distance is less than 95% of all the between-epoch distances.
The average value of the below-diagonal elements of AD
is 6.48, and their standard deviation is 2.74. Thus, it is
estimated that 95% of distances are greater than 1.74. This
implies we have only two recurrences, corresponding to the
epoch1–epoch5 and epoch1–epoch6 couples (bolded in the
table).

Therefore, example series A has a recurrence rate of 0.071
(two recurrences out of 28 distinct distances) or, equivalently, a
recurrence percentage equal to 7.1. The AD matrix corresponds
to an RP with only two dots, at coordinates (1, 5) and (1, 6). Note
that the recurrences can be identified without the need for any
frequency estimation, thus resembling the hearing process that
receives sounds as they occur in time.

To provide a quantitative measure of the recurrence,
numerical RP descriptors were developed (Marwan et al., 2007).
We now consider the proportion of recurrent points (dots) in
a plot, called the recurrence. Going back to the music domain,
Figure 2 reports the data relative to Figure 1 as RPs.

Software
Files were generated using the sound editor Cool Edit Pro and
saved in ASCII format before being fed to the Visual Recurrence
Analysis (VRA) software. For the plots in Figure 1, we loaded a
stereo file of 8000 samples/s to the audio editor, and sent a fixed
pure tone of 400 Hz lasting 6 s through the left channel and a fixed
pure tone of 403 Hz (Figure 1A), 803 Hz (Figure 1B), or 603 Hz
(Figure 1C) for 6 s through the right channel. The sample type
was then converted from stereo to mono. Figure 3 was generated
by loading a stereo file of 8000 samples/s to the audio editor, and
sending a linearly increasing sound from 360 to 840 Hz lasting
6 s to the left channel and a fixed pure tone of 400 Hz lasting 6 s
to the right channel. Finally, the sample type was again converted
from stereo to mono.

Figure 2 shows RPs for the data in Figure 1, i.e., 1 s (8000
points) of a mistuned unison, octave, and fifth. The plots were
generated by calculating the global recurrence using RQA, as
there is no change along the sample. The recurrence of the data
shown in Figure 3 was calculated using a windowing version of an
RP, whereby the recurrence is calculated repeatedly for a window
that is continuously shifted along the whole sample. Among the
RQA parameters, we chose the simplest one, Percent Recurrence,
a descriptor that sets the percentage of recurrent points with
respect to the non-trivial maximum [equal to (N × (N−1))/2

FIGURE 2 | Recurrence plots (RPs) of waveforms for mistuned unison (A), mistuned octave (B), and mistuned fifth (C). Calculations were performed on the data in
Figure 1. Recurrence algorithm generates several descriptors (inset of the figures) of the recurrence distribution. Here, we consider the recurrence parameter. The
axis refers to the discrete timing of the signal. RPs are graphical representations of a between-epochs distance matrix (see section “Materials and Methods”).
The main diagonal line refers to the coincidence in time, while increasing distances (along both directions) correspond to the recurrences found at increasing delays.
The individual dots denote the epoch pairs that have a distance value below the threshold and are thus considered to be recurrent.
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FIGURE 3 | Waveform resulting from linearly adding the amplitudes of two sinusoidal signals: a glissando from 360 to 840 Hz (represented by the diagonal line) and
a constant frequency of 400 Hz (line parallel to the x axis). The left y axis shows the amplitude of the waveform and the right y axis is the frequency of the diagonal
and plain lines. The x axis shows the time for the glissando to go from 360 to 840 Hz, and therefore contains the full collection of intervals between 360/400 and
840/400. The waveform exhibits a rich texture, as the zoomed inset shows, where the intervals of fourth (4/3) and fifth (3/2) are marked. The discrete character of the
signal is the cause of the dot-like nature of the graph. The y axis has both negative and positive numbers depending upon the peak/valley alternation of the
combination (where anti-phase destructive interactions correspond to 0).

for an N-point series]. The window for recurrence analysis was
480 points long and the shift was 48 points. The embedding
dimension was 5 and the delay was 3 points.

MATLAB programs were obtained from http://sethares.
engr.wisc.edu/consemi.html for Sethares’ dissonance curve and
http://courses.theophys.kth.se/5A1352/mfiles/devils.m for the
theoretical Devil’s staircase (see Discussion).

RESULTS

A non-stationary signal exploring all interval combinations
within the octave can be generated by merging the course of two
sounds into a single waveform. The first sound is set at constant
frequency f 1 for the full duration of the course, while the second
follows an ascending glissando from f 1 to f 2 = 2f 1. Figure 3
shows an instance of the above procedure.

The most conspicuous singularity (recurrence peaks, see
below) in the graph occurs when lines cross themselves, i.e.,
when f 2 = f 1 (unison, interval ratio of 1:1). A second relevant
case occurs at the interval ratio of 2:1, which corresponds to the
octave. Less evident events occur at 3:2 (fifth) and 4:3 (fourth),
as can be seen in the zoomed inset in Figure 3. Singularities
in the waveform are thus localized where the frequency ratios

are expressed by lower integers and with an apparent amplitude
(or degree of singularity) matching the accepted ranking of
consonance. In our representation, second-order beats appear as
a zone of relative calm centered in rational numbers, surrounded
by the tempestuous region of irrationals that Roederer (2008)
called “beat holes.”

Following the numerical solution of Helmholtz’s glissando,
we explore the glissando/constant frequency signal through an
RQA windowing procedure called Recurrence Quantification of
Epochs (RQE). RQE performs a scansion of the whole signal
by sequentially selecting small windows—specifically episodes of
480 points—in which the RQA algorithm (with the consequent
computation of recurrence rate for each episode) is applied.
The subsequent windows are shifted by 48 points and the
process is repeated throughout the entire file. For each iteration,
we retain both the recurrence value and the interval ratio
in which this value occurs, calculated as the mean of the
interval ratios in the window. Figure 4 represents the degree
of recurrence along the continuum of interval ratios within the
octave.

Emergent features of the glissando are evident in Figure 4.
Firstly, the higher peaks exactly correspond to the places of
just intonation (see Trulla et al., 2005), thus establishing a
link between pleasantness and the dynamical features (i.e.,
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FIGURE 4 | Recurrence analysis of the waveform resulting from linearly adding the amplitudes of sinusoidal signals covering the intervals forming the octave. The x
axis is the interval ratio and the y axis gives the percentage of recurrence. Each point in this graph is the result of a single recurrence analysis (like those shown in
Figure 2), from which we obtain the percentage recurrence. In this case, the RQE algorithm performs recurrence analysis over a window of 480 points, retains the
percentage recurrence, slides the 480 point window some 48 points, performs recurrence analysis again, and so on until it exhausts the file. The peaks in the graph
are labeled with names and rational numbers according to their position along the x axis interval ratio continuum (see Table 1 for complete interval list and
abbreviations).

recurrence) of the signal. As expected from the numerical
model, all peaks correspond to rational numbers. Secondly,
it is worth noting the symmetry of the peaks around
the perfect fifth. Moreover, the correlation between the
extent of recurrence and the rank order of consonance
derived from the literature evidences the link between
the present model based on signal analysis and results
from psychological approaches (see Schwartz et al., 2003,
i.e., U > P8 > P5 > P4 > M6 > M3 > m3 > m6 > m7 > M7, in
decreasing order of consonance; see Table 1).

In summary, RQA allows us to establish a natural link between
the signal properties and the consonance judgment of the
listeners without any a priori hypothesis or frequency estimation.
The reasons why integer numbers play such an important role in
harmony has recently been addressed in the literature, with many
different recipes presented for calculating the simplicity of the
intervals. We use the consonance index provided by Frova (1999)
to demonstrate the close relationship between the proposed
recurrence index and the bare numerical characteristics of the
intervals. If m/n is the rational number in its lowest terms, Frova’s
index is (m+n)/(m× n) (Frova, 1999, p. 178). Figure 5 illustrates
the correlation of this index with the notion of simplicity (i.e.,
degree of recurrence).

Whereas Frova’s index is derived from the energy of the
partials forming a complex sound, the percentage recurrence
is a purely bottom–up phenomenological descriptor of a
pure tone signal, relating recurrence (and consonance) to
secondary beating and thus providing a natural (albeit roughly

phenomenological) link between the signal properties and neural
processing.

Note that the computation of recurrences gives very similar
results with respect to models based on primary beating, such as
the Plomp and Levelt model reported in Figure 6.

DISCUSSION

In this paragraph, we relate the self-similar appearance of
the recurrence graph in Figure 4 to the mathematical fractal
structures generated by physical processes. Figure 7 shows
the empirical cumulative recurrence distribution (obtained by
adding consecutive points) and a formal Devil’s staircase in
the [1, 2] interval: the similarities between the two graphs are
remarkable.

The Devil’s staircase pattern is a fingerprint of dynamical
systems characterized by the mode-locking phenomenon
(Schroeder, 1990, p. 171), which is crucially important in both
music generation and perception. In the 17th century, Christian
Huygens studied mode-locking and discovered the phenomenon
of resonance. He noticed that, after a time, the pendulums of
two clocks fixed on the same mounting swung synchronously.
The synchronization of two coupled oscillators starting from
(slightly) different frequencies is called resonance. A more
general case of resonant behavior appears when a specific
constant frequency is periodically driven by an external power to
oscillate at a different frequency; the so-called Devil’s staircase
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pattern refers to the behavior of forced quasilinear oscillators. In
the glissando, the constant frequency is the intrinsic frequency
and the glissando the external periodic force. Every plateau in
the Devil’s staircase relates to a particular phase-locked solution
(stable state), and its relative width forms a hierarchy that follows
the explained propriety of rational numbers. The mathematical
model for this case is the circle sine map (McCauley, 1994).

θn+ 1=θn+
p
q
+ (

k
2π

) sin(2πθn)

where k is a coupling strength parameter that controls the degree
of non-linearity. Without coupling (k = 0), the behavior of the
system is expressed by the ratio p/q (often called �, the bare
winding number). When k > 0, the system locks into rational
frequency ratios, preferably with small denominators. In this case,
the long-term description of the system corresponds to w, the
dressed winding number. For the critical value k = 1, the infinite

TABLE 1 | Rank order of consonances and their degree of recurrence.

Recurrence Interval
ratio

Label Rational Name

100,0 0.9999 U 1/1 Unison

89,1 2.0006 P8 2/1 Octave

45,2 1.5003 P5 3/2 Perfect fifth

30,6 1.3335 P4 4/3 Perfect fourth

29,6 1.6671 M6 5/3 Major sixth

23,4 1.2495 M3 5/4 Major third

19,9 1.7499 H7 7/4 Harmonic seventh

18,5 1.2003 m3 6/5 Minor third

16,3 1.4007 7/5 Septimal

15,4 1.5999 m6 8/5 Minor sixth

15,1 1.8003 m7 9/5 Just minor seventh

14,2 1.1667 7/6 Septimal minor third

11,9 1.2855 9/7 Septimal major third

11,7 1.8339 11/6 Undecimal neutral seventh

11,5 1.1427 8/7 Septimal whole tone

10,1 1.4283 10/7 Euler’s tritone

9,8 1.1247 Mt 9/8 Major whole tone

9,7 1.7139 12/7 Septimal major sixth

9,4 1.5711 11/7 Undecimal augmented fifth

9,3 1.1115 mt 10/9 Minor whole tone

9,1 1.8567 15/8 Classic major seventh

9,1 1.2219 11/9 Undecimal neutral third

8,7 1.1006 11/10 4/5 tone

8,6 1.3755 11/8 Undecimal semi-augmented
fourth

7,8 1.8747 M7 15/8 Classic major seventh

7,7 1.2999 13/10 Tridecimal semi-diminished
fourth

7,6 1.6251 13/8 Tridecimal neutral sixth

7,1 1.0911 12/11 3/4 tone

6,8 1.8891 17/9 Septendecimal minor third

6,8 1.1823 13/11 Tridecimal minor third

6,7 1.4451 D5 13/9 Tridecimal diminished fifth

Bolded values are intervals most used in Western harmony.

number of locked frequency intervals corresponding to all the
rational numbers between 0 and 1 cover the entire � range.

In our terms, � is the cumulative recurrence and w is the
interval ratio. In other words, the system is locked at any rational
number—indicated as the interval ratio—but the width or extent
of the lock comes from the cumulative recurrence. Thereby, most
relevant consonances have extended areas around the lowest
rationales—like the unison or octave—and a strong attraction
exists toward these exact ratios. This is perfectly sound in terms
of music theory.

The above considerations can be summarized in three main
points:

(1) A purely empirical, data-driven analysis (RQA)
has highlighted a fundamental property of signals
(recurrence distribution) that matches the mathematical
(number theory) and physical (mode-locking) theoretical
background.

(2) The empirical results are consistent with both a theory-
driven “simplicity index” (Frova’s index) and with the
order that music intervals are ranked in harmony.

(3) The focus on signal properties (second-order beatings)
allows us to consider our results as a basis for modeling
consonance and dissonance perception by combining data
from both computational and cognitive models, e.g., based
on artificial neural networks and Hebbian neuroplasticity
(Pankovski and Pankovska, 2017).

Numerous studies have confirmed the adequacy of concepts
from non-linear dynamics for music perception and construction
(e.g., Cartwright et al., 2001, 2002, 2010), and for the study
of synchronization among sound sources (Abel et al., 2009).
Additionally, neuroscientific research has adopted non-linear
dynamical models to describe phase-locked neural populations

FIGURE 5 | Linear relationship between the degree of recurrence (Figure 4)
and Frova’s index of consonance (Frova, 1999). Note the almost perfect
overlap between the a posteriori statistics of actual signals (i.e., recurrence)
and the theoretically motivated a priori consonance index (i.e., Frova’s index).
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FIGURE 6 | Dissonance curve derived from a synthetic sound with 15 harmonics following a natural series. This graph comes from an algorithm ideated by Plomp
and Levelt (1965). The plot is shown upside down for ease of comparison with Figure 4. The resemblance between the peaks of Figure 4 and this figure allows for
a straightforward interpretation of recurrence results in terms of consonance/dissonance.

(Bidelman and Krishnan, 2009; Large and Almonte, 2012) and
build in silico neuronal models (Lots and Stone, 2008).

Taken together, our work and previous results support the
idea that the production and perception of sound are intimately
linked, the perceived pleasantness of intervals being an intrinsic
property of the signal (in terms of the degree of recurrence), and
not only a secondary effect of the signal on the listener. In turn,
this allows us to speculate on the auditory system. Second-order
beats have been attributed to the central auditory nervous system,
and neuronal webs are known to support phase-locking, as in
the mammalian auditory system, in which neural activity in areas
including the cochlear nucleus, inferior colliculus, and primary
auditory cortex is phase-locked to the stimulus waveform (Large
and Tretakis, 2005). The mode-locking model was proposed
by Lots and Stone (2008) as the basis for musical consonance,
leading to the development of a dynamical system model based
on stylized neural oscillators producing both synchronization
and mode-locking. These results support the idea that both

parts of the communication system (the sender and the receiver
of sounds) are similarly “wired.” Bidelman and Heinz (2011)
applied a waveform to a computational model of the acoustic
nerve and, after deriving the autocorrelation function for the
nerve fibers, generated the pitch salience profile for the different
intervals, giving rise to a distribution that could be superimposed
onto the recurrence rate (Figure 4). Using an artificial neural
network model, Pankovski and Pankovska (2017) recently
demonstrated that a specific auditory spectral distribution caused
by non-linearities and Hebbian neuroplasticity are sufficient
phenomena for a system to generate the consonance pattern.

In line with the literature on music perception (Benade,
1973; Roederer, 2008), we believe that the link between music
generation and perception could rely on the fact that the vibrating
elements of musical instruments undergo mode-locking into
stationary complex vibration patterns. In turn, these can be
recognized as the “best fit” to a harmonic template (resident
in a properly wired neural circuit). Though this explanation
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FIGURE 7 | (A) Interval ratio vs. cumulative recurrence. (B) Theoretical Devil’s staircase from sine map with k = 1.

stems from empirical correlations, we are convinced that the
simplicity and versatility of the RQA approach could pave the
way for neuro-psychological studies with the great advantage of
considering the acoustic signal and the perceiver from the same
mathematical perspective.

The origins of the distinction between consonance and
dissonance have been hotly debated in recent years. As the
phenomenon of consonance represents a key element of Western
music theory, this has mainly been investigated in terms of
Western science (i.e., mathematics, physics, psychoacoustics,
and neuroscience). For this reason, Parncutt and Hair (2011)
called for studies on the use of consonance and dissonance
in non-Western cultures to be conducted in terms of local
indigenous musicians, rather than in terms of Western science.
In this direction, a relevant study published in Nature by
McDermott et al. (2016) compares the harmonic preferences
of people who have different degrees of exposure to Western
music. An indigenous population from Bolivia (the Tsimané)
was assumed to have no exposure to Western music, and their
preferences were compared with groups of city residents in
Bolivia and the United States with different degrees of exposure to
Western music. The results show that the subjective preferences
of Tsimané participants differ from those of the comparison
groups; in particular, they failed to rate consonance as being
more pleasant than dissonance. The authors state that, as the
Tsimané are able to hear the acoustic distinctions associated
with consonance and dissonance, the lack of a measurable
preference for consonance appears to reflect difference in their
aesthetic response to this contrast (McDermott et al., 2016,
p. 549). Correctly, they state that the observed cross-cultural
variation suggests that consonance preferences are unlikely to be
innate, and so preference is probably acquired. However, the fact
that the preference for consonance co-varies with presumptive
exposure to Western culture is not sufficient to conclude that
consonance perception is not biologically determined. Though
preferences vary with cultures, the discrimination of consonance
is a prerequisite for preference and has a biological basis, as
supported by a large number of neurobiological studies (Koelsch
and Mulder, 2002; Koelsch et al., 2005; Minati et al., 2008; Perani

et al., 2010; Park et al., 2011; Wang, 2013). Investigating whether
consonance perception is biologically determined or shaped by
culture is likely to be misleading, as it conceives enculturation as
a non-biologically constrained process. Harmonic intervals are a
consequence of the entrainment of the nervous system with the
sound excitation. This forms a universal biological foundation
under any musical culture, determining the distinction between
acoustic consonance and dissonance and leaving it to each culture
to determine exactly how to employ these acoustic distinctions.
However, the existence of different musical cultures and systems
does not imply the lack of a shared natural/biological basis for
music production. The interaction between nature and culture
is much more complex, and cross-cultural variations in musical
systems only show that biology does not rigidly determine
music aesthetics. Similar considerations have led to a more
adequate definition of music as a “biocultural phenomenon”
(Cross, 2003).

CONCLUSION

The main contribution of this paper stems from the numerical
solution of Helmholtz’s glissando. Though the standard modern
theory of consonance is based on first-order beating, we have
shown that similar results can be obtained starting from second-
order beats. The recent interest in second-order beating has been
fruitful for models of pitch recognition or neural circuitry (see
Roederer, 2008), but not for theories on consonance.

Scholars have started to consider music from the perspective
of dynamical systems, both in neurobiological and physical
terms, showing that mode-locking models can explain how the
nervous system manages sound and is engaged in the ranking
of consonances. The resemblance between the formal Devil’s
staircase model and the cumulative recurrence distribution
strengthens this idea.

From a methodological perspective, the main contribution
of this work is to provide neuroscience scholars with an
extremely simple and model-free tool (RQA) that approaches
the acoustic signal and the listener’s perception system with the
same mathematical method. Different RQA applications have
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been reported in research on otoacoustic emission (see, for
example, Zimatore et al., 2002, 2003). We are therefore confident
that the use of a simple statistical approach will foster interactions
between music theory and neuro-psychological approaches.

Finally, our results support the idea of natural roots of
consonance perception, and are thus in line with several studies
published in recent years (see, for example, Wang, 2013; Bowling
and Purves, 2015; Nikolsky, 2015; Foo et al., 2016; González-
García et al., 2016; Di Stefano et al., 2017). However, as proved
by McDermott et al. (2016), the role of perception in the
formulation of aesthetic judgment remains unclear. Therefore,
musical consonance and dissonance remains a hotly debated
topic (see Bowling et al., 2017), in need of further research to
merge different approaches into a consistent theory.
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