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Eye-hand coordination of an infant is observed during the early months of their

development. Hand regard, which is an example of this coordination, occurs at about

2 months. It is considered that after experiencing hand regard, an infant may recognize

their own hands. However, it is unknown how an infant recognizes their hands through

hand regard. Accordingly, the process by which an infant recognizes their hands and

distinguishes between their hands and other objects was simulated. A simple neural

network was trained with a modified real-time recurrent learning (RTRL) algorithm to

deal with time-varying input and output during hand regard. The simulation results show

that information about recognition of the modeled hands of an infant is stored in cell

assemblies, which were self-organized. Cell assemblies appear during the phase of

U-shaped developments of hand regard, and the configuration of the cell assemblies

changes with each U-shaped development. Furthermore, movements like general

movements (GMs) appear during the phase of U-shaped developments of hand regard.

Keywords: hand regard, cell assemblies, U-shaped developments, general movements, hand recognition,

simulation

INTRODUCTION

Infants engage in long periods of playful self-exploration and pick up information that uniquely
specifies their own body in action. This activity is considered a primary source of learning about
the embodied self (Rochat, 2004). For instance, the extended hand of an infant in the posture
known as the asymmetrical tonic neck reflex (ATNR) can typically be fitted into the center of the
infant’s visual field at about 1 month. At about 2 months, the infant can look at their own hand;
in other words, “hand regard” appears. From about 3 months, sustained hand regard continues to
be very common. At about 4 months, sustained hand regard is less common; instead, the infant
occasionally brings the hand slowly to the object while their glance shifts from hand to object
repeatedly. At about 5 months, the infant lifts the hand out of their visual field to the object quickly
(i.e., “an infant’s earliest reach”) (White et al., 1964). On the basis of this development of eye-hand
coordination, it is considered that the infant discovers their own hands through hand regard.

Besides hand regard, another eye-hand coordination of an infant is observed during the early
months of their development (von Hofsten, 2004). Infants can control the position of their arm so
as to keep their hand visible (van Der Meer et al., 1995, 1997). In the first month of life, infants
also show “pre-reaching” movements in which they stretch their arms toward the object but do not
contact it (von Hofsten, 1984; Bhat et al., 2007).The development from pre-reaching to reaching
at about 5 months described above has been explained in terms of the infant’s maturing nervous
system (von Hofsten, 1984). Moreover, many cases about intermodal calibration and sense of the
body in infancy have been reviewed (Rochat, 2004).
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From about 3 months, with sustained hand regard, an infant
often clasps their hands together, over the midline (White et al.,
1964). From about 5 months, the infant can grasp their right
foot with their right hand and do the same with their left hand
and left foot. If the infant recognizes their hands through hand
regard, they may discover their feet next with recognized their
own hands. Accordingly, elucidating the process for recognizing
the hands is an important first step toward understanding the
process for recognizing the whole body.

In the present study, a simple model for the learning of
hand regard is formulated. With this model, the process by
which an infant recognizes their hands and distinguishes between
their hands and other objects is simulated. The present model
reproduces a similar behavior as the development of visual
attention for the subjects assigned to the control group of the
White and Held study (White et al., 1964). Until recently,
many studies on hand recognition have been reported; Some
examples are infants’ development of basic hand skills and
visual recognition (Tomasello et al., 1993); recognition of one’s
own hand actions in the context of the mirror-neuron system
(Rizzolatti et al., 1996); especially, theory of mind (Gallese,
2007); and attempts to model some of these processes (Oztop
and Arbib, 2002). Several computational models of visual object
recognition, such as VisNet (Wallis and Rolls, 1997; Tromans
et al., 2011), HMAX (Riesenhuber and Poggio, 1999), and
the deep neural network (Krizhevsky et al., 2012; Zeiler and
Fergus, 2014), have been proposed. In these models, the output
layer of a trained neural network typically contains one unit
per category of the input image and implements a softmax
function, which shows the probability that any of the categories
are true (Kriegeskorte, 2015). In the present study, however, a
learning model for recognition of one’s own hand rather than
an object is proposed. To recognize one’s own hand, the output
activities of the output units control the movements of hand;
visual feedback about hand movement, corollary discharge and
proprioceptive information about the hand are integrated in
the present model. Several neurocomputational models adopt a
brain-inspired approach to modeling the emergence of cognitive
functions (i.e., language, memory, and decision making) in
the brain starting from a “random” substrate. In particular,
development of cell assemblies in neurobiologically realistic
neural networks has been investigated (Rolls and Deco, 2002;
Wennekers et al., 2006; Pulvermüller and Garagnani, 2014).
Some learning models for simulating hand regard behavior were
proposed. For example, in an infant model, the limitation of
visual field produced hand-regard behaviors in a self-organizing
manner (Yamada et al., 2010). However, the integration of visual
feedback, corollary discharge and proprioceptive information
were not incorporated in this model; therefore, the recognition of
infant hands was not studied. In addition, a learning model that
enables a robot to integrate a tactile sensation and visual feedback
through hand-regard behavior was proposed (Fuke et al., 2009).
The robot’s hand was moved in front of the robot’s face by giving
a force to the hand; that is, the output activities of the output
units did not control the hand movements. Therefore, corollary
discharge was not incorporated in theirmodel, and recognition of
the robot hand was not studied either. The relationship between

hand-regard behavior and hand recognition, which is obtained
by the integration of the visual feedback, corollary discharge and
proprioceptive information, has been hardly studied.

To handle hand recognition, the following points were
incorporated in the proposed model. A forward model that
can be utilized to determine the agent of the action has been
proposed (Miall and Wolpert, 1996). To handle this function
that determines the agent of the action, a simplified forward
model, which produces corollary discharge, is incorporated
in the present model. To deal with time-varying input and
output resulting from movements of infant’s hands, a real-
time recurrent learning (RTRL) algorithm (Williams and Zipser,
1989; Hochreiter and Schmidhuber, 1997) is adopted. After we
can recognize our own body, we feel two senses of the self:
a “sense of self-ownership—the sense that it is my body that
is moving; and self-agency—the sense that I am the initiator
or source of the action” (Gallagher, 2000). In the process by
which an infant recognizes their hands, little is known about
the contribution of these two senses and the part of the brain
to which they are concerned. However, since some kind of
relationship is expected, the two senses proposed byGallagher are
also incorporated in the presentmodel. This incorporationmakes
it possible to integrate the visual feedback, corollary discharge
and proprioceptive information. In the present study, it is tested
whether integrating these inputs enables hand recognition.

MATERIALS AND METHODS

Learning of Hand Regard
In order to create the simulation model for learning hand regard,
it is necessary to know what kind of inputs an infant receives
and how they process these inputs and generate the motor
command to move their hands into their field of view. However,
little is known of what part of the brain is related to learning
of hand regard and what kind of inputs and learning rule are
used to perform that learning. With respect to inputs, self-body
recognition in adults can be reduced to the two senses of the self;
namely, the sense of self-ownership and the sense of self-agency,
which are considered to emerge mainly from the integration of
visual and proprioceptive/tactile inputs and the integration of
these inputs and efference copy, respectively (Jeannerod, 2003;
Shimada et al., 2010). Under the supposition that an infant
recognizes their own hands through learning of hand regard, it
is natural to conjecture that this learning has some relation with
the sense of self-ownership and the sense of self-agency. For this
reason, it is hypothesized that inputs of this learning are efference
copy (more precisely, corollary discharge as described in section
Corollary Discharge) and visual and proprioceptive feedbacks,
and a simple neural network that simulates the areas of the brain
related to the sense of self-ownership and the sense of self-agency
is adopted. This network is trained with a RTRL algorithm to deal
with time-varying input and output resulting from movements
of an infant’s hands (Williams and Zipser, 1989). In the training
phase, motor command errors were estimated by the difference
between the position of hand and the center position of the
field of view. The weights in the network were updated with
these errors. By updating the weights, the network can gradually
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achieve hand regard. In the present study, hand regard was learnt
by procedural learning to bring the infant’s hands to the center
of its field of view. The simulation result predicts the neuronal
activity of an infant during hand regard. However, observed
results of this neural activity cannot be obtained. Therefore, a
time series of success rate, which is the frequency that the hand
enters the center of visual field in the simulation, was compared
with the observation result of the infant. The network weights
were saved every 1.0 × 106 time steps during the training phase.
In the test phase, the success rate was calculated by these weights
again. The collection of success rate calculated by the network
weights saved every 1.0 × 106 time steps resulted in the time
series of success rate. If hand recognition is obtained, success
rate increases. Therefore, a time series of success rate shows the
process of hand recognition.

Architecture
The simulation model for learning hand regard is explained as
follows. For simplicity, it is considered that the left hand and
right hand of the infant and a target object are denoted by
one square in a two-dimensional space (Figure 1A), and the
structure of the upper limbs was omitted from the model; that
is, coordinate transformations (which translate sensory inputs
to motor outputs) were omitted, and a simulation calculation
was executed in a two-dimensional extrinsic coordinate frame.
Hereafter, in the model, one hand of the infant, both hands of the
infant, an object other than the hands, and more than one object
other than the hands are respectively written as “hand,” “hands,”
“other,” and “others.”

The network architecture of the model, which is composed
of a three-layer network, is shown in Figure 1B. The first input
layer has an array of 238 input units, which receive visual input,
proprioceptive input, and corollary discharge. The second hidden
layer consists of 48 hidden units, which project to eight output
units in the third output layer. Each hidden unit receives inputs
from all input units and each output unit receives inputs from
all hidden units. Four of the output units control movements of
the left “hand”, and the other four control movement of the right
“hand.”

The output activities of the hidden and output units
are calculated by the logistic function as follows: output =

1/(1+e−net), where net = weighted sum of inputs. The hidden
units consist of two parts. The first-part units, related to
sense of agency, receive corollary discharge, visual input, and
proprioceptive input from the input units and integrate them.
The second-part units, related to sense of ownership, receive
visual input and proprioceptive input from the input units and
integrate them (section Learning of Hand Regard).

Input
The input units receive visual input, proprioceptive input, and
corollary discharge.

Visual Input
The visual stimulus is represented on the input units. Each square
in the field of view (Figure 1A) corresponds to one input unit.
When the left “hand„ right “hand” or “other”moves some squares

in the field of view, the input unit corresponding to the square,
where the left “hand,” right “hand” or “other” stays, receives an
input value of 0.5, 0.5, or 0.2, respectively in the training phase.

Proprioceptive Input
Since hand regard is seen in blind infants (Freedman, 1964), it is
assumed that the infant moves their hand into their field of view
with proprioceptive information instead of visual information.
Proprioceptive accuracy slightly but significantly increases with
age in the age range of 8.0–24.6 years (Hearn et al., 1989);
however, an infant’s accuracy is unknown. It is hypothesized that
the length of the infant’s outstretched arms (corresponding to
width in Figure 1A) is 60 cm and error in the proprioceptively
perceived position of the hand is ±10 cm. Besides, a 60 × 60-cm
movable area of the left “hand” and the right “hand” in Figure 1A
is divided into 3 × 3 blocks (20 × 20-cm blocks). For instance,
the orange, five-by-five square in the center of the field of view in
Figure 1A is located at the center of the 3 × 3 blocks. Moreover,
it is supposed that the infant judges the position of their hand
as being at the center of a block, even if the hand is located at
any other place in that block, due to error in proprioceptively
perceived position; in other words, perceived positions of the left
“hand” and the right “hand” take the value of any one of the
central positions of the nine blocks.

Corollary Discharge
A forward model that transforms efference copy into predicted
sensory feedback (corollary discharge) has been proposed
(Miall and Wolpert, 1996). To distinguish the self from the
other, predicted sensory feedback and actual sensory feedback
were compared (Decety and Sommerville, 2003). In particular,
corollary discharge was adopted as the input instead of efference
copy. Though it is possible that an infant learns the forward
model during their growth, in the present study, learning
of the forward model was omitted for simplicity. Corollary
discharge was simply considered as the directions and distances
of movement of the left “hand” and right “hand” at the next time
step. The directions of that were evaluated by the calculation
method described below (section Output). In contrast, since both
“hands” move one square only at the next time step, the distances
were ignored; therefore, corollary discharge was given by the
directions of movement of the left “hand” and right “hand” at the
next time step only.

The above “simplified forward model,” which was shown in
Figure 1B, was applied. Efference copy in the present model is
output activities of the eight output units. It was difficult to train
a neural network with the output activities of the eight output
units; therefore, a corollary discharge, which is given by the
directions of movement of both “hands” only described above,
was adopted as the input instead of efference copy.

Input in the Test Phase
The test, which consists of cases varying the visual input value
of “other” and the number of “others,” was conducted. Success
rate was calculated by changed visual input. In the training phase,
visual input value of “hands,” visual input value of “other,” and
number of “others” were 0.5, 0.2, and 1, respectively (section
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FIGURE 1 | Simulation model for learning hand regard. (A) Infant’s field of view and reachable area of infant’s hands and the other object. The left hand and right hand

of the infant and the other object, which are represented by the yellow, yellow-green, and blue squares, respectively, can move to the blue, red, and orange areas. The

width corresponds to the length of the infant’s outstretched arms. The red and orange areas are the infant’s field of view, and the orange one is the center of the field

of view. (B) Block diagram of learning hand regard.

Visual Input). In the test phase, visual input value of “other”
was 0.2 or 0.5 and number of “others” was 1, 5, or 20; that is,
the test consists of 6 cases by combining 3 cases (visual input

value of “other”) and 2 cases (number of “others”). Furthermore,
the test was conducted without using visual input and corollary
discharge. By comparing the results of success rate calculated
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based on the absence or presence of these inputs, it was evaluated
whether hand recognition was obtained.

Output
To reduce computational amount, movements of the left
“hand” and the right “hand” were determined by the simplified
population vector method (Georgopoulos et al., 1986) as follows.
The preferred directions of the four output units for the left
or right “hand” are upward, downward, left and right. For
simplicity, it is supposed that every output unit for the left or right
“hand” is not active with movements in any direction other than
the preferred direction. For example, upward-activity-left-hand
and downward-activity-left-hand are taken as the activities of the
output units whose preferred directions for the left “hand” are
upward and downward, respectively. If upward-activity-left-hand
minus downward-activity-left-hand is greater than or equal to 0.8,
the left “hand” moves one square upwardly, and vice versa. If the
difference between those activities is less than 0.8, the left “hand”
does not move. Movements of the right “hand” are determined
in the same way. On the other hand, to model the control group
had been reared with virtually nothing else but their own hands
to view simply, the “other” moves one square randomly every
50 time steps (see section Success Rate of Hand Regard in the
Training Phase).

Relation Between Input and Output
An efference copy is an internal copy of motor command,
which consists of output activities of the output units. The
efference copy was converted to corollary discharge through
the simplified forward model (section Corollary Discharge). The
corollary discharge then became an input of the input units at
the next time step. The output activities of the output units
controlled the movements of left “hand” and right “hand.”
Visual and proprioceptive feedback signals of these movements
also became inputs of the input units at the next time step
(Figure 1B).

Learning
The following learning algorithms have been formulated to
deal with time-varying input and output. The “backpropagation
through time” (BPTT) algorithm (Werbos, 1990) is an extension
of the standard backpropagation algorithm for feedforward
networks (Rumelhart et al., 1986). The BPTT algorithm uses
the backward propagation of error information to compute
the error gradient. However, because it needs to hold a whole
dataset (i.e., values of input and output as well as weights at
every time step), it suffers from a growing memory requirement
in the case of arbitrarily long training sequences. To satisfy
this need, an approximation of the BPTT algorithm, obtained
by truncating the backward propagation of information to
a fixed number of prior time steps (namely, a “truncated
BPTT algorithm”), was proposed (Williams and Zipser, 1995).
Since this approximation is, in general, only a heuristic
technique, truncation errors may affect learning of hand
regard.

An alternative algorithm, called “real-time recurrent
learning” (RTRL) algorithm (Williams and Zipser, 1989) is a

gradient-descent method that calculates the exact error gradient
at every time step; namely, RTRL does not need to hold the
whole dataset and does not involve truncation errors like
the truncated BPTT algorithm. Therefore, RTRL algorithms
was adopted and RTRL software was used (Hochreiter and
Schmidhuber, 1997; Hochreiter, 2000). In advance of using
RTRL software, it is necessary to prepare a set of input data
and teaching signals for the training phase and input data
for the test phase at every time step; however, that necessity
cannot be satisfied because the positions of the left and right
“hands” and “other” dynamically change. The RTRL software
was therefore modified in the following way. Hand regard was
learned by the procedural learning to bring both “hands” to
the center of the field of view. The differences between the
positions of both “hands” and the center position of the field
of view were computed by using the proprioceptively perceived
position (see section Proprioceptive Input). These differences
were then converted to motor-command errors (i.e., differences
between teaching signals and outputs) on the output units
every time step on the basis of the method proposed by Kawato
et al. (1987). As mentioned in section Proprioceptive Input,
the movable area of the left “hand” and the right “hand” in
Figure 1A was divided into 3 × 3 blocks and proprioceptively
perceived positions of both “hands” take the coordinates of
any one of the central positions of the nine blocks. The x and
y coordinates of the central positions of the nine blocks are
x0, x0+d, x0+2d and y0, y0+d, y0+2d, respectively, where
d is the length of one side of the block. For instance, the
coordinates of the central position of the central block are
(x0+d, y0+d). The center of the field of view is located at the
central block; therefore, its coordinates are (x0+d, y0+d). The
proprioceptively perceived position of the left “hand” and right
“hand” are taken as (xL(t), yL(t)) and (xR(t), yR(t)) at time step t,
respectively.

The differences between the positions of both “hands” and the
center position of the field of view are converted to the motor
command errors at time step t as follows:

e0(t) = (x0 + d− xL(t))/d, (1)

e1(t) = (y0 + d− yL(t))/d, (2)

e2(t) = −(x0 + d− xL(t))/d, (3)

e3(t) = −(y0 + d− yL(t))/d, (4)

e4(t) = (x0 + d− xR(t))/d, (5)

e5(t) = (y0 + d− yR(t))/d, (6)

e6(t) = −(x0 + d− xR(t))/d, (7)

e7(t) = −(y0 + d− yR(t))/d, (8)

where e0(t), e1(t), e2(t), and e3(t) are the motor-command errors
of the four output units for the left “hand” and the preferred
directions of these units are right, upward, left and downward,
respectively, and e4(t), e5(t), e6(t), and e7(t) are the motor
command errors of the four output units for the right “hand” and
the preferred directions of these units are right, upward, left and
downward, respectively. These motor-command errors are zero
at the central block and +1 or −1 at the other blocks. Based on
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these motor command errors, the overall network error at time t
is calculated as:

J(t) = 1/2

i= 7∑

i= 0

[ek (t)]2. (9)

The partial derivative of the overall network error at time t with
respect to the weight leads to the weight update. The weights in
the network are updated every 10 time steps during the training
phase by RTRL (Williams and Zipser, 1989).

Comparison of Observed and Simulation
Results
In a well-known study by White and Held to quantify the visual
activities of an infant and grasp their spontaneous visual-motor
behavior, visual attention (defined as “the state in which the
infant’s eyes are more than half open, their direction of gaze
shifting within 30 s”) of each of several subjects was observed for
3 h every week (Figure 2A; White and Held, 1966). The subjects
assigned to the control group had been reared with virtually
nothing else but their own hands to view; accordingly, their visual
attention could be interpreted as the frequency that they view
their own hands. In fact, their visual attention increased sharply
at about 2 months of age and was almost constant for the next
6 weeks or so (Figure 2A). This result can be explained by the
fact that an infant begins sustained hand regard during the same
period and spends considerable time watching their hands.

In the present study, the frequency that the “hands” enter
the center of visual field (i.e., the frequency of receiving visual
inputs of “hands” at the center of visual field) was compared with
the frequency of visual attention plotted in Figure 2A (i.e., the
frequency that infants hold their hands in front of their faces to
view them).

After three-and-a-half months, the visible environment of
these infants changed, and they could access more visual
surrounds. For that reason, visual attention data after three-and-
a-half months is omitted from the graph in Figure 2A.

Success Rate of Hand Regard
The frequency that the right or left “hand” enters the center of
visual field, which is defined as success rate of hand regard, was
calculated as follows.

Success Rate of Hand Regard in the Training Phase
White and Held observed each of their subjects for 3 h
(observation periods) every week (observation interval) (White
and Held, 1966); therefore, the ratio of observation period to
observation interval is 3/168. The observation interval in the
present simulation is taken as 5 × 105 time steps. Based on
this ratio, the observation periods in the present simulation is
approximately 1× 104 time steps.

The success rate of hand regard in the training phase was
estimated as follows.

1. Count the number of time steps the right or left “hand” stayed
at the orange, five-by-five square in the center of the visual

FIGURE 2 | Visual attention and success rate. (A) Development of visual

attention for the subjects assigned to the control group. Each point represents

“the average of two scores taken during successive 2-week periods” (White

and Held, 1966). (B) Plot of an ensemble average of success rates obtained

by training ten times.

field in Figure 1A for 1× 104 time steps at every 5× 105 time
steps.

2. Calculate the ratio (i.e., the above number of time steps/1 ×

104 time steps).
3. Take the average of two ratios during 1 × 104 successive time

steps and define it as success rate in the training phase.

Left “hand,” right “hand” and “other” were arranged in the whole
area (respectively the blue, red, and orange areas in Figure 1A)
at random every 1,000 time steps. “Other” can move one square
randomly every 50 time steps; that is, it can hardly move. Being
arranged outside the visual field, “other” can seldom enter the
field of view during 1,000 time steps. This behavior of “other”
simulates the situation in which the subjects have virtually viewed
nothing else but their own hands (White and Held, 1966).

Success Rate of Hand Regard in the Test Phase
The network weights were saved every 1.0 × 106 time steps
during the training phase. Success rate in the test phase was
estimated on the basis of the saved network weights as follows:

1. Count the number of time steps right or left “hand” stayed at
the orange, five-by-five squares in the center of the visual field
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in Figure 1A for 1 × 105 time steps using the saved network
weights every 1× 106 time steps during the training phase.

2. Calculate the ratio (i.e., the above number of time steps/1 ×

105 time steps) and define it as success rate in the test phase.

According to the above procedure, the success rate at every 1.0×
106 time steps in the test phase was obtained. Left “hand,” right
“hand” and “other” were also arranged at random every 1,000
time steps in the test phase. To average the difference between
the arranged positions of left “hand,” right “hand” and “other,” the
simulations were carried out for 1 × 105 time steps as described
above; the positions were arranged 100 times. “Others” were
arranged in the whole area during the training phase. In contrast,
“other” was arranged and kept in the field of view during the test
phase; consequently, keeping “other” in the field of view made it
more difficult to distinguish between “hand” and “other.”

RESULTS

Training a Neural Network
A neural network was trained 10 times with weights initialized
randomly in the range [−0.1, 0.1] by an RTRL algorithm, and the
success rate of hand regard in the training phase was estimated.
The ensemble average of the success rates obtained by the 10-
times training is plotted at the midpoint of every 5 × 105 time
steps (i.e., 2.5 × 105, 7.5×105, 1.25 × 106. . . ) in Figure 2B.
Comparing the visual attention plotted in Figure 2A and the
success rate plotted in Figure 2B shows that the trained model
reproduced the sharp increase in success rate just as seen in the
development of visual attention at about 60 days of age.

Cell Assemblies Appearing During the
Phase of U-Shaped Development
A time series of success rate (Figure 3B) indicates repeated U-
shaped development. The ten-times training brings about similar
patterns of U-shaped development. The ensemble average of
success rates flattens the peaks of the U-shaped curve and reduces
the maximum success rate to almost 30% (Figure 2B).

Since the output activities of the hidden and output units are
calculated by the logistic function (section Architecture), these
output activities take values from 0 to 1. The color scale in
Figure 3A displays the range of these output activities. The colors
of squares in each panel of Figure 3A show output activities of
the output units and hidden units; that is, the red or blue square
shows the output activity of output or hidden unit takes a value
of 1.0 or 0.0, respectively.

Initial weights of the neural network were random in the
range [−0.1, 0.1]. However, the hidden units were gradually
interconnected with inhibitory weights. Most weights between
the hidden units became inhibitory at 5.0 × 103 time steps
(Figure 3A); therefore, output activities of the hidden units were
close to zero.

After the first U-shaped development, hidden units that excite
each other, appeared at 7.0 × 106 time steps, as shown by
the red squares in Figure 3A. This result is consistent with
the definition of a cell assembly (i.e., a group of neurons that
are strongly coupled by excitatory synapses; Hebb, 1949). After

that, the configuration of cell assemblies changed each time U-
shaped developments occurred (Figure 3A). Output activities
of hidden units fluctuated significantly while some inhibitory
weights were transformed into excitatory ones, and the cell
assembly appeared during the phase of U-shaped developments.
As shown in Figure 3D, output activity of one of the hidden units
fluctuated remarkably every time step. That hidden unit became
one of the cell-assembly members after the fluctuation. Note that
update of weights in the network during the training phase does
not cause these fluctuations, because the weights were updated
every 10 time steps (see section Learning). Further, since the
weights in the network were not updated during the test phase,
the cell assemblies that appeared in hidden units every 1.0 × 106

time steps did not change during this phase.
In the present model, the fluctuations of the hidden units are

projected onto the output units (Figure 1B). The fluctuations
therefore affected movements of both “hands” during the phase
of U-shaped developments; that is, the movements resembled
general movements (GMs), which involve circular movements,
moderate speed, and variable acceleration of the neck, trunk and
limbs in all directions (Einspieler et al., 2007). In fact, trajectories
of both “hands” during the phase of U-shaped developments
indicate that movements of both “hands” were circular and
zig-zag form, which are typical of GMs (Hopkins and Prechtl,
1984; Figure 3C). Note that circles became polygons because the
“hands” moved through squares.

Distinction Between “Hand” and “Other”
After the network was trained, whether “hand” and “other” could
be distinguished was tested. A neural network was trained 10
times with weights initialized randomly. During the training
phase for each of 10 initializing weights, the network weights
were saved every 1.0 × 106 time steps. A time series of success
rate in the test phase was obtained 10 times by testing the network
with these network weights saved every 1.0 × 106 time steps in
response to 10 initializing weights. The test, which consists of
cases varying the visual input value of “other” and the number
of “others,” was conducted. The ensemble averages of the success
rates obtained by the ten-times testing for each case are plotted
in Figure 4A. Since case 1 is the same condition as that of the
training phase, the result of case 1 was similar to the result of the
training phase (Figure 2B). The network was trained by using the
proprioceptively perceived positions of both “hands” (see section
Learning); therefore, success rate should be constant regardless
of whether the visual input exists or not. However, comparing
the results for cases 1 and 4, 2 and 5, and 3 and 6 shows that
success rates were reduced when the visual input value of “other”
was equal to that of “hand.” Furthermore, comparing the results
for cases 1, 2, and 3, or 4, 5, and 6 shows that success rates were
reduced when the number of “others” increased (Figure 4A).
These results are not consistent with the speculation that success
rate should be constant.

From the fact that success rates changed according to the
visual input condition, it is presumed that the network acquired
the ability to distinguish between “hand” and “other.” When the
left or right “hand” moves into the field of view on the basis
of proprioceptively perceived positions, the input units receive
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FIGURE 3 | Output activity and success rate. (A) Output activities resulting from one of ten training times. Each panel represents output activities of the hidden and

output units at 0.0, 2.0 × 103, 5.0 × 103, 7.0 × 106, 2.7 × 107, 3.1 × 107, and 5.3 × 107 time steps. Squares of the top line, those of lines 2–4, and those of lines

5–7 of each panel are output activities of the eight output units, 24 hidden units related to sense of ownership, and 24 hidden units related to sense of agency,

respectively. (B) One of the time series of success rate, as described in section Cell Assemblies Appearing During the Phase of U-shaped Development, obtained by

ten-times training. (C) Trajectories of both “hands” during a 100-time-step period at 2.9 × 107 time steps, 3.8 × 107 time steps, and 4.4 × 107 time steps. (D) Time

series of output activity corresponding to one of the hidden units during a 100-time-step period at 2.9 × 107 time steps, when movements like GMs occurred (C).
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FIGURE 4 | Time series of success rate obtained by testing the network. (A)

When “other” moved some squares in the field of view, the input unit

corresponding to the square where “other” stayed received a visual input

value. Visual input value of “other” and number of “others” were 0.2 and 1

(case 1), 0.2 and 5 (case 2), 0.2 and 20 (case 3), 0.5 and 1 (case 4), 0.5 and 5

(case 5), and 0.5 and 20 (case 6). Visual input values of “other” in cases 1, 2,

and 3 were equal to the visual input value of “other” in the training phase (i.e.,

0.2). Visual input values of “other” in cases 4, 5, and 6 were equal to those of

the right and left “hands” (i.e., 0.5). (B) Comparison of success rates in case 1

and 7.

visual input, proprioceptive input, and corollary discharge. These
inputs are integrated at the hidden units. If the network acquired
the ability to distinguish between them, the distinction tends to be
difficult as the number of “others” increases and the input value of
“other” becomes the same value as that of “hand.” This declining
ability to distinguish is consistent with the test results.

In order to show that the network acquired the ability to
distinguish between “hand” and “other”, the following test was
further conducted (Figure 4B). The condition for case 7 is
the same one for case 1 except that the visual input value of
“hands,” and corollary discharge were equal to zero; that is,
case 7 was the test that moved “hand” to the field of view
with only proprioceptive input, without using visual input and
corollary discharge. The fact that the success rate was higher
in the presence of visual input and corollary discharge means
that the network acquired a new ability to increase success rate
by using visual input and corollary discharge. In other words,
visual input, proprioceptive input, and corollary discharge were

integrated and the network acquired the ability to distinguish
between “hand” and “other.” By distinguishing between “hand”
and “other,” it is thought that more efficient movement of “hand”
became possible.

DISCUSSION

As explained above, the process by which an infant recognizes
their hands and consequently distinguishes their hands and other
objects was presented by simulating hand regard. In the present
study, it was tested whether integrating the visual input, corollary
discharge and proprioceptive input enables hand recognition
through learning of hand regard. If trained network had acquired
the ability to distinguish between “hand” and “other,” results
for cases 1–5 show the success rate changed depending on
the difficulty of distinguishing between “hand” and “other.”
Since the network distinguished between them with the visual
input, corollary discharge and proprioceptive input, it could
not distinguish in case 7 without the visual input and corollary
discharge. Furthermore, since the success rate of case 6 were
about the same as case 7, it is estimated that the network could
not distinguish in case 6 either. On the other hand, if trained
network had not acquired the ability to distinguish between them,
the success rates of all cases should be equal regardless of the
conditions of visual input. However, there existed the difference
in success rate between cases 1 and 5 and case 7. It suggests
that predicted sensory feedback (corollary discharge) and actual
sensory feedback (visual input) were compared in order to
distinguish “hand” from “other” (section Corollary Discharge).

The difference between the results of cases 1 and 7 increased
after 2.5× 107 time steps (Figure 4B). Consequently, recognition
of “hands” seems to be possible after 2.5 × 107 time steps. As
indicated in Figure 3B, success rate in the training phase also
increased after 2.5 × 107 time steps, which corresponds to the
onset of sustained hand regard shown in Figure 2A; therefore,
it can be concluded that an infant may begin to recognize their
hands during sustained hand regard.

Cell assemblies at the hidden units, where corollary discharge,
visual input, and proprioceptive input were integrated, were
self-organized. It has been revealed that a specific memory is
stored in a cell assembly that was active during learning (Liu
et al., 2012). Given that revelation, it is necessary to determine
what kind of information was stored in the cell assemblies at
the hidden units. Since it is thought that the network acquired
the ability to distinguish between “hand” and “other” after
2.5 × 107 time steps, it is concluded that the information
about recognition of “hands” may have been stored in the cell
assemblies after 2.5× 107 time steps. Meanwhile, the reason that
cell assemblies appeared before 2.5× 107 time steps, e.g., at 7.0×
106 time steps, in Figure 3A is explained as follows. Karmiloff-
Smith proposed a model incorporating a reiterative process of
representational redescription with U-shaped developments of
behavior (Karmiloff-Smith, 1992). Case 7 in Figure 4B was the
test that moved “hand” to the field of view without recognizing
“hand.” The difference in success rate between case 1 and 7
became small before 2.5 × 107 time steps. Therefore, it can
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be inferred from this model that the information stored in the
cell assemblies before 2.5 × 107 time steps may have been the
procedural information for bringing the “hands” to the center
of the infant’s field of view and may have been rewritten as
information about recognition of “hands” after 2.5 × 107 time
steps with U-shaped developments of hand regard.

Einspieler et al. conjectured that one of the ontogenetic
adaptive functions of fidgety GMs is optimal calibration of the
proprioceptive system because fidgety GMs precede visual hand
regard, the onset of intentional reaching, and visually controlled
manipulation of objects (Einspieler et al., 2007). In contrast, the
present simulation results indicate that GMs might be caused
by the generation of cell assemblies with the information about
recognition of hands. In the present simulation, the infant’s hands
were modeled simply as one point, which was moved by output
activities of four output units; therefore, a simple comparison
between simulated movements and GMsmay be not appropriate.
However, if the fluctuations of output activity resulting from cell
assemblies occur in a certain part of an infant’s brain and project
onto the area controlling their hands and arms as the present
simulation, complicatedmovements like GMsmay appear during
the process of hand regard. Fidgety GMs disappear around 20
weeks post-term (Prechtl, 2001), and hand regard disappears
around the same time (White et al., 1964). And that concurrence
is consistent with the results of the present simulation.

The overall network error (Equation 9) is minimized in
RTRL algorithm; consequently, one of the local minimum of
this error corresponds to the emergence of cell assemblies
in the network. What these assemblies change after each U-
shaped development corresponds to the transition to another
local minimum. However, the mechanisms that lead to the
emergence of cell assemblies are still incompletely understood;
in particular, little is known about why the hidden units were
gradually interconnected with inhibitory weights (Figure 3A).
Furthermore, after the small-scale U-shaped developments other
than the wide U-shaped developments explained in section
Cell Assemblies Appearing during the Phase of U-shaped
Development, a part of the configuration of the cell assembly has
sometimes changed. The effect of size of U-shaped development

on this change has not been elucidated. Since observation period
of visual attention is long (every 1 week) (section Comparison of
Observed and Simulation Results), it was impossible to confirm
whether U-shaped development occurred. Besides, observing
the neuronal activity of an infant during hand regard has not
been obtained. Therefore, it has not been achieved to compare
simulation predictions and experimental results in detail. It
is required to investigate the information stored in the cell
assemblies and the relation between cell assemblies andU-shaped
developments.

The hidden units were divided into two parts simulating
the two brain regions implicated in the sense of self-ownership
and the sense of self-agency. Frequency of appearance of cell
assemblies in both parts depended on the values of the initialized
weights. The contribution of both parts to distinction between
“hand” and “other” has still not been elucidated. Additionally, it
is necessary to verify whether simulating hand regard by using a

learning algorithm other than RTRL would show the generation
of cell assemblies.

Structures of upper limbs, movements of the neck and eyeball,
and the asymmetrical tonic neck reflex (ATNR) were omitted
from the proposed model. Improving the model to handle tactile
input may elucidate the process of self-body recognition with
recognized hands through hand regard. In addition, adding
binocular depth cues and movements of the neck and eyeball to
the model may make it possible to simulate an infant’s earliest
reach with alternating glances.
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