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INTRODUCTION

When psychologists are going to test their theoretical models (at the time of planning the research
study), several questions may arise regarding the quality and potential accuracy of the estimation
of Confirmatory Factor Analysis (CFA) models under certain applied conditions. For example,
one question is the minimum sample size (N) and/or the number of indicators per factor (p/k)
that is needed to estimate the CFA models properly. Many of these questions can be answered
through simulation studies, because the magnitudes of the population factor loadings (λik) are
known in advance. Monte Carlo simulation uses random sampling and statistical modeling to
estimate mathematical functions, and is a key tool for studying analytically intractable problems
(Harrison, 2010). It is quite frequent to find in the literature simulation studies that use CFA to fit
measurement models. However, there is a lack of technical information in the published research
to replicate this type of studies, probably due to length limitations. Furthermore, researchers and
scholars must often go to numerous and technically complex sources of information to understand
the laborious simulation and estimation process.

In this paper we present complete technical information to conduct Monte Carlo simulation
CFA-studies with PRELIS and LISREL programs. The LISREL program, apart from being one of
the most used (and validated) software programs, is historically linked to CFA (Brown, 2015).
Although it is a commercial program, there is a free student version that allows performing all the
simulation tools and the analysis techniques shown in this work. Through a simulation study, we
have evaluated the necessary conditions to test the CFA models fit, so we have chosen population
structures formed by a single common factor to design the simulation study and low-moderate
population factor loadings. It should be noted that these types of studies generate a considerable
volume of information, even when using a simple unifactorial model. This approach was adopted
for this study for ease of understanding the principles. Included, however, are the PRELIS and
LISREL syntax examples for multidimensional factor structures. In the Supplementary Material
(https://figshare.com/s/18eb0e998150d39bc952) we have attached both the simulated data and the
CFA results (parameter estimates, standard errors and goodness-of-fit measures).

MONTE CARLO SIMULATION STUDY

Simulated Conditions
The simulated experimental conditions reflect low-medium sample sizes (N = 200, 300, 400, and
500), low-moderate model sizes (indicators per factor: p/k = 4, 5, 6, 7, and 15), and low-moderate
population factor loadings (λik = 0.2, 0.3, and 0.4). The unifactorial structures simulated
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are equal-λik condition (i.e., all p/k indicators of each population
structure have the same λik magnitude). The selected sample-
model size is frequent in applied research. For example, after
reviewed 1,409 published CFA models, Jackson et al. (2009)
found a median N of 389. On the other hand, a common
recommendation in some applied context is not to interpret
estimated factor loadings < 0.30 (Brown, 2015).

Data Generation
The data generation process was conducted using PRELIS
2 program (Jöreskog and Sörbom, 1996b), according to the
common factor model showed in Equation (1):

6 = 383
′

+ 2 (1)

were 6 is the population correlation matrix, 3 is the population
factor loading matrix, 8 is the population factor correlation
matrix, and 2 is the unique variances matrix. All indicators were
simulated as continuous variables, computed by the expression
shown in Equation (2):

x = 3ξ + δ (2)

Equation (2) summarized a set of equations (one for each
indicator: Xi = λik ξk + δi) that express the relationship among
the observed variables (Xi), the common factor (ξk) and the
unique variances (δi).

Step 1 of the data generation process has consisted, following
Equation 2, in the simulation of the common factor (ξk)
as a random variable (in this case, ξk = 1, see Jöreskog
and Sörbom, 1996b; Brown, 2015), and the computation of
the p/k indicators. Following the recommendation of Kelley
and Pornprasertmanit (2016), we have simulated 1,000 normal
distributed data matrix X (order N x p/k indicators), with the
same integer starting value for the random number generator in
all the simulated conditions (see Example 1 from Presentation 1).
To extend the experimental simulation conditions, Example 1
shows how to recode continuous variables into discrete variables
using thresholds, and how to simulate non-normal distributed
indicators.

For each datamatrixX generated in step 1, step 2 has consisted
in the generation of files that contain variance-covariance
matrices (S) and files that contain correlation matrices (R). That
is, both types of R and S files come from the same raw data (see
Example 2 from Presentation 1).

Estimation of CFA Model Parameters
The objective of CFA is obtaining estimates for each parameter
of the measurement model and computing a predicted variance-
covariance or correlation matrix (6∗) that best reproduces the
observed or input matrix (S or R). In practice, perfect fit is not
possible due to the measurement error, so the starting point of
analysis implies that 6∗ 6= S or R (Bollen, 1989). The residuals
(di) are the differences between each pair of predicted-observed
covariances or correlations, so vector d= {d1, d2,..., di} indicates
the degree of discrepancy between both matrices. The estimation
process consists in an iterative numerical technique to minimize

the discrepancy between 6∗ and S (or R) matrices (Bollen,
1989; Brown, 2015). This numerical technique is a lineal fitting
function [also called discrepancy function F(S; 6∗) or F(R; 6∗)],
which takes different forms depending on the estimation method
used.

Maximum Likelihood (ML) fitting function is widely used in
applied CFA research (Brown, 2015). ML minimization function
can be expressed as FML = d’Wd (whereW is a weighted matrix),
where F is calculated from each computed vector d at each
step of the iterative process. Unweighted Least Square (ULS) is
an easy to understand fitting function, FULS = d’d, where F is
obtained by calculating the sum of squares of the residuals d1,
d2,..., di (W can be replaced by an identity matrix (I), simplifying
the ML discrepancy function). FULS estimates are consistent
estimates with sufficient sample size, although less efficient than
FML estimates (Bollen, 1989).

A cautionary note should bemade regarding the use of S andR
matrices. The general rule is that S should be analyzed, although
a common practice is analyzing R as if they were S matrices
(Jöreskog and Sörbom, 1996a, p. 35). However, as Cudeck (1989)
pointed out, statistical theory for the analysis of CFA structures
has been most completely developed for applications to S, and
the analysis of R may be problematic in many situations. The
analysis of R with ML may modify the model that is being
analyzed, may product incorrect χ2 and derived indices, andmay
give incorrect standard errors (Jöreskog et al., 2001). The only
advantage of R is improving the interpretability of the solutions.
When variables have quite different variances, may be useful
analyzing R matrices. This is a common practice when fitting
a regression models or using an Exploratory Factor Analysis
(Cudeck, 1989, pp. 325–326). The general recommendation is to
use ML estimation method with S and ULS with R (for a more
detailed description, see Bollen, 1989, pp. 104–113). In addition,
when a Smatrix is analyzed, the completely standardized solution
can be obtained, so it is no necessary to analyze R to obtain a
more interpretable solution. Note that a Rmatrix is a completely
standardized S matrix (Brown, 2015). A full description of how
analyzing polychoric/tetrachoric matrices, with PRELIS/LISREL
syntax examples, can be found in Yang-Wallentin et al. (2010).

Example 3 from Presentation 1 shows LISREL syntax
(Jöreskog and Sörbom, 1996a) to estimate CFA models from the
simulated dataset. A convergence criterion equal to 250 has been
fixed in all the simulated conditions.

DATASET OVERVIEW AND OUTPUTS

The Supplementary Material includes a set of files with simulated
raw-sample data from all the experimental conditions. The name
of each file has two parts. The letter “N” denotes the sample
size used to generate the data collected by each file (N200,
N300, N400, and N500), and L020, L030 and L040 denote
the simulated (λik) magnitude (0.2, 0.3, and 0.4, respectively).
There are 24 SPSS/Excel files with raw data, (e.g., for N =
200: N200L020, N200L030, N200L040). In addition, we present
the estimated solutions conducting CFA with LISREL program
from the proposed simulation study. An overview of all of this
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information and outputs can be consulted in Presentation 2, and
the results of each estimation process can be examined in two
dataset:

• Continuous_data_INFORMATION.pdf.
• Continuous_Data_Normal_ML.
• Continuous_Data_Normal_ULS.

The last two types of files contain the parameter estimates,
the standard errors and different goodness-of-fit measures. The
analysis of S with ML generate unstandardized solutions (Brown,
2015). The unstandardized parameter estimates can be consulted
in Unstandardized_parameters_ML files. To facilitate the direct
comparison between ML and ULS estimators, ML files contain
standardized solutions (default option in analysis ofR). Note that
LISREL provides standard errors for each estimated parameter in
the unit of measurement of the indicators (Bollen, 1989; Jöreskog
and Sörbom, 1996a). Therefore, to construct statistical tests
(t-test) for estimated factor loadings (λ∗

ik
) with the parameter

estimates provided by ML method, the unstandardized values
must be used.

Coefficient of congruence (see Equation 3) was computed as
an index of factor similarity:

Ck =
6

p
i= 1λ

∗
ik
λik

√

(6
p
i= 1λ

∗2
ik
)(6

p
i= 1λ

2
ik
)

(3)

This coefficient computes the discrepancy between λik and λ∗ik
for each indicator i of factor k, where p is the number of items
per factor (p/k), and reflects a combined measure of good or poor
parameter recovery of a given cluster of indicators. Lorenzo-Seva
and Ten Berge (2006) have shown that congruence values in the
range of 0.85–0.95 can be considered as “fair similarity” between
λik and λ∗ik, and values higher than 0.95 as “good similarity”.

Through the study shown in this work, the researchers can use
some of the outputs attached in the Supplementary Material to
evaluate different general issues related to the potential quality
and accuracy of the CFA models. Two applications are described
below:

Application 1: The researchers can explore the accuracy of
parameter estimation, and the statistical relationship between the
parameter recovery (Ck), the overall model fit (χ2), and a high
number of goodness-of-fit indices. Note that the χ2 values of the
output files depend on the method of estimation used to fit the
model to the data (Jöreskog, 2004). Table 1 shows a descriptive
summary of this type of information obtained from continuous
data ML file. First, we have filtered the dataset removing the
improper solutions (non-convergent solutions and Heywood
cases). As can be seen, the parameter recovery (Ck) improves as
λik, p/k, and N increase.

Table 1 shows that several of the estimated solutions
present a certain degree of overestimation or underestimation
of the parameters (λ∗ik). A better understanding of the

FIGURE 1 | Scatter plots for parameter recovery (x-axis) and overall fit (y-axis). ML estimation. Ranking of coefficient of congruence show the relative position of Ck
values from all estimated solutions (ordered from solution with lowest Ck -last position- to higher Ck -first position-).
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TABLE 1 | Descriptive summary of estimated CFA solutions (ML method): rate of proper solutions, parameter estimates (factor average), coefficient of congruence,

RMSEA and CFI [%, Mean, (SD), min and max].

λik 4–6 indicators 7 indicators 15 indicators

N = 200–300 N = 400–500 N = 200–300 N = 400–500 N = 200–300 N = 400–500

0.2 Proper solutions (%) 62.9% 72.5% 75.8% 88.7% 98.1% 100%

Average λ*ik 0.24 (0.04) 0.22 (0.03) 0.22 (0.03) 0.21 (0.03) 0.20 (0.02) 0.20 (0.02)

Average λ*ik (min-max) 0.14–0.38 0.10–0.35 0.13–0.32 0.12–0.30 0.13–0.28 0.11–0.26

Ck 0.84 (0.09) 0.86 (0.09) 0.84 (0.09) 0.87 (0.08) 0.88 (0.06) 0.93 (0.03)

RMSEA 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

CFI 0.70 (0.42) 0.82 (0.33) 0.78 (0.35) 0.86 (0.26) 0.85 (0.22) 0.93 (0.10)

0.3 Proper solutions (%) 93.0% 98.9% 99.1% 100% 100% 100%

Average λ*ik 0.31 (0.04) 0.30 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02)

Average λ*ik (min-max) 0.15–0.44 0.17–0.42 0.20–0.41 0.20–0.38 0.22–0.38 0.25–0.35

Ck 0.92 (0.06) 0.96 (0.04) 0.94 (0.04) 0.97 (0.02) 0.97 (0.02) 0.98 (0.01)

RMSEA 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

CFI 0.94 (0.15) 0.97 (0.08) 0.95 (0.09) 0.97 (0.05) 0.97 (0.05) 0.98 (0.02)

0.4 Proper solutions (%) 99.8% 100% 100% 100% 100% 100%

Average λ*ik 0.40 (0.04) 0.40 (0.03) 0.40 (0.03) 0.40 (0.02) 0.40 (0.02) 0.40 (0.02)

Average λ*ik (min-max) 0.25–0.52 0.28–0.50 0.28–0.50 0.32–0.47 0.33–0.48 0.35–0.45

Ck 0.97 (0.02) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.00)

RMSEA 0.02 (0.03) 0.01 (0.02) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

CFI 0.98 (0.06) 0.99 (0.04) 0.98 (0.03) 0.99 (0.02) 0.99 (0.02) 0.99 (0.01)

conditions in which this lack of precision occurs is an
important issue. Especially in the case of overestimation,
the applied researchers may be too optimistic in the
theoretical interpretation of the evaluated models. Moreover,
Table 1 also shows that the Root Mean Square Error
(RMSEA) are not informative of this lack of accuracy
(Heene et al., 2011). The Comparative Fit Index (CFI) is
more informative in the most suboptimal conditions (i.e.,
λik = 0.2). This situation may be contributing to confuse
the theoretical interpretations of some applied researchers.
Additionally, there are no relationship between accuracy of
the parameter recovery (Ck) and χ2 p-value, as can be seen in
Figure 1.

Researchers and scholars can reuse these databases in
order to explore in depth the conditions under which over-
underestimation of the parameters may occur, or to evaluate the
performance of the alternative goodness-of-fit indices. They can
also reuse the provided syntax examples in order to extend the
number and complexity of the experimental conditions.

Application 2: Each dataset provided in
Supplementary Material has a “CASE” variable. This
variable allows the raw data location of each CFA estimated
solution collected in the two main output files, or a specific
unstandardized solution for ML estimation, and it can be useful
to review in depth the internal structure of certain estimated
CFA models. For example, CASE = 90 (λik = 0.3, p/k = 4,
and N = 200) results in an improper solution when the ML
estimation method is used. There are many situations that can

lead to an improper solution when a CFA model is fitted to
the data (Brown, 2015). The condition of positive definiteness
input matrix can be evaluated by Principal Component Analysis
(PCA). If all eigenvalues are greater than zero, as in CASE = 90,
the matrix is positive definite (Wothke, 1993). Then, we have
explored the effect of outliers over estimation process. We have
computed a new normally distributed random variable in the
CASE= 90 raw dataset, that has been used as a criterion variable
in a regression analysis with the X1 to X4 indicators as predictors.
This analysis has helped us to identify outliers in the data (from
Mahalanobis distances that are statistically significant at 0.05).
Once these cases have been removed from raw data, CFA analysis
produced an estimable-proper solution with Ck = 0.863.

CONCLUSION

Following open science philosophy (Munafò et al., 2017),
in this paper we have shown how to estimate unifactorial
models conducting CFA from a Monte Carlo simulation study
with PRELIS and LISREL programs, which are some of the
most used in Structural Equation Modeling (SEM) and CFA
analysis. Additionally, we have made some indications about
the estimation of CFA multidimensional models, with syntax
examples, in order to facilitate the generalization of CFA
analysis in more complex population structures. The applications
presented are not intended to be an exhaustive evaluation of the
results obtained, but rather an exposition of the possibilities of
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the data generated and the estimation process implemented that
may be of interest for academic and research purposes.
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