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As statistical approaches are getting increasingly used in linguistics, attention must
be paid to the choice of methods and algorithms used. This is especially true since
they require assumptions to be satisfied to provide valid results, and because scientific
articles still often fall short of reporting whether such assumptions are met. Progress
is being, however, made in various directions, one of them being the introduction of
techniques able to model data that cannot be properly analyzed with simpler linear
regression models. We report recent advances in statistical modeling in linguistics. We
first describe linear mixed-effects regression models (LMM), which address grouping
of observations, and generalized linear mixed-effects models (GLMM), which offer a
family of distributions for the dependent variable. Generalized additive models (GAM)
are then introduced, which allow modeling non-linear parametric or non-parametric
relationships between the dependent variable and the predictors. We then highlight
the possibilities offered by generalized additive models for location, scale, and shape
(GAMLSS). We explain how they make it possible to go beyond common distributions,
such as Gaussian or Poisson, and offer the appropriate inferential framework to
account for ‘difficult’ variables such as count data with strong overdispersion. We also
demonstrate how they offer interesting perspectives on data when not only the mean
of the dependent variable is modeled, but also its variance, skewness, and kurtosis.
As an illustration, the case of phonemic inventory size is analyzed throughout the
article. For over 1,500 languages, we consider as predictors the number of speakers,
the distance from Africa, an estimation of the intensity of language contact, and
linguistic relationships. We discuss the use of random effects to account for genealogical
relationships, the choice of appropriate distributions to model count data, and non-
linear relationships. Relying on GAMLSS, we assess a range of candidate distributions,
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including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions.
We find that the Box-Cox t distribution, with appropriate modeling of its parameters,
best fits the conditional distribution of phonemic inventory size. We finally discuss the
specificities of phoneme counts, weak effects, and how GAMLSS should be considered
for other linguistic variables.

Keywords: mixed-effects models, generalized linear models, generalized additive models, smooth terms,
phonemic inventory size, Delaporte distribution, Box-Cox t distribution, GAMLSS

THE GROWING WEIGHT OF STATISTICS
IN LINGUISTICS

Different reasons can be put forward for why data-driven
approaches are gaining more prominence in the whole linguistic
field. First, large digital datasets such as WALS (Dryer and
Haspelmath, 2013), ASJP (Wichmann et al., 2016), Lapsyd
(Maddieson et al., 2013), or D-Place (Kirby et al., 2016) are
freely and readily available for computational analysis. Second,
personal computers now offer high computational power, along
with efficient and open-source statistical software, like the R
language and environment for statistical computing and graphics
(R Development Core Team, 2017). In particular, advanced
modeling techniques that were either still under development
or computationally out of reach with affordable computers two
decades ago are becoming accessible. Third, such techniques are
exported from fields such as econometrics, ecology or genetics to
linguistics. While the trend of ‘big data’ is already well established
in subfields of linguistics such as text mining, it has also more
recently gained prominence in studies of language diversity
or language change. It is for example becoming increasingly
common to publish studies investigating more than a thousand
languages (e.g., Wichmann et al., 2011; Moran et al., 2012). This
is true in particular when the relevance of non-linguistic factors
such as sociodemographic ones is being investigated.

With these approaches comes a number of issues regarding
the choice of appropriate statistical modeling for the questions
at stake. The illusion of truth is dangerous, especially when
algorithms deliver arrays of p-values without warning of possible
misspecifications or violated assumptions. Such issues are a
component of the crisis of confidence in psychology (e.g., Earp
and Trafimow, 2015): widespread failure to replicate previous
studies may be due to different factors, but one of them is
likely the inappropriate use of statistical models (e.g., Greenland
et al., 2016). This is compounded by the fact that articles often
do not report whether the authors have properly checked the
assumptions of their tests, nor give sufficient information to
replicate the experiment.

A CASE STUDY: THE SIZE OF
PHONEMIC INVENTORIES

What drives linguistic diversity? What phenomena, and in
particular what external factors, explain the distribution of
linguistic structures across the globe? These questions are at the
heart of linguistics, and can be considered at various levels of

linguistic analysis, either with qualitative or more quantitative
approaches. At the phonological level, one of these approaches
consists in studying phonemic inventories, and how their size
varies across linguistic families and areas. Phonemic inventory
size has thus been tentatively related to two non-linguistic
variables, namely population size (Hay and Bauer, 2007) and
the distance from Africa (Atkinson, 2011a,b), with reference
in the second case to modern humans’ migrations out of this
continent during the last 100,000 years. Both proposals have led
to substantial debates (e.g., Pericliev, 2004; Bybee, 2011; Donohue
and Nichols, 2011; Moran et al., 2012), both at a theoretical and
at a methodological level. Beyond that, language contact and
subsequent borrowing – or lack of it –, but also inheritance from
parent languages, are obvious partial answers to why a phonemic
inventory may be small or large.

In the next sections, we perform as series of regression analyses
of phonemic inventory size, in order to illustrate the potentialities
and limits of various approaches. In order to do this, we built
a dataset of 1529 languages containing 681 languages from the
Lapsyd database (Maddieson et al., 2013), complemented by 846
languages from the Phoible database (Moran et al., 2014). This
dataset compiles information for a number of predictors:

– Linguistic families and number of speakers extracted from
the WLMS dataset (Global Mapping International SIL
International, 2012);

– Distance from Africa computed following Atkinson’s
methodology with a departure point located in eastern
Africa (36◦W, 8◦N) and great circle distances constrained
by specific passage points (Sinai region, Bering Strait etc.)
(Atkinson, 2011b);

– A measure of local linguistic density, equal for each
language to the number of languages spoken less than 50 km
away, on the basis of the polygons delimiting the respective
areas of these languages, again given by the WLMS dataset;
computations were performed with QGIS (Quantum GIS
Development Team, 2017).

There were 139 linguistic families, including a number of
families restricted to a single language in the case of isolates or
creoles. Several transformations were applied to the continuous
variables: (i) a natural logarithm transformation was applied
to the number of speakers, (ii) a cubic root transformation
was applied to the local linguistic density, since it allows to
expand the range of values without the issues raised by the log
transformation, especially with 0 values, (iii) a scaling without
centering was applied to all continuous variables – which is to say,
we divided the values of each variable by the standard deviation
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of this variable, in order to be able to compare their respective
effect sizes in the models.

The choice of predictors reflects recent proposals in the
relevant literature, and includes heavily debated variables such
as Atkinson’s distance from Africa. Together, these predictors
provide a rich testbed for the various models considered
hereafter; conversely, these models may shed new light on current
issues in linguistic diversity, at least at a statistical level with
better modeling of the putative influence of geographic and social
factors.

Figure 1 provides an overview of Number of Speakers,
Local linguistic density, Distance from Africa, and Phonemic
inventory size, and of their one-to-one relationships. The
density function of Distance from Africa is noticeable because
of its three components. These components are related to
the distribution of languages on the planet according to the
distance from the reference point in eastern Africa. The leftmost
component encompasses languages from families such as the
Nilo-Saharan, Niger-Congo, and Afro-Asiatic families (left side
of the component), but also the Indo-European, Dravidian,
Sino-Tibetan, and Austro-Asiatic families (right side of the
component). The second component relates mostly to the Trans-
New-Guinean, Australian, and Austronesian families, while
the rightmost component relates to languages spoken in the
Americas, such as Tupi, Macro-Ge, or Arawakan languages. With
respect to the locations of passage points for the computation of
distances, the “bumps” arise by contrast with regions of lower
linguistic diversity, such as in western central Asia and at high
latitudes, e.g., in the region of the Bering Strait.

All the regression models were built within the R environment
(version 3.4.3) (R Development Core Team, 2017), using various
packages that are cited in the following sections. The code
used to produce the results and the figures can be found
in Supplementary Presentation 1. We remain in a frequentist
framework, and therefore do not refer to packages offering
Bayesian approaches. Our models always include Distance from
Africa, Number of Speakers and Local linguistic density as fixed
continuous effects, and Family as an intercept random effect for
reasons given in section 3.1. The dependent/predicted variable is
always Phonemic inventory size, also called Number of phonemes.
In summaries of models, p-values lower than 0.05 are in bold, but
all exact p-values are given unless very small – smaller than 0.001.

ADVANCES IN STATISTICAL MODELING
IN LINGUISTICS

How can one identify relationships between phonemic inventory
size and the set of predictors mentioned above? Regression
models are one of the main methodological answers, especially
since they account for several predictors simultaneously. Indeed,
the one-to-one relationships between the dependent variable
and the various predictors, as exemplified in Figure 1, must
be considered in the light of a possibly complex network of
dependencies between the latter. Since the absence of strong
multicollinearity is a prerequisite of regression models, we
checked it by computing the variance inflation factors, or VIF, of

the continuous predictors. The three values are between 1 and 1.5,
which allow safely concluding to low multicollinearity – values
higher than 4 or 5 would have been problematic.

From Linear Regression Models to
Mixed-Effects Linear Regression Models
As said previously, regression models relating a dependent
variable, also known as a response variable, to a number of
predictors, also known as independent variables or explanatory
variables, are common tools. Different approaches, however,
fall into this broad category, from straight linear regression to
quantile (Cook and Manning, 2013) or ridge (de Vlaming and
Groenen, 2015) regression.

There is a growing use of linear mixed-effects models (LMM)
in linguistics (Jaeger et al., 2011; Johnson, 2014; Winter and
Wieling, 2016). In these models, random effects are considered
in addition to fixed effects to better account for the distribution
of the dependent variable. Random effects allow in particular
to account for the issue of non-independence of observations
characterized by grouping, known as Galton’s problem, which
can lead to what is known as pseudo-replication and therefore
to increased type I errors, i.e., erroneous significant results
(Hurlbert, 1984). As an example in biology, closely related species
are assumed to have more similar traits because of their shared
ancestry and hence produce more similar residuals from the least
squares regression line. Comparatively, in studies investigating
a linguistic phenomenon in a large number of languages, not
accounting for the increased likelihood that languages sharing
a common ancestor share similar features may lead to wrong
conclusions in favor of spurious results. If regression is used, this
usually leads to the inclusion of linguistic family as a random
effect (Atkinson, 2011b). A strategy used by linguists in the field
of typology has also been to avoid non-independence by relying
on sampling strategies. In Maddieson (1984, p. 158–159)’s work
on phonological inventories, the genetic bias was for example
controlled by the following method: “include no pair of languages
which had not developed within their own independent speech
communities for at least some 1000–1500 years, but to include
one language from within each group of languages which shared
a history closer than that.”. In experimental linguistics, repeated
measurements within subjects or within items are also now
usually accounted for with random effects (Baayen et al., 2008).

At the statistical level, including random effects is a more
reliable strategy than for example averaging values over subjects
or items (Baayen et al., 2008). Such a strategy to bypass the
independence problem indeed leads to reduced datasets and a
significant loss of information. Random effects fall into random
intercepts and random slopes, and with the latter, the impact
of predictors entered as fixed effects can be further analyzed
across groupings of observations (Barr, 2013). More generally,
as underlined by Drager and Hay (2012), random effects are not
only a tool to get more accurate models; actually looking at the
conditional modes of their levels can provide useful information.
For example, if the distribution of levels of a subject random
effect reveals that lower values are mostly those of males, and
higher values mostly those of females, it is very likely that sex
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FIGURE 1 | Relationships between Number of phonemes, Number of speakers, Distance from Africa, and Local language density. The curves on the diagonal are
density curves. The blue lines are linear regressions, the red curves loess regressions.

should be added as a covariate to the model. Upon doing so, the
distribution of levels of the subject random effect will likely no
longer display a structure according to sex, and its variance will
likely be lower.

As in more complex models presented later in this article, the
parameters of a LMM can be estimated with different techniques.
Besides Bayesian approaches that we do not cover in this article,
maximum likelihood estimation or MLE is a commonly employed
technique. The underlying algorithms aim at finding values of
the parameters which maximize the likelihood of observing the
sample of data fed to the model. The higher the likelihood, the
better the fit to the data. Usually, the logarithm of the likelihood

is given as a measure of the quality of the fit. The so called log-
likelihood is always negative, and the closer it is to 0, the better
the model’s goodness of fit is. Conversely, the deviance, D, which
is equal to minus twice the natural logarithm of the likelihood, is
always positive; again, the closer it is to 0, the better the fit of the
model.

Both log-likelihood and deviance are good indicators of the
quality of the fit, but one is also often interested in the parsimony
of computed models. Reaching a good fit with a high number
of parameters is for example less parsimonious than reaching
the same fit, or a slightly worse one, with only half of them.
The Akaike Information Criterion or AIC is commonly used
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to evaluate parsimony, and penalizes the deviance by twice the
number of degrees of freedom in the model, df. More precisely,
AIC = 2.df + D, and the lower the value, the more parsimonious
the model. The factor 2 corresponds to a specific tradeoff, and
other criteria rest on other values. The Bayesian Information
Criterion (BIC), also known as Schwarz Bayesian Criterion (SBC),
is equal to ln(n).df + D, where n is the number of observations,
i.e., the sample size. The previous definition of BIC, however,
assumes that observations are independent, which is not true for
example when data are recorded longitudinally, since there is
temporal auto-correlation. In such situations, an ‘effective sample
size’ n′ must replace n (Jones, 2011). Compared to the AIC,
the BIC more strongly penalizes models with more parameters,
and model selection based on it will therefore tend to promote
simpler models. The BIC is thus more conservative against
overfitting. The number of degrees of freedom which is part
of the computation of AIC and BIC is not easy to estimate
when random effects are included in the model – one must
rely on approximations such as Satterthwaite or Kenward-Roger.
Both the AIC and BIC are specific instances of generalized AIC,
or GAIC, which is equal to k.df + D, where k is a positive
real number. There is no a priori reason to choose a specific
value of k over another, and several measures like AIC and
BIC can be used simultaneously to assess the parsimony of
several models (Kuha, 2004). Information criteria are hence
useful when one tries to select the most appropriate model for
a given set of observations and possible predictors (Burnham
et al., 2011). While there is no significance test associated
with AIC or BIC, they offer more flexibility than for example
likelihood ratio tests, which require to compare two models
that one is nested into the other. The AIC and BIC values
reported for the various models in the next sections have all
been rounded up or down to the closest whole number. Two
identically reported values may therefore be in fact slightly
different.

Turning our attention to our test case, we can compute a
LMM with the lmer() function provided in the lme4 package
(Bates et al., 2015) – one of the better-known packages offering
this possibility. lmer() takes as inputs the dataset and a formula
specifying the predicted variable, the fixed effects and the random
effects of the desired model, and outputs estimates for the various
parameters of this model. The underlying algorithm uses either
a maximum likelihood (ML) or a restricted/residual maximum
likelihood (REML) approach. The second differs from the first
in the way the variance components that belong to random
effects are estimated: REML accounts for the loss in degrees of
freedom corresponding to fixed effects, while ML does not. While
the variances of random effects may be more accurate when
REML is used, ML is the only correct approach when comparing
models with different fixed effects. In our case, Distance from
Africa, Number of speakers, and Local linguistic density are
entered as fixed effects, and could not qualify as random
effects given their non-categorical nature. Linguistic families
(Family) are entered as random intercepts, since following Bolker
(2015), these families are chosen from the set of all linguistic
families, and we are not primarily interested in the differences,
in terms of number of segments, between families – we only

wish to account for the dependencies the latter create in the
data.

A random intercept for a categorical variable with N levels
additionally requires only one parameter to be estimated – the
variance, since the mean is fixed to 0 – while a fixed effect
would request N-1 parameters. This is true if no random slope is
simultaneously considered, since covariance between the random
slope and the random intercept must then be estimated unless
it has been constrained to take a 0 value. We did not consider
random slopes in our models, both for the sake of simplicity and
because we hypothesized that the impact of the fixed effects did
not vary across the linguistic families. We are aware though that
this choice could be contested (Barr, 2013).

Table 1 summarizes the output of the model. The lmerTest
package is loaded so that the lmer() function returns p-values
with Wald t-tests. There are two options to approximate the
used degrees of freedom: the Satterthwaite approximation, and
the Kenward–Roger approximation which is a slightly more
conservative option. Likelihood-ratio tests (LRT), which compare
the likelihood of the initial model with that of a model where a
target fixed parameter has been dropped, are another option to
assess significance. Keeping things simple with t-tests, the only
p-value (well) below 0.05 is for the estimate of Distance from
Africa. It appears that the further away from the reference point
in Africa, the smaller the phonemic inventory size. The estimates
for the two other fixed predictors are not significantly different
from 0.

How much confidence should we put in these results? Their
validity rests upon the satisfaction of a number of assumptions
(Zuur et al., 2010), among them the normality of the residuals and
their constant variance along the fitted values (homoscedasticity).
In Figure 2, two diagnostic plots reveal that these requirements

TABLE 1 | Output of a LMM applied to the data.

Predictors Dependent variable

Number of phonemes

Estimate Standard error t-value p-value

Fixed parts

(Intercept) 37.75 2.46 15.37 <0.001

Distance from Africa −5.44 1.51 −3.61 <0.001

Number of speakers −1.00 1.06 −0.94 0.348

Local linguistic density 1.39 0.97 1.42 0.155

Random parts

σ2 91.46

τ00,Family 77.81

NFamily 139

ICCFamily 0.46

Observations 1,529

R2/�0
2 0.481/0.478

AIC 11,435

Deviance 11,423

P-values lower than 0.05 are in bold.
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FIGURE 2 | Diagnostics for the LMM model: raw residuals vs. fitted values (left) and quantile-quantile plot of these residuals (right).

are not met: there is strong heteroscedasticity of the residuals,
and a visually clear departure from normality observable in the
quantile-quantile plot. The conclusions from the model should
therefore be reported with caution, even if LMM are robust to a
certain degree of non-normality.

In order to resolve issues of non-normality of the residuals,
one commonly found strategy is to transform the dependent
variable, whether it is log-transforming count data or taking
the inverse of reaction times. The problem is then, however,
that a predictor appearing to be significant with respect
to the transformed variable is not necessarily significant
with respect to the untransformed one, since the mapping
between the transformed and untransformed variables is non-
linear. In some cases, hypotheses and underlying processes
may well concern the transformed variable and not the
raw one, in which case it makes perfect sense to apply a
transformation. If this is not the case, models based on a
transformed dependent variable may not be very informative.
All in all, applying non-linear transformations to the predicted
variable as the default strategy to overcome statistical issues
is therefore not recommended, although these transformations
should not be completely discarded. With respect to count
data, a number of articles have been published in ecology to
discuss log transformation, and overall favor not transforming
the data, although linear models with a log transformation
often seem robust with large datasets, and may be more
resistant to false positives, also known as type I errors (O’Hara
and Kotze, 2010; Ives, 2015; Warton et al., 2016). Looking
beyond the frequentist framework, Bayesian approaches to
predictive uncertainty allow construction of credible intervals
in untransformed units from a regression model with a
transformed dependent variable (Gelman and Hill, 2007; Korner-
Nievergelt et al., 2015). Within the frequentist framework,
other modeling options are available, and are described in
the next sections. Given the inadequacy of the previous LMM

with respect to our test case, it makes sense to consider such
options.

It is worth noting that these issues have been highlighted
by some authors with respect to phonemic inventory size: an
extract of the supporting online material of Cysouw et al.
(2012)’s comment on Atkinson (2011b) mentions that ‘It has
repeatedly been observed that there is a positive correlation
between the phoneme inventory size of a language and the speaker
community size (S17-S19) (. . .) Note that for this correlation,
we used the logarithm of population size and the logarithm
of the phoneme inventory size. The analysis of the expected
distribution of phoneme inventory size is still not settled (S20–S22),
but using a logarithm seems to be preferable to using the raw
numbers’ (p. 14-15). In Atkinson’s study, rather than raw or
log-transformed inventory sizes, an index of complexity of the
phonemic inventories, including tones and with a limited range
of values, was considered. The distribution of the dependent
variable was therefore very different from ours, and we can argue
that the raw number of phonemes provides more information
than an index of complexity derived from it.

For the sake of exhaustiveness, we considered a model
with the logarithm of the number of phonemes as dependent
variable. Despite the transformation, the residuals are still rather
unsatisfactory, although more homoscedastic and closer to
normality than those of the model with untransformed numbers
of phonemes. One could here argue that the log transformation
is not the most appropriate, and that other approaches could
be considered, such as Box-Cox transformations (Box and Cox,
1964).

In cases where relations between observations can be
described with tree-like structures, phylogenetic regression
methods can be used to appropriately model the expected
structure of covariance between observations, and thus prevent
autocorrelation (Symonds and Blomberg, 2014). These models
are commonly used in biology and take advantage of the
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phylogenetic trees derived from molecular data. However, as
for linguistic data, especially when comparing large numbers
of languages from distant families, the degree of confidence
in the reconstructed tree is often low, at least in the higher
branches. This perhaps explains why many studies rely on family
level groups in mixed-effects models, despite this being only
a very partial account of the relationships between languages.
A slight improvement resides in considering several levels
of classification, for example with subfamilies nested within
families, but again this is only a partial account of the expected
covariance between languages.

Generalized Linear Mixed-Effects
Regression Models
Generalized linear models (GLM), either with or without random
effects, are also on the rise. As their name suggest, they extend
linear models, in that they allow the dependent variable to follow
a distribution other than Gaussian (the Gaussian distribution
which is also called normal distribution). They are particularly,
but not only, useful in cases where the predicted variable
takes its values in a restricted domain: the set of integer
values, the domain of positive real numbers etc. The binomial
regression is one case, and suits probabilities or a dependent
categorical variable taking two values (Johnson, 2008; Morrison
and Kondaurova, 2009). Considering the case of response
times, Lo and Andrews (2015) explain how generalized models
can come to the rescue of scholars facing two inappropriate
choices: analyzing a raw dependent variable when this leads to
violation of the assumptions of the linear model, or transforming
this raw variable to meet these assumptions (as discussed
in section “From Linear Regression Models to Mixed-Effects
Linear Regression Models”). The appropriate generalized linear
model offers a distribution of error terms leading to the
satisfaction of assumptions without transformation. In addition
to the conditional distribution of the dependent variable, a link
function can also be specified; fixed factors can then linearly
predict the result of the application of this function to the
observed response, rather than the observed response itself.
Among the more common link functions are the logarithm,
square-root and inverse functions. Choosing link functions other
than the identity function, however, leads once again to the
evaluation of predictors with respect to a transformed dependent
variable. When including random effects, GLM are usually called
generalized linear mixed models, or GLMM.

The commonly available distributions in statistical packages
dealing with GLM belong to the exponential family of
distributions, such as the normal, Bernoulli, exponential, inverse-
Gaussian, chi-squared, Poisson, or binomial (in this latter case,
only when the number of trials is known) distributions.

Phonemic inventory size falls into the domain of count data,
and it makes sense therefore to consider distributions over
positive integers rather than over real numbers. The Poisson
distribution is the better known option in such cases. In
cases where the counts are small, i.e., close to 0, considering
a distribution over real numbers would be dangerous, since
predictions of the related model could be non-sensical negative

values. A distribution over positive real numbers seems more
appropriate, but exponential distributions like inverse-Gaussian
or Gamma are not suited to count data close or equal to 0,
unless in very specific cases. When count values are far from 0,
however, continuous distributions may be considered, as it is the
case for Phonemic inventory size – the smallest value is 11, the
largest value 156, and the median 33. They may then give better
results than discrete distributions. Given these considerations,
we thus fitted to our data a Poisson regression, an inverse-
Gaussian regression, and a Gamma regression, each time with an
identity link function. This choice was motivated by the positive
skewness of the distribution of inventory sizes. We used the
glmer() function of the lme4 package (Bates et al., 2015), in which
a few distributions of the exponential family can be specified,
including the three previous ones. glmer() takes the same inputs
as lmer() plus the chosen distribution.

The inverse-Gaussian distribution turned out to give the
lowest deviance, which was much lower than that of the Poisson
regression (10,693 vs. 11,653). The corresponding results (with
restricted maximum likelihood – REML) are reported in Table 2.
They depart from those of the previous LMM in that all the
estimates for the fixed effects are closer to 0. The effect of Distance
from Africa is still significant, but with a higher p-value, while
Number of speakers and Local linguistic density are far from being
significant. In addition to estimates for fixed predictors being
closer to 0, all standard errors are smaller. This observation is a
good point for the model.

Again, a number of assumptions must be met for the output of
the model to be acceptable. Figure 3 contains two diagnostic plots
for the inverse-Gaussian regression. Heteroscedasticity is more
moderate than in the first LMM, but it appears that once again,
the distribution of residuals departs from normality, although
the problem is much less important than previously, as indicated
by the range of sample values. The Gamma regression and the

TABLE 2 | Output of an inverse-Gaussian GLMM applied to the data.

Predictors Dependent variable

Number of phonemes

Estimate Standard error z-value p-value

Fixed parts

(Intercept) 35.65 2.33 15.26 <0.001

Distance from Africa −3.52 1.36 −2.59 0.010

Number of speakers −0.04 0.83 −0.05 0.957

Local linguistic density 0.15 0.62 0.18 0.855

Random parts

τ00,Family 38.47

NFamily 139

ICCFamily 1.00

Observations 1,529

AIC 10,705

Deviance 10,693

P-values lower than 0.05 are in bold.
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FIGURE 3 | Diagnostics for the inverse-Gaussian GLMM: deviance residuals vs. fitted values (left) and quantile–quantile plot of these residuals (right).

Poisson regression are not better in this respect. In the second
case in particular, this is actually not surprising when one knows
that the variance of the Poisson distribution is equal to its mean.
The marginal distribution of Phonemic inventory size has a mean
of 34.8, and a variance of 164.8: this is a clear case of strong
overdispersion, which makes the Poisson distribution a very
unlikely candidate for the regression.

Generalized Additive Models (GAM)
Generalized additive models (GAM) are a family of models which
were designed in the 1980s and are widely used today in a range
of scientific fields (Hastie and Tibshirani, 1986). They are slowly
making their way to linguistics, and a few authors recommend
their use, for example in speech analysis (Sóskuthy, 2017).

Generalized additive models are at the intersection between
additive models and generalized linear models. They are relevant
when the relationship between a continuous predictor and the
dependent variable is not adequately described by a linear
regression (Wood, 2011; Winter and Wieling, 2016). Adopting a
linear regression for a non-linear relationship is dangerous, since
it creates autocorrelation patterns in the residuals, and therefore
possibly unreliable estimates and confidence intervals for the
model parameters (Sóskuthy, 2017). In some cases, non-linear
relationships between a predictor and the dependent variable can
be expressed by a simple polynomial of this predictor, and LMM
or GLMM are then enough, but this is not always the case. GAM
address this difficulty by allowing the presence of smoothing
functions, or smoothers, in the linear predictor component of
the regression model, along with “unsmoothed” covariates. The
general equation of a GAM can thus be written:

g(E(Y)) = I + s1(x1) + . . . + sn(xn) + ε

where x1. . .xn are the predictors, s1(x1), . . ., sn(xn) the smooth
terms relating to these predictors, I the intercept, ε the remaining

error term, Y the dependent variable, E(Y) the expected value and
g the link function.

The smooth terms can be either parametric (and this includes
the linear and polynomial cases), semi-parametric or non-
parametric, univariate or multivariate (in the latter case, to deal
with interaction effects); they are overall very unconstrained
and therefore very flexible. While this requires noticeably more
observations, it can account for predictors and their influence
more accurately. However, especially in the case of intricate non-
linearities, interpreting the underlying causes can become much
harder.

Among the more common parametric smoothers, one finds
polynomials, fractional polynomials, piecewise polynomials, or
B-splines. Non-parametric smoothers include local regression
smoothers, such as the loess regression, which rely on a sliding
window to extract local estimators, much in the way speech
signals are analyzed to produce spectrograms. They also include
penalized smoothers: for a single variable, cubic splines, P-splines,
penalized B-splines, penalized categorical variables, Gaussian
Markov random fields etc.; for several variables, thin plate
regression splines, tensor product splines, varying coefficients etc.
(Stasinopoulos et al., 2017, p. 257). While the differences between
all these smoothers are beyond the scope of this article, it matters
to say that the so-called penalization aims at finding the best
value for the smoothing parameter, which controls the amount
of smoothing, i.e., the degree of fitting of the smooth term to the
raw predictor(s), unless this degree is specified externally by the
user. The effective degrees of freedom (edf ) can be referred to
describe the amount of smoothing. The goal is here to avoid both
underfitting and overfitting – the bias/variance tradeoff, so that
the model can generalize well to data other than the sample used
to build it.

Random effects can be included in GAM, in particular under
the form of a specific penalized smoother (Stasinopoulos et al.,
2017, p. 346). Random slopes can also be considered. One then
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speaks of generalized additive mixed models (GAMM), or “mixed
GAM.” Significantly in a GAM(M), the smooth function of
a predictor is estimated while taking into account all other
predictors, whether smoothed or not.

In R, common packages for GAM(M) are gam, mgcv, or
gamm4 (Wood, 2011), with differences in the underlying MLE
algorithms. In mgcv, the function gamm() calls to the lme()
function of the package nlme to estimate random effects, while
gamm4() calls to lmer() or glmer(), all these secondary functions
being related to LMM or GLMM. As said earlier, random
effects can also be specified directly with a penalized smoothing
function. It can be noted that the mgcv package enables the use
of other distributions than those already mentioned, such as the
Tweedie distribution, the zero-inflated Poisson distribution etc.
(Wood et al., 2016).

Since the algorithms for MLE differ in GAM(M) and
GLM(M), it makes sense to first check the output of an inverse-
Gaussian GAM without smoothing functions. We used the gam()
function of the mgcv package, with a random effect smoother
for Family. Table 3 gives the various elements of the model; the
random effect clearly appears as a (very significant) smooth term.
One can detect variations in the estimates, standard errors and
p-values; in particular, the estimate for Distance from Africa is
significantly larger than in the GLMM model. This illustrates
the sensitivity of the results to the algorithm, and therefore
reminds us to be cautious when concluding on the basis of
only “slightly significant” p-values. As for GLMM, a Poisson
GAM and a Gamma GAM both had higher deviance than the
inverse-Gaussian GAM.

Looking back at the various relationships presented in
Figure 1, several relationships between the predictors and
Phonemic inventory size suggest that smooth terms may be
relevant. The question, however, is whether the non-linear
relationship observed on the surface between an isolated
predictor and the dependent variable is intrinsic, or whether it

TABLE 3 | Output of an inverse-Gaussian GAMM without smooth terms.

Predictors Dependent variable

Number of phonemes

Estimate Standard error z-value p-value

Parametric coefficients

(Intercept) 36.25 2.21 16.43 <0.001

Distance from Africa −5.20 1.29 −4.02 <0.001

Number of speakers 0.14 0.89 0.15 0.876

Local linguistic density −0.08 0.83 −0.10 0.922

Smooth term edf Ref.df F p-value

s(Family) 105 138 6.23 <0.001

Adjusted R2 0.416

AIC 10,679

Deviance explained 56.5%

P-values lower than 0.05 are in bold.

is actually linear under the surface, but appears as non-linear
due to the interlaced influence of other predictors. Considering
several predictors and smooth terms in a single model allows
one to disentangle the various influences at play. As a next step,
we thus considered an inverse-Gaussian GAM with smoothers.
Finding the most appropriate smoother(s) requires comparing
different options and models with measures such as AIC or BIC,
and it is generally advisable to estimate the smoothing parameter
automatically, i.e., try a penalized version of the smoother. For
the sake of simplicity here, we only compared two smoothers
that we applied homogeneously to our three continuous fixed
effects: cubic splines and P-splines. Regarding the former, the
penalty was modified so as to shrink toward zero when the
smoothing parameter goes to infinity. Concretely, this meant
that an absence of relationship was correctly identified, i.e., with
0 effective degrees of freedom, rather than modeled with one
degree of freedom as in standard cubic splines. We actually
compared three approaches: penalized cubic splines, penalized
P-splines, and cubic splines with a fixed smoothing parameter
corresponding to two effective degrees of freedom, i.e., the
minimum possible value, corresponding to polynomials of degree
2 (k = 3 in the specification of the model). Cubic splines and
P-splines are common penalized smoothers, hence our choice;
for more information on the differences between them, see
(Stasinopoulos et al., 2017, p. 279).

Table 4 reports the outputs of the three models, and Figure 4
the various smoothing terms for Distance from Africa, Number
of speakers, and Local linguistic density. Regarding the numbers
in Table 4, one should be careful with the standard errors and
p-values reported for smooth terms. Indeed, these values are
unreliable when the smoothing parameters have been penalized
by the algorithm, because the uncertainty in the optimization
of these parameters is not taken into account when assessing
the null hypothesis. In consequence, p-values can be too low –
again with potential type-I errors leading to falsely rejecting the
null hypothesis. Likelihood ratio tests are more conservative than
Wald chi-square tests, but results should still be examined with
caution. A requirement in the presence of smoothing terms is to
perform significance tests with un-penalized smooths, specifying
the degree of smoothing as equal to the value obtained previously
with penalization (Stasinopoulos et al., 2017, p. 125).

The various graphs in Figure 4 illustrate the subtleties of
using GAM and choosing the right smoothers. As expected,
unpenalized cubic splines smooth terms with a fixed number
of two degrees of freedom result in relationships which display
little “wiggliness”. In particular, they suggest a decreasing
linear relationship between Distance from Africa and Phonemic
inventory size, other predictors being accounted for. However,
despite using less degrees of freedom (113.3 vs. 114.7 and 121.4
for penalized P-splines and cubic splines, respectively), the model
has a higher AIC (10,682) than models with penalized P-splines
and cubic splines (10,662 and 10,649, respectively). Contrary
to what one could have expected, the degrees of freedom are
actually only slightly lower than those of the two other models –
with a difference of only 1.4 with the P-splines model. A closer
look reveals that constraining the smoothness of continuous
predictors is counterbalanced by more degrees of freedom used
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TABLE 4 | Output of three inverse-Gaussian GAMM: with cubic splines for
continuous predictors (top), with P-splines (middle), with cubic splines and a
smoothing parameter fixed to 3 (bottom); in all models, a random effect smoother
is applied to the predictor Family.

Predictors Dependent variable

Number of phonemes

Parametric
coefficients

Estimate Standard error z-value p-value

Cubic splines, starting from k = 10

(Intercept) 33.58 1.15 29.12 <0.001

Smooth terms edf Ref.df F p-value

s(Distance from
Africa)

8.91 9.00 3017.56 <0.001

s(Number of
speakers)

0.00 9.00 0.00 1.000

s(Local linguistic
density)

8.72 9.00 9.98 0.325

s(Family) 101.69 138 3.87 <0.001

Adjusted R2 0.427

AIC 10,649

Deviance explained 57.9%

P-splines, starting from k = 10

(Intercept) 33.68 1.14 29.47 <0.001

Smooth terms edf Ref.df F p-value

s(Distance from
Africa)

5.82 6.52 6.67 <0.001

s(Number of
speakers)

1.70 2.10 0.49 0.653

s(Local linguistic
density)

4.47 5.20 1.52 0.207

s(Family) 100.70 138 3.66 <0.001

Adjusted R2 0.418

AIC 10,662

Deviance explained 57.2%

Cubic splines, k = 3

(Intercept) 32.37 1.13 28.55 <0.001

Smooth terms edf Ref.df F p-value

s(Distance from
Africa)

2 2 8.47 <0.001

s(Number of
speakers)

2 2 0.42 0.655

s(Local linguistic
density)

2 2 0.76 0.466

s(Family) 105.3 138 4.87 <0.001

Adjusted R2 0.416

AIC 10,683

Deviance explained 56.5%

P-values lower than 0.05 are in bold.

by the random effect Family (105.3 vs. 100.7 and 101.7 for
penalized P-splines and cubic splines). Additionally, comparing
the three models shows that 2 degrees of freedom is too much

for Number of speakers: The penalized cubic splines model
indicates an absence of relationship for this predictor (0 degrees
of freedom), while the P-splines model returns 1.7 degrees of
freedom. Altogether, these observations suggest that constraining
the smooth terms to low degrees of freedom is not a very
reasonable choice, and that the related model should rather be left
aside. There is more generally no strong argument for choosing
a priori 2 rather than 3 or 4 degrees, and penalizing the smooth
term is a more neutral approach than starting by constraining the
model with imprecise assumptions at the quantitative level.

Comparing now the two models with penalization, one
sees that cubic splines lead to high degrees of non-linearity
for Distance from Africa and Local linguistic density, which is
reflected by the larger values of the effective degrees of freedom
of these two smooth terms (8.90 and 8.72, respectively, to be
compared to 5.82 and 4.47 for P-splines), while discarding an
influence of Number of speakers (owing to the modified penalty
introduced above). It looks as if canceling the influence of this
predictor resulted in increased non-linearity in the two other
continuous predictors. Different smooth functions thus result
in different optimizations, something which is likely possible
because of the complex correlations between Distance from
Africa, Number of speakers and Local linguistic density (see
Figure 1). Overall, the cubic splines model has the lowest
AIC and should therefore be preferred in theory, although
it does not provide any simple explanation for the shape of
the non-linear relationship between for example Distance from
Africa and Phonemic inventory size. While one may argue that
the latter globally decreases with the former, things appear to
be more complex than a linear relationship, and this while
other predictors have been accounted for. P-splines lead to
simpler smooth terms, but interpretation is still difficult. These
results are interesting with respect to previous studies in
the literature, which have always considered linear predictors
rather than smooth terms. Some of the observed effects, as
well as some of the contradictory results in different studies,
may stem from an inappropriate modeling of non-linear
relationships.

Does adding smooth terms to the regression model solve
the issue of the non-normality of the residuals? In all previous
GAMM models, residuals remain problematic, in a way very
similar to those observed in Figure 3 for the inverse-Gaussian
GLMM. Previous observations with cubic splines and P-splines
should therefore be treated with caution, and this calls for yet
another modeling tool.

GENERALIZED ADDITIVE MODELS FOR
LOCATION, SCALE, AND SHAPE
(GAMLSS)

Overview
Generalized additive models for location, scale and shapes
are an extension of GAM(M) which allows one to consider
a wide range of options for the conditional distribution of
the dependent variable, while GLM(M) and GAM(M) are
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FIGURE 4 | Smooth terms for Distance from Africa, Number of Speakers, and Local linguistic density, for three smoothing approaches in an inverse-Gaussian
GAMM: cubic splines (top), P-splines (middle), and cubic splines with a fixed smoothing parameter equal to 3.

restricted to the exponential family of distributions (Rigby and
Stasinopoulos, 2005). Besides their range of values – all real
numbers, positive real numbers, real numbers between 0 and
1 etc. –, distributions can be contrasted on the basis of their
number of parameters: the Poisson distribution is defined with
a single parameter, the Gaussian, Gamma, inverse-Gaussian
distributions by two parameters etc. Some distributions, such
as the generalized Gamma distribution – of which the Gamma
and inverse-Gaussian distributions are two specific instances – or
the exponential Gaussian distribution, rely on three parameters,
while yet other distributions are defined by four parameters, such
as the Johnson SU distribution. The terms location, scale, and

shape refer to these various parameters, and are connected, but
not necessarily equal, to the four moments of a distribution,
namely the mean, the variance, the skewness, and the kurtosis.
In the Poisson distribution, the single parameter is a location
parameter, equal to the mean, and the scale and shape of the
distribution are fixed – this corresponds to the fact that in a
Poisson distribution, the variance is equal to the mean, the
skewness to the square root of the mean, and the excess kurtosis
(the kurtosis minus 3) to the inverse of the mean. In the Gaussian
distribution, the mean and variance can be defined independently
from each other and are the location and scale parameters, while
the skewness and kurtosis, i.e., the shape, are both fixed, equal
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to the values 0 and 3, respectively. GAMLSS offer a large variety
of distributions with 1, 2, 3, or 4 parameters, classically noted
µ, σ, ν, and τ. While only µ is modeled in (G)LM(M) and
GAM(M), in GAMLSS all four parameters can be modeled, either
with linear parametric, non-linear parametric or non-parametric
(smooth) functions of the predictors (Rigby et al., 2007). Normal
random effects, but also non-parametric random effects can be
considered. Mixtures of distributions can also be used. At the
heart of the GAMLSS, algorithms have been designed to fill two
tasks: maximize a penalized log-likelihood function addressing
the estimates of fixed and random parameters, and evaluate
the various smoothing parameters appropriately (Rigby et al.,
2007; Stasinopoulos et al., 2017). These two operations cannot be
disconnected, and various options are available to perform them
in an imbricated way.

An example of the use of GAMLSS is given by Zha et al.
(2016) in their analysis of motor vehicle crash data. The predicted
variable consists in count data of crashes in highway segments in
the United States over the course of several years. As previously
stated, the Poisson regression is what usually comes first to
mind when count data needs to be assessed. However, as seen
for phonemic inventory size, the overdispersion is very high
for the number of crashes. The negative binomial distribution
better accounts for overdispersion, but by using GAMLSS, Zha
et al. (2016) show that a Poisson-Inverse Gaussian provides a
better fit and similar predictive performance. They thus suggest
that it should be used in subsequent studies to obtain better
estimates of the role of predictors. Another example is response
times in psycholinguistic experiments. While Lo and Andrews
(2015) report that inverse Gaussian and Gamma distributions
are equivalent good fits for response times due to theoretical
reasons, analysis of experimental data reveals that the distribution
of residuals is not always satisfactory, especially because of the
long tail of the distribution corresponding to long response times.
Relying on distributions better accounting for the skewness of the
target distribution, such as the generalized Gamma distribution,
leads to more satisfying results in terms of normality of the
residuals. Finally, Rigby et al. (2008) discuss various approaches
to modeling overdispersed count data, among others 3-parameter
Sichel and Delaporte distributions, as well as a 4-parameter
distribution, the Poisson-shifted generalized inverse Gaussian
distribution.

As for the overall philosophy of GAMLSS, it is interesting to
quote Stasinopoulos et al. (2017, p. 26–27): “GAMLSS provides
greater flexibility in regression modeling, but with this flexibility
comes more responsibility for the statistician. This is not a bad
thing. The philosophy of GAMLSS is to allow the practitioner to
have a wide choice of regression models.”

In R, GAMLSS are available through several packages. The
main package is named gamlss, but associated packages such
as gamlss.add, gamlss.cens, gamlss.mx, gamlss.spatial etc. allow
extending the main functionalities: generation of censored or
truncated versions of the main distributions, additional smooth
functions such as neural networks or decision trees, use of
mixture distributions etc.

Models built with the aforementioned lmer(), glmer() or gam()
functions can all be reproduced within the GAMLSS framework.

Given the differences in the algorithms, outputs may, however,
slightly differ from one model to the next.

Investigating the Marginal Distribution of
Phonemic Inventory Size
A first step in contemplating the use of GAMLSS to study
phonemic inventory size is to pay a closer look at the
distribution of the latter. The distribution of the dependent
variable independently from any predictor is called the marginal
distribution.

The histDist() and fitDist() functions of the gamlss package
come in handy to investigate what theoretical distribution comes
closest to the empirical one. The first one takes as its main inputs
a vector of values and the name of a distribution, and returns
how well the values fit the distribution, as expressed by the global
deviance, the AIC and BIC of the fit. The second allows one to
find the best fit among a list of distributions, and also returns the
AIC of the different fitting attempts.

We used these two functions to compare different
distributions. On the one hand, we considered distributions
adapted to count data available in the gamlss.dist package (loaded
by default with the gamlss package). There are over 25 available
distributions, among them:

– The 1-parameter Poisson distribution (PO);
– The 2-parameter negative binomial distribution; the types I

and II parametrizations (NBI and NBII) available in gamlss
led to the same result, and we took the type I;

– The 2-parameter Poisson-Inverse Gaussian distribution
(PIG);

– The 3-parameter Delaporte distribution (DEL);
– The 3-parameter Sichel distribution; we considered the

second parametrization (SICHEL) offered in gamlss in
order for the mean of the distribution to be equal to µ.

We also checked all the distributions adapted to positive real
numbers. However, some distributions are based on parameters
that are difficult to relate to the four moments mean, variance,
skewness, and kurtosis. A location parameter, µ, equal to the
mean of the distribution offers easier interpretations, and can
be related to LMM, GLMM, and GAMM which all model the
mean, and only the mean, of the distribution. This is the case
for all previously reported discrete distributions (although with
a specific parametrization for the Sichel distribution), but not
for all continuous distributions – some of them, however, model
the median, which is easy to interpret. Given this constraint of
interpretability, we especially paid attention to:

– The 2-parameter inverse-Gaussian distribution (IG),
following previous results with GLMM and GAM;

– The 3-parameter Generalized inverse-Gaussian (GIG), a
generalization of IG with the mean as location parameter;

– The 3-parameter Box-Cox Cole and Green distribution
(BCCG), with the median as location parameter;

– The 4-parameter Box-Cox t distribution (BCT), with the
median as location parameter;

– The 4-parameter Box-Cox power exponential (BCPE), with
the median as location parameter.
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FIGURE 5 | Fitting of several discrete and continuous theoretical distributions to the empirical distribution of Phonemic inventory size.

The intuition behind testing these various distributions was
that those with more parameters would better be able to account
for the thick right tail of the distribution, i.e., the positive
skewness of this distribution. Figure 5 summarizes the fits
of the two most adequate discrete distributions, of the two
most adequate continuous distributions, and of the Poisson
and inverse-Gaussian distributions that were tested in previous
models.

Among discrete distributions, the Sichel distribution has the
lowest AIC (11,738), but is followed very closely by the Delaporte
distribution (AIC = 11,739). The Poisson distribution has a
much poorer fit (AIC = 14,668), which is in line with our
previous results with GLMM and GAMM. Among continuous
positive distributions, the BCCG distribution has the best fit
in terms of AIC (11,727), followed by the Generalized Gamma

(AIC = 11,727) which location cannot be easily related to the
mean or median, and the BCT distribution (AIC = 11,728).
The inverse-Gaussian distribution appears further away in the
ranking (AIC = 11,734), but its distance to the best distributions
is in no way comparable with how the Poisson distribution differs
from the Sichel or Delaporte distributions. As visible on Figure 5,
except for the Poisson distribution, all displayed theoretical
distributions seem rather close to the empirical distribution. One
can also observe here that strictly referring to AIC values, the
BCCG and BCT distributions provide better fits that the SICHEL
and DEL distributions.

Do these results suggest that the BCCG should be the
distribution to use in a GAMLSS with our various predictors?
One must be cautious here, since the marginal distribution is
not the same as the conditional distribution of the dependent
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variable, i.e., its distribution when factoring in the various
predictors. The question is whether the overdispersion can be
explained by one or several of these predictors, or whether
it is to some extent independent of them. In the second
case, overdispersion will still be manifest in the conditional
distribution, and will require treatment with a distribution with
the right number of parameters. In the first case, given its degrees
of freedom, this distribution will likely still provide good fitting.
To this extent, the results obtained with the marginal distribution
can serve as a guide in the choice of the target conditional
distribution.

Fitting a GAMLSS to Predict Phonemic
Inventory Size
In practice, many decisions have to be made regarding the
modeling options offered by GAMLSS, from choosing the
distribution to choosing the link function, the additive terms and
the smoothing parameters. Stasinopoulos et al. (2017, p. 380–384)
provide valuable guidelines to operate adequate choices, although
no strict sequence of operations can be followed blindly.

In our case, in the previous section, we first investigated
the marginal distribution of the dependent variable to narrow
down possible choices of distributions. Given the results,
one can reasonably focus on a few distributions, namely the
Sichel, Delaporte, Box-Cox Cole and Green, and Box-Cox t
distributions. We also included the inverse-Gaussian distribution
for the sake of comparison with previous models. Second,
regarding the link function, we thought that keeping an identity
link was useful to relate estimates of the models to actual number
of phonemes, without the difficulties related to transforming
the dependent variable – or the relationship between it and the
predictors – as mentioned earlier in this article. Various link
functions can actually be compared with AIC. In distributions
requiring positive values, link functions such as the logarithm
also prevent convergence issues that are otherwise difficult to
address. Third, which additive terms to consider was like in
all previous models related to current debates in the literature,
which in no way means that other predictors would not be
relevant. Various methods of model selection are available, some
of them mixing backward, forward, and stepwise procedures
across the various parameters of the distribution (Stasinopoulos
et al., 2017, p. 385–402). However, besides the fact that some
scholars disagree with the concept of model selection overall, the
presence of a random effect for Family is somehow problematic.
Indeed, the way this random effect is estimated in the model –
a local normal approximation to likelihood, also known as
penalized quasi likelihood – is different from what occurs in
common LMM or GLMM – a global estimation to likelihood.
The consequence is that dropping a continuous predictor can
lead to a change in the penalization of the random effect, such
that a strong effect, which should be retained by the selection
procedure, may be abandoned. Because of this, we chose not
to rely on selection procedures, but rather compare a number
of models of increasing complexity. Thus, for each distribution,
we considered a model with our predictors only for location
(µ), a model with predictors additionally introduced for scale

(σ), then, when possible, models with predictors additionally
considered for shape parameters (ν then τ). As for smoothing
finally, we considered P-splines smooth functions – cubic splines
proved difficult to work with –, with a modified penalty so as
to shrink toward zero when the smoothing parameter went to
infinity – the pbz() smooth function in gamlss (Stasinopoulos
et al., 2017, p. 274–275). The advantage of these smooth terms
was that the estimation could lead to linear terms, or even to
constant terms when no influence of a predictor was detected,
other predictors being accounted for. Some parameter selection
was thus present.

Table 5 reports the deviance, the degrees of freedom used
for the various parameters, the total number of used degrees
of freedom, as well as the AIC and BIC of the various models
tested. (DEL, µ, σ, and ν) refers for example to a model with
the Delaporte distribution, and µ, σ, and ν modeled with our
predictors. There were issues of convergence with Sichel models
that we could not address, which explains why they are not
discussed in what follows. In terms of deviance, the (BCT, µ,
σ, and ν) and (BCT, µ, σ, ν, and τ) models had the lowest
deviance. These two models were actually identical, which is
explained by the fact that all predictors introduced to model
τ ended up being estimated with 0 degrees of freedom –
in other words, τ was best modeled with an intercept only.
In terms of AIC, i.e., taking into account the number of
degrees of freedom used by the models, the (DEL, µ, σ, and
ν), (BCT, µ and σ) and (BCT, µ, σ, and ν) models were
the best, with only a slight difference between them. Finally,
the BIC pointed to the three Delaporte models as the most
parsimonious.

Which of the previous models to choose, especially given the
contradictions between the AIC and BIC? We first decided to
prefer (BCT, µ, σ, and ν) over (BCT, µ and σ), since deviance
was lower in the first model and since skewness could be better
investigated with it. Checking an important assumption – the
normality of the residuals – helped us to make a final choice
between (BCT, µ, σ, and ν) and Delaporte models. Figure 6
displays two diagnostic plots of the residuals – one to check
homoscedasticity and the other to assess normality – for the
(DEL, µ, σ, and ν) and (BCT, µ and σ) models, with (IG, µ)
additionally as a reference. While, as previously seen, residuals
strongly deviate from normality in (IG, µ), they are much better
in (DEL, µ, σ, and ν) and (BCT, µ and σ). However, there
is still some deviation in (DEL, µ, σ, and ν). Figure 7, which
displays detrended quantile-quantile plots – also known as worm
plots – provides a much clearer view of the problems of (IG,
µ) and (DEL, µ, σ, and ν). In a worm plot, 95% of the dots
must be within the 95% confidence interval defined by the
two elliptic curves in the figure. This is not the case for the
two models. By comparison, the residuals of the (BCT, µ and
σ) model are very satisfying, which motivated our decision to
adopt this model as the most relevant to further investigate our
predictors.

Looking at the various effective degrees of freedom of the
smooth terms, it appeared that many terms were actually
equivalent to linear predictors, and the model could be simplified
and described as follows:
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TABLE 5 | Comparisons of various GAMLSS models with different distributions and different levels of modeling of parameters.

Model Global Deviance df for µ df for σ df for ν df for τ df AIC BIC

IG, µ 10,450 104.47 1.00 0 0 105.47 10,661 11,224

IG, µ and σ 10,246 117.55 52.38 0 0 169.93 10,586 11,492

DEL, µ 10,456 79.73 1.00 1 0 81.73 10,619 11,055

DEL, µ and σ 10,356 83.24 20.42 1 0 104.66 10,565 11,123

DEL, µ, σ, and ν 10,344 83.14 18.86 4.00 0 106.00 10,556 11,121

BCCG, µ 10,424 105.68 1.00 1 0 107.68 10,640 11,214

BCCG, µ and σ 10,222 121.08 48.71 1 0 170.79 10,563 11,474

BCCG, µ, σ, and ν 10,219 121.38 49.42 3.00 0 173.80 10,567 11,494

BCT, µ 10,403 109.62 1.00 1 1 112.62 10,628 11,228

BCT, µ and σ 10,199 123.14 53.59 1 1 178.73 10,557 11,510

BCT, µ, σ, and ν 10,184 124.54 55.24 6.22 1 187.00 10,558 11,555

BCT, µ, σ, ν, and τ 10,184 124.54 55.24 6.22 1 187.00 10,558 11,555

In each model, a penalized P-spline smooth function is used for the three continuous predictors, and a penalized random effect smoother for the categorical variable. The
three lowest AIC and BIC are in bold. IG, inverse-Gaussian; DEL, Delaporte; BCCG, Box-Cox Green and Cole; and BCT, Box-Cox t.

FIGURE 6 | Diagnostics for the (IG, µ), (DEL, µ, σ, and ν), and (BCT, µ, σ, and ν) models reported in Table 5: Normalized quantile residuals vs. fitted values (left)
and quantile-quantile plot of these residuals (right).

– For µ, a smooth term is relevant for Distance from Africa
and Family, and Number of speakers and Local linguistic
density can be included without smoothing;

– For σ, a smooth terms is relevant for Family, and the three
continuous predictors do not require smoothing;

– For ν, Family can be excluded, a smooth term is relevant for
Number of speakers, but not for Distance from Africa and
Local linguistic density.

Table 6 reports the outputs of this model. Several predictors
appear as statistically significant, however, Stasinopoulos et al.
(2017, p. 18) warn that p-values should be inspected with caution

when smooth terms are present. Indeed, the values given for
a smooth term correspond to its linear part, and not to its
total contribution. Additionally, reminiscent of what was said
for GAM, the values for non-smoothed terms do not account
for the uncertainty attached to the estimation of the smoothing
terms. A partial solution to this problem is to consider likelihood-
ratio tests to assess the significance of the predictors once the
degrees of freedom of the smooth terms have been fixed to
the values previously estimated with penalization (Stasinopoulos
et al., 2017, p. 125). With such fixed smooth terms, dropping a
predictor does not result in these smooth terms “reacting” to the
drop by increasing their degrees of freedom. The drop1() function
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FIGURE 7 | Detrended quantile–quantile plots – also known as worm plots – of the normalized quantile residuals for the (IG, µ), (DEL, µ, σ, and ν) and (BCT, µ, σ,
and ν) models reported in Table 5.

can be used to drop predictors one by one, whether in µ, σ, or ν,
and obtain the p-value of the chi2 test involving the full model and
the nested model without the dropped predictor (the difference
in degrees of freedom is used for the test). Table 7 reports
the output of this function for our chosen model (described in
Table 6).

Regarding the median of the distribution, the smooth term
for Distance from Africa is highly significant, while Local
linguistic density is barely significant and Number of speakers
is not. With τ constant, σ is approximately proportional to
the coefficient of variation (the variance divided by the mean),
and is significantly influenced by all predictors but Number
of speakers. Finally, no predictor reaches the 0.05 significance
threshold for ν. One can observe that for P-splines smooth
terms, the difference in degrees of freedom between the full
model and the model without the smooth term is equal to the
fixed number of degrees of this smooth term minus 1. This is
because the fixed number of degrees includes one degree for
the intercept; when the smooth term is dropped, an intercept
remains, hence the “minus 1.” One can also ponder here over
the benefits of GAMLSS models which, in addition to predictions
for the mean or median of the distribution, can also provide
information regarding other moments of the distribution. In
our case, a conclusion is that the coefficient of variation of
the distribution significantly decreases as Distance from Africa
increases, which means that inventories are more homogeneous
in terms of size the further away from Africa, other factors being
accounted for.

In order to better understand what is suggested by the
model, it is necessary to look at the partial terms reproduced
in Figure 8. The median of Phonemic inventory size is non-
linearly related to Distance from Africa, and the two local
maxima of the non-linear relation are not easy to interpret.

As for GAMM, a linear decrease is not confirmed by the
observed pattern. A sharp decrease can, however, be observed
at some distance away from Africa. Relations for Number of
speakers and Local linguistic density are linear. While the first
one was assessed as not significant, the second one barely is,
with an increase of the median Phonemic inventory size as
the local linguistic density increases. This result was absent
in previous LMM, GLMM, and GAMM models. This could
be due to less satisfying statistical approaches, but should also
serve as a warning of the limited trust one should put in this
result.

DISCUSSION

Three aspects can be put forward in discussing the previous
results and observations.

The first aspect concerns the specific nature of our target
dependent variable, i.e., phonemic inventory size. The very large
inventories of some languages, and the overdispersion of the
connected variable, can be in good part explained by how features
are combined into phonemes. The notion of feature economy
states that “speech sounds tend to be organized by a principle
of feature economy, according to which languages maximize
the combinatory possibilities of a few phonological features to
generate large numbers of speech sounds” (Clements, 2003,
p. 371). According to this principle, very large inventories are so
because some features are used intensively and produce series of
phonemes “in mirror,” e.g., the vocalic feature of nasalization is
put to use so that all vowels without secondary features have their
nasalized counterparts. Multiplicative processes are therefore at
the origin of at least some the variance and overdispersion of
phonemic inventory size.
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TABLE 6 | Output of a GAMLSS with (i) Box-Cox t distribution, (ii) µ, σ, and ν

modeled with either linear predictors or penalized P-splines smooth functions of
these predictors, and a penalized random effect smoother for the categorical
variable Family when necessary, (iii) τ modeled as intercept only.

Predictors Dependent variable

Number of phonemes

Parametric
coefficients

Estimate Standard error t-value p-value

µ (link function: identity)

(Intercept) 36.40 0.79 46.16 <0.001

s(Distance from
Africa)

−6.05 0.30 −20.19 <0.001

Number of
speakers

−0.19 0.52 −0.36 0.716

Local linguistic
density

1.27 0.52 2.47 0.014

σ (link function: log)

(Intercept) −1.47 0.10 −15.16 <0.001

Distance from
Africa

−0.26 0.04 −7.14 <0.001

Number of
speakers

0.05 0.07 0.78 0.432

Local linguistic
density

−0.14 0.07 −2.09 0.037

ν (link function: identity)

(Intercept) −1.00 0.51 −1.97 0.048

Distance from
Africa

0.15 0.19 0.78 0.438

s(Number of
speakers)

0.25 0.34 0.74 0.456

Local linguistic
density

−0.02 0.30 −0.08 0.932

τ (link function: log)

(Intercept) 11.97 3.39 3.53 <0.001

Smooth terms edf σB

µ (link function: identity)

s(Distance from
Africa)

8.83 1.08

s(Family) 113.71 6.96

σ (link function: log)

s(Family) 51.23 0.31

ν (link function: identity)

s(Number of
speakers)

4.22 0.11

Global deviance 10,184

AIC 10,558

BIC 11,555

Regarding the parametric coefficients, the coefficient of a smoothing term and its
standard error refer to its linear component. P-values lower than 0.05 are in bold.

From this observation, one could argue that applying a
transformation to the dependent variable makes sense, even
if it is not an easy question to answer which transformation
is respectful of the specific multiplicative processes at play.
However, this transformation may run counter to the nature of

TABLE 7 | Likelihood ratio tests (LRT) for the predictors of the (BCT, µ, σ, and ν)
GAMLSS model described in Table 6.

df AIC LRT p-value

µ

Starting model 10,558

s(Distance from Africa) 7.82 10,571 29.28 <0.001

Number of speakers 1 10,556 0.22 0.640

Local linguistic density 1 10,560 4.11 0.043

s(Family) 113.71 10,874 544.30 <0.001

σ

Starting model 10,558

Distance from Africa 1 10,561 5.81 0.016

Number of speakers 1 10,556 0.12 0.726

Local linguistic density 1 10,561 5.39 0.020

s(Family) 51.23 10,600 145.24 <0.001

ν

Starting model 10,558

Distance from Africa 1 10,557 1.39 0.239

s(Number of speakers) 3.22 10,558 7.29 0.074

Local linguistic density 1 10,556 0.09 0.765

P-values lower than 0.05 are in bold.

the mechanisms hypothesized with the inclusion of a predictor.
For example, referring to the impact of the number of speakers,
does one conceive this impact at the level of phonemes, or
at the level of features? In the latter case, the transformation
would perhaps be justified. In the former, some situations could
appear as less convincing. Although this hypothesis is far-fetched
and is only put forward to the sake of argumentation, one
could argue that having a larger number of speakers does not
increase the number of features at the basis of the phonemic
inventory, but rather influences the way speakers combine these
features, in such a way that the system tends to display greater
feature economy. Along the same line of thought, with respect
to linguistic contact and the putative effect of the local linguistic
density, the meaningful question would be whether speakers
mostly borrow phonemes or features from other languages. In
any case, one of the messages of this article is that models do exist
that allow one to model “difficult” variables without resorting to
transformation.

To move further in this direction, future work will consist
in extracting the features of each phonemic inventory used in
the test case of this article. It will then become possible to
study the distribution of feature inventory size, much in the
way phonemic inventory size was scrutinized in the previous
sections. There are no multiplicative processes at the level
of features, and it will therefore be relevant to evaluate the
overdispersion of the marginal and conditional distributions. If
overdispersion is still present and high, a possible conclusion
will be that the overdispersion of phonemic inventory size
derives from multiplicative processes when combining features,
but also from the properties of the systems of features
themselves.

A second point is the issue of weak effects in regression
modeling. As it appears from our various analyses, Distance
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FIGURE 8 | Additive terms for Distance from Africa, Number of Speakers, and Local linguistic density for the µ and σ components of the (BCT, µ, σ, and ν) model
reported in Tables 5, 6. A P-splines smooth function is applied to Distance from Africa for µ.

from Africa appears as a very significant effect in all models.
One can assume that very strong and significant effects will
be observed even with imperfect models. However, what about
weaker effects, with significance close to the 5% threshold?
Another predictors of our models, Local linguistic density, has
p-values (well) above 0.05 in less satisfying models, and a p-value
barely below 0.05 in the supposedly most appropriate model.
Drawing conclusion about weak effects is very dependent on the
model, especially if one clings to the 5% significance threshold,
and also on the use of one test of significance over another:
Wald t-tests, likelihood ratio tests, parametric bootstrapping
etc. (Luke, 2017). On the one hand, some scientists advocate
for moving away from the “null ritual” and the 5% threshold
(Gigerenzer et al., 2004; Baker, 2016; Greenland et al., 2016;
Wasserstein and Lazar, 2016), in which case differences between
p-values slightly below or above 0.05 do not matter much.
On the other hand, a conclusion is that weak signals are at
the mercy of the chosen model, and thus this model should
be chosen and assessed with care. For example, in the case
of phonemic inventories, in addition to the assumptions we
tested for residuals, potential spatial autocorrelation should be
accounted for in order to minimize related type I errors. We
have not addressed this concern in the previous models, but some
options are available, whether it’s moving to regression models

including spatial correlation structures, or including specific
predictors such as the ‘weighted areal normalized phonological
diversity’ proposed by Jaeger et al. (2011). All in all, with
respect to our test case, whether language contact significantly
affects phonemic inventory size through borrowing remains to
us an open question. What geo-linguistic measures best capture
language borrowing is a connected question that requires further
investigation.

Finally, we argue that linguistics and psycholinguistics could
benefit from the use of GAMLSS when regression models are
envisaged to explore a phenomenon. The adequacy of the
Delaporte distribution to model phonemic inventory size in no
way means that this distribution in particular is the solution to
a large number of problems. Rather, we have tried to highlight
the reasoning that led us to consider this distribution, and why
other options – LMM, GLMM, GAMM, GAMLSS with other
distributions – were not as much appropriate. In other contexts,
similar investigations would lead to another distribution or
narrow choice of distributions. One domain of application
already mentioned in Section “Overview” is the study of response
times in psycholinguistics. In addition to finding appropriate
theoretical distributions for the very specific distribution of
reaction times (Moscoso Del Prado Martín, 2009; Baayen and
Milin, 2010), a potentially fruitful advantage of GAMLSS is their
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ability to not only model mean, but also variance and skewness.
Relating the mean of response times as dependent variable to a
number of factors such as number of phonological neighbors,
frequency, number of letters etc. is very common, but doing the
same for the variance or the skewness could help further unravel
the way cognitive treatment unfolds and linguistic information is
processed.

Besides psycholinguistics, work in preparation suggests that
another variable which can benefit from GAMLSS is speech
rate. Indeed, speech rate – the number of syllables uttered
by second – presents interesting variations between speakers
and languages (Pellegrino et al., 2011; Coupé et al., 2014), but
distributions in speakers and languages also suggest meaningful
patterns of skewing, where the amount and orientation of
skewing is connected to the mean value of the speech
rate.

More generally, we have little doubt that many other
variables, either continuous, discrete or count data, can
benefit from both the smooth functions and distributions of
GAMLSS.

CONCLUSION

Various statistical tools are available to linguists willing to explain
how a given linguistic variable varies across its domain. We
highlighted how GAMLSS models, which are still very rarely used
in the language sciences, could be put to use to depict ‘complex’
variables such as phonemic inventory size. This seems especially
relevant when non-linguistic causes of linguistic diversity such
as climatic or sociodemographic factors are considered, since
their study can often be conducted with regression models.
The distributions offered by GAMLSS can be more appropriate
from a methodological point of view, and both the possibility
to include additive terms and the possibility to model the
scale and shape of the distribution in addition to its location

can be put to use to better understand the behavior of a
system.
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