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When analyzing complex longitudinal data, especially data from different educational

settings, researchers generally focus only on the mean part (i.e., the regression

coefficients), ignoring the equally important randompart (i.e., the random effect variances)

of the model. By using Project English Language and Literacy Acquisition (ELLA) data,

we demonstrated the importance of taking the complex data structure into account by

carefully specifying the random part of the model, showing that not only can it affect the

variance estimates, the standard errors, and the tests of significance of the regression

coefficients, it also can offer different perspectives of the data, such as information related

to the developmental process. We used xxM (Mehta, 2013), which can flexibly estimate

different grade-level variances separately and the potential carryover effect from each

grade factor to the later time measures. Implications of the findings and limitations of the

study are discussed.

Keywords: longitudinal data analysis, multilevel structural equation models, educational psychology, intervention,

bilingual education

INTRODUCTION

Educational researchers have always involved complex data structure. For example, in
cross-sectional studies, students are likely nested within classrooms and schools at a particular time
point (i.e., a strictly hierarchical structure), and while theymay come from different neighborhoods,
neighborhoods and schools are not nested but crossed with each other (i.e., a cross-classified
structure). Similarly, for longitudinal data, repeated measures (e.g., reading achievement test scores
collected at different grade levels from the same student) are nested within students while the
students are likely to change classrooms over the course of study. A change of classroom results in a
non-strictly hierarchical, but cross-classified structure, with repeated measures now nested within
both students and classrooms, while students and classrooms are crossed with each other (see
Figure 1A). Without adequately taking into account all these complex data structures, educational
researchers not only may obtain biased parameter estimates and standard errors, but also they miss
the opportunity to uncover important phenomena from their data.
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FIGURE 1 | (A) Model 2 data structure with repeated measures

cross-classified by students and classrooms. O, Observation; S, Student. KC,

Kindergarten classroom; G1, Grade 1; C1, Classroom 1; G2, Grade 2; C2,

Classroom 2. (B) Model 1 data structure with repeated measures nested

within students in kindergarten classrooms.

Although most educational researchers realize the importance
of taking into account the complex data structure when they
analyze their data, they may not be aware of how to fully
address the complex data structure in their analysis and, as
a result, they may only partially take into account the data
structure. For instance, researchers may analyze the cross-
classified data structure (e.g., repeated measures nested within
students and classrooms, as presented in Figure 1A) by treating
it as a strictly hierarchical data structure with the exclusion
of the non-kindergarten classroom effect (e.g., first and second
grade), as presented in Figure 1B. Without fully addressing the
complex data structure, this mis-specified model may lead to a
biased estimation of both fixed and random parameters and to
incorrect significance tests for the parameter estimates (Meyers
and Beretvas, 2006; Luo and Kwok, 2009).

The purpose of this paper was to demonstrate how to analyze
this type of complex data structure with the use of data from
the Project English Language and Literacy Acquisition (ELLA),
a large-scale longitudinal study. The researchers intervened with
and followed English language learners (ELLs) from kindergarten
to third grade, which was funded by the U.S. Department of
Education (Grant Number: R305P030032).

We first provide a brief review of the Project ELLA and
the data derived from it. We, then, analyze the data with the
commonly used hierarchical linear model [HLM] approach. We
subsequently move from this HLM model to the more complex
cross-classified random effect model (CCREM) which addresses
the complex data structure issue by taking into account the

classroom effect. However, the CCREM has its own limitations
and is unable to address some of the important features of
longitudinal data (which is representative of the dataset from
Project ELLA), such as the potential carryover effect (i.e., the
effect from the previous grade level on the later time measures).
To address this special feature, we used the xxM software (Mehta,
2013; may be downloaded from http://xxm.times.uh.edu/), which
could flexibly model the carryover effect during the analysis (the
corresponding annotated input syntax and outputs are presented
in the appendices). Finally, we discuss the implications of the
different results based on different models and re-emphasize the
importance of taking the carryover effect into account, followed
the limitations of the study and directions for future research.

Project English Language and Literacy
Acquisition (ELLA)
Project ELLA (Lara-Alecio, 2003) was a longitudinal, field-based,
large-scale, experimental research project following the same
group of native Spanish-speaking, English language learners
(ELLs) over time (from kindergarten to third grade) in an urban
school district in Southeast Texas. For more than 45% of the
students in the district, Spanish was their first language was
Spanish. The majority of students qualified for free or reduced-
price lunch. All the materials and protocols of Project ELLA were
approved by Institutional Review Board (IRB) at Texas A&M
University.

Texas state law (Texas Education Code, 1995) has prohibited
random selection and assignment to specific instructional
delivery models in schools on the basis of individual students;
therefore, the research team selected schools where structured
English immersion (SEI) and/or transitional bilingual education
(TBE) were being implemented within the target school district,
and they randomly assigned the selected schools to either a
control (typical practice) or an experimental (enhanced practice)
setting. Hence, in the overall project, the researchers used an
experimental design at the school (classroom) level and a quasi-
experimental design with target learning outcomes at the student
level.

In the current study, we used a partial data set from the
original data. This data set included scores on the English
version of the Woodcock Language Proficiency Battery–Picture
Vocabulary subtest (EWPV) of 876 students at five time points:
Time 1 = beginning of kindergarten (2004), Time 2 = end of
kindergarten (2005), Time 3 = end of first grade (2006), Time
4= end of second grade (2007), and Time 5= end of third grade
(2008).

As shown in Table 1, at Time 1, the study contained 24
schools with 56 classrooms and 876 students (46.00% of females
and 53.65% of males) between the ages of 49 and 80 months
(M = 59.72 and SD = 5.08); EWPV data were available for 791
students. At Time 2, it contained 24 schools with 56 classrooms,
with EWPV data available for 875 students (45.94% of females
and 53.71% of males) between the ages of 61 and 92 months
(M = 71.72 and SD = 5.08). At Time 3, it contained 24 schools
with 54 classrooms, with EWPV data available for 643 students
(46.19% of females and 53.34% of males) between the ages of
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TABLE 1 | Descriptive statistics.

Time 1

(N= 876)

Time 2

(N= 875)

Time 3

(N= 643)

Time 4

(N= 440)

Time 5

(N = 373)

Variables N (%)/

M(SD)

N (%)/

M(SD)

N (%)/

M(SD)

N (%)/

M(SD)

N (%)/

M(SD)

Gender

Male 470

(53.65%)

470

(53.71%)

343

(53.34%)

231

(52.50%)

191

(51.21%)

Female 403

(46.00%)

402

(45.94%)

297

(46.19%)

206

(46.82%)

179

(47.99%)

Age (months) 59.72

(5.08)

71.72

(5.08)

83.84

(5.01)

95.67

(4.61)

107.92

(4.64)

Conditions

Control 390

(44.52%)

390

(44.57%)

295

(45.88%)

222

(50.45%)

192

(51.47%)

Treatment 486

(55.48%)

485

(55.43%)

348

(54.12%)

218

(49.55%)

181

(48.53%)

Time 1, beginning of kindergarten; Time 2, end of kindergarten; Time 3, end of first grade; Time 4, end of second grade; Time 5, end of third grade.

73 and 104 months (M = 83.84 and SD = 5.01). At Time 4,
it contained 21 schools with 53 classrooms, with EWPV data
available for 440 students (46.82% of females and 52.50% of
males) between the ages of 85 and 112 months (M = 95.67 and
SD= 4.61) had data on EWPV. At Time 5, it contained 21 schools
with 60 classrooms, with EWPV data available for 373 students
(47.99% of females and 51.21% of males) between the ages of 97
and 124 months (M = 107.92 and SD= 4.64).

Ways to Analyze Complex Longitudinal
Data in Educational Research
We present three models, of which the first two are commonly
used in educational research; namely, the hierarchical linear
model (HLM) and the cross-classified random effect model
(CCREM). The third, the xxM-UN1 model, is a more advanced
and flexible model, which not only takes into account the
complex data structure but also provides new modeling feature
that allows researchers to examine such effects as potential
carryover in longitudinal analysis. The results from these analytic
approaches are compared, and the advantages and disadvantages
of each model are discussed.

Even though the analyses have been conducted under both
multilevel modeling (MLM; i.e., hierarchical linear modeling,
HLM) and structural equation modeling (SEM) frameworks, we
prefer using the multilevel modeling framework to present the
models for our analyses, given its simplicity for comprehension
and the equivalence between the two models (Curran, 2003;
Bollen and Curran, 2006). For example, the average trend
information in MLM is captured by the corresponding time-
related latent factors (i.e., the means and variances of these
latent factors) whereas the time-related information (i.e., the
time frame of the study) is captured by the factor loadings
between the time-related latent factors and the observed variables
measured over time under the SEM framework. There are
additional benefits of using SEM to analyze longitudinal data,

including the availability of model fit indices and modification
indices (Preacher et al., 2008; Kwok et al., 2010). Moreover,
xxM (Mehta, 2013) provides a flexible framework for modeling
complex multilevel and longitudinal data such as the carryover
effect detailed later.

MODEL 1: THE TRADITIONAL
THREE-LEVEL MULTILEVEL MODEL

Unlike the cross-sectional multilevel model, there is always an
important predictor for longitudinal analysis: time. Researchers
are particularly interested in examining the average trend of
an outcome variable (in this paper, the Woodcock Language
Proficiency Battery–Picture Vocabulary subtest; EWPV) over
time. Nevertheless, many longitudinal and developmental
phenomena are not linear in nature. In other words, the change of
the outcome variable will not happen at a constant rate over time.
For example, we may have a simple linear time-predicted model,
Math= B0+ B1 Time+ e, where Math is the math achievement
outcome variable, Time is the time predictor with grade year as
the unit, and e as the error. B0 is intercept, B1 (positive and
significantly larger than zero) is the regression coefficient, which
can be explained as one unit changes in time or one grade year
passes, and B1 points change in the math achievement score.
More importantly, this model implies the constant improvement
in math achievement (with B1 points per grade year regardless of
the actual grade year in which the students are located). Hence,
fitting a nonlinear model rather than assuming a linear trend is
common in analyzing longitudinal data (Kwok et al., 2010).

A relatively, more simple way to capture a nonlinear trend
is using a piecewise model (Bryk and Raudenbush, 1992; Sayer
and Willett, 1998; Snijders and Bosker, 1999; Duncan et al.,
2006; Kwok et al., 2010). By dividing the nonlinear growth
trend into different linear segments, one can easily understand
the nonlinear trend by applying the same straightforward
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interpretation based on the simple linear growth rate coefficients.
The key part of using the piecewise model is to determine how
(many pieces) and where to divide the whole time frame into
segments.

For our current demonstration, given the data collection time
frame, we determined to use a piecewise model containing two
pieces to capture the potential nonlinear trend, with the first
piece containing the first two time measures (i.e., beginning and
end of kindergarten) and the second piece containing the rest of
the three time measures (i.e., end of first grade, end of second
grade, and end of third grade). As described previously, we
proposed analyzing the data with a piecewise model containing
two pieces (a.k.a. a two-piece model). By using the traditional
HLM, which assumes a strictly hierarchical structure, we have
analyzed our data as a three-level model with repeated measures
(level 1) nested within students (level 2) and students further
nested within their corresponding kindergarten classrooms (level
3) without considering their mobility (i.e., change of classroom
in later time points). The corresponding model equations are
presented as follows:

Level 1 (repeated-measure level)

EWPVtij = π0ij + π1ij piece1tij + π2ij piece2tij + etij, (1)

where EWPV is the target outcome variable for the t-th repeated
measure from the i-th student of the j-th kindergarten classroom,
piece1 is the first time piece variable, which captures possible
changes in EWPV in kindergarten, and piece2 is the second piece
variable, which captures possible changes in EWPV from first to
third grade.

We used the following coding scheme:

















piece1 piece2
K − begin 0 0
K − end 1 0
1stGrade 1 1
2ndGrade 1 2
3rdGrade 1 3

















,

with piece1 coded as (0,1,1,1,1) and piece2 coded as (0,0,1,2,3)
for the five repeated measures. π0ij is the intercept (or the
baseline/predicted EWPV score at the beginning of kindergarten)
based on the repeated measures from the i-th student of the j-th
kindergarten classroom. Similarly,π1ij is the linear rate of change
of the first piece (i.e., from the beginning of kindergarten to the
end of kindergarten) while π2ij is the linear rate of change of the
second piece (i.e., from the end of first to the end of third grade)
from the i-th student of the j-th kindergarten classroom. Given
that we had 876 students in the data, and we used the repeated
measures from each student to fit the above two-piece model, we
should have 876 sets of regression coefficients (i.e., π0ij, π1ij, &
π2ij), which can be written into the following equations:

Level 2 (student level)

π0ij = β0j + u0ij (2)

π1ij = β1j + u1ij

π2ij = β2j + u2ij

where β0j is the average intercept coefficient across all the
students within the j-th kindergarten classroom; β1j is the average
piece1 regression coefficient across all the students within the j-th
kindergarten classroom, and β2j is the average piece2 regression
coefficient across all the students within the j-th kindergarten
classroom.

We further obtained the corresponding average coefficient
estimates across all kindergarten classrooms, as presented1.

Level 3 (classroom level)

β0j = γ00 + γ01treatmentj + v0j (3)

β1j = γ10 + γ11treatmentj

β2j = γ20 + γ21treatmentj

where γ00, γ10, and γ20 are the average intercept, piece1 and
piece2 coefficients across all kindergarten classrooms assuming
a nonsignificant treatment effect.

As stated previously, one of the main purposes of the Project
ELLA was to examine the effectiveness of the enhanced practice
setting (i.e., the treatment condition) on EWPV. To examine
this treatment effect, we included the treatment variable in
the level-3 equations, given that the randomization was at the
classroom/school level. In other words, students from the same
kindergarten classroom received the exact same treatment or
control materials. Treatmentj is a dummy-coded variable with
treatment condition coded as 1 and control condition coded as
0. Hence, if there is a significant treatment effect at intercept, we
expect that γ01 will not be zero and the intercept for the control
condition will be γ00whereas the intercept for the treatment
condition will be (γ00+ γ01). Similarly, if there are significant
treatment effects at both piece1 and piece2, we would expect that
both γ11and γ21will not be zero and the average piece1 coefficient
will be γ10 for the control condition and γ10 + γ11 for the
treatment condition, the same as the average piece2 coefficient
with γ20 for the control condition and γ20 + γ21 for the treatment
condition.

By substituting Equations (2) and (3) back into equation (1),
we can get the following overall average (ormean) model:

ÊWPVtij = γ00 + γ01treatmentj + γ10 piece1tij +

γ11treatmentj
∗ piece1tij

+ γ20 piece2tij + γ21treatmentj
∗ piece2tij (4)

The corresponding random effect variances that capture the
variation at different levels are as follows:

1The reason of including only one random effect (i.e., v0j) at the classroom level
in equation (3) is to have a simpler model (in terms of the number of random
effects) to avoid the potential convergence issue due to the large number of variance
and covariance estimates of the random effects. Additionally, according to our
experience, the variance estimates of the higher level non-intercept random effects
are generally very small and non-significant and trying to estimate these tiny (and
possibly non-significant) random effect variances will likely lead to non-converged
result.
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V(etij) = σ2 (within-student-level variance with the identity
structure assumption)

V(u0ij)= τ00 (between-student-level intercept variance)
V(u1ij)= τ11 (between-student-level piece1 variance)
V(u2ij)= τ22 (between-student-level piece2 variance)
V(v0ij) = θ2 (kindergarten classroom-level variance). We

used the R package xxM (Mehta, 2013) to analyze our data.
(The corresponding output for the model may be found in
Appendix A1).

Results of Model 1
As presented in Table 2 in the Model 1 (3-Lv HLM) column,
almost all the regression coefficients were significant (with the
95% confidence interval [CI], not including zero) except γ01 (i.e.,
the treatment effect at the beginning of kindergarten). Hence,
the overall average piecewise model for the control group (i.e.,
treatmentj = 0) was:

ÊWPVtij = 435.6 + 13.75 piece1tij + 9.64 piece2tij

whereas the overall average piecewise model for the treatment
group (i.e., treatmentj = 1) was:

ÊWPVtij = 435.6− 2.43(1) + 13.75 piece1tij + 2.41(1)
∗ piece1tij + 9.64 piece2tij + 1.60(1) ∗ piece2tij,

which could be further reduced to:

ÊWPVtij = 433.17+ 16.16 piece1tij + 11.24 piece2tij.

Based on the average models as presented above and in Table 2,
we have learned that the average EWPV for the control group
at the beginning of kindergarten was 435.6 whereas the average
EWPV score for the treatment group was slightly (but not
significantly) lower (2.43 points lower).We have also learned that
the average growth rate (or change) in EWPV was not a linear
trend given that the regression coefficients of the two pieces were
quite different from each other for both treatment and control
groups (i.e., 13.75 piece1tij + 9.64 piece2tij for the control
condition and 16.16 piece1tij + 11.24 piece2tij for the treatment
condition). That is, we found a faster growth or improvement rate
of EWPVwithin the kindergarten grade year and a slower growth
rate of EWPV after kindergarten (i.e., from first to third grade)
for both conditions, except that the students in the treatment
condition, on average, showed greater improvement at the end
of the kindergarten (16.16 points for the treatment condition
vs. 13.75 points for the control condition) as well as at the end
of first to third grade (11.24 points for the treatment condition
vs. 9.64 points for the control condition). These differences in
growth rates show the effectiveness of the Project ELLA enhanced

TABLE 2 | Summary of 3-Level HLM, CCREM, and xxM-UN1 model results.

Model 1:

3-Lv HLM

Model 2:

CCREM

Model 3:

xxM-UN1

FIXED

Intercept (γ00) 435.60* [432.91, 438.28] 436.99* [434.31, 439.67] 437.07* [434.16, 440.00]

Piece 1 (γ10) 13.75* [11.96, 15.54] 13.15* [11.36, 14.94] 13.12* [11.51, 14.72]

Piece 2 (γ20) 9.64* [8.95, 10.34] 9.47* [8.23, 10.71] 9.66* [8.90, 10.44]

Treatment (γ01) −2.43 [−7.41, 2.61] −3.12 [−7.20, 1.03] −7.06* [−11.96, -1.94]

P1 × Treat (γ11) 2.41* [0.01, 4.80] 3.42* [1.04, 5.81] 3.46* [1.32, 5.63]

P2 × Treat (γ21) 1.60* [0.59, 2.62] 0.59 [−1.36, 2.53] 1.42* [0.23, 2.57]

RANDOM

Student

Intercept (τ00) 137.36 157.04 193.44

P1 (τ11) 2.13 3.52 29.37

Cov(Int, P1) −17.10 −23.50 −39.80

P2 (τ22) 0.08 0.16 3.66

Cov(Int, P2) −3.22 −5.02 −13.56

Cov(P1, P2) 0.40 0.75 8.27

Class (θ2/ψ2) 97.39 64.49 –

K – – 185.37

Grade 1 – – 12.32

Grade 2 – – 10.17

Grade 3 – – 5.63

Within (σ2) 165.12 145.92 –

MODEL FIT

Deviance 25,959 25,889 25,423

AIC 25,987 25,917 25,479

BIC 26,071 26,002 25,648

Lv: 3 level. Confidence intervals were obtained using profile likelihood method in xxM.
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materials and practice on improving the students’ EWPV over
time.

In general, researchers are more interested in the significance
of the mean part (i.e., the regression coefficients) and pay less
attention to the variance part of the model. Nevertheless, the
variance part carries as much important information as the mean
part (e.g., treatment effect is sometimes found in the variance part
instead of themean part of themodel (Hedeker andMermelstein,
2007), and the misspecification of the variance, in part, may
lead to a biased estimation not only of the fixed effects (i.e., the
regression coefficients) but also of the random effect variances
(Sivo et al., 2005), which may further affect the significance tests
of the regression coefficients (Kwok et al., 2007).

Given that we analyzed the data as a three-level, strictly
hierarchical model, the corresponding variance estimates for
the different levels are presented in Table 2 under the 3-Lv
HLM column: σ2 = 165.12 (within-student-level variance with
the identity structure assumption), τ00 = 137.36 (between-
student-level intercept variance), τ11 = 2.13 (between-student-
level piece1 variance), τ22 =.08 (between-student-level piece2
variance), and θ2 = 97.39 (kindergarten classroom-level
variance).

All these variances were statistically significant, which
indicates a significant amount of variation within students
across all the repeated measures and between students across
all kindergarten classrooms. Consistent with many previous
longitudinal studies using multilevel models, we found that the
intercept variance (i.e., τ00 = 137.36) was, in general, substantial
larger than the variances of the two growth pieces (i.e., τ11 = 2.13
and τ22 = 0.08).

There are a couple of limitations to this model. First, it
only partially takes into account the classroom effect (i.e.,
only kindergarten), which may lead to biased estimation of
both regression coefficients and the random effect variances.
Moreover, only modeling the kindergarten effect restricts the
possibility of modeling the other grade-level effects, such as the
potential carryover effect from previous grade levels (e.g., first
grade) to later EWPV score (e.g., measured at third grade).

MODEL 2: THE CROSS-CLASSIFIED
RANDOM EFFECT MODEL (CCREM)

Another way to analyze this longitudinal data set is to apply the
cross-classified random effect model (CCREM; Luo and Kwok,
2012). Although CCREM has been proposed for many years,
this model is still not commonly applied in educational studies.
In our study, we also provided useful information on how this
model can be and was applied to a real, large scale randomized
controlled longitudinal dataset. Unlike Model 1, which assumes
a strictly hierarchical structure with repeated EWPV measures
nested within students who further nested only within their
kindergarten classrooms, the CCREM takes into account the
classroom effects over time as a whole by creating a classroom
crossed factor. In other words, instead of only considering the
kindergarten classroom effect, the CCREM considers all (from
kindergarten to third grade) classroom effects and assumes that

at a given time point the only classroom effect present is the
one at that particular time point. Additionally, classroom effects
at different time points are interchangeable and, therefore, form
one source of random effect variance. The setup of this model is
similar to that of Model 1, as illustrated below.

Level 1 (repeated-measure level)

EWPVt(ij) = π0(ij) + π1(ij) piece1t(ij) + π2(ij) piece2t(ij)

+ et(ij), (5)

where EWPV is the target outcome variable for the t-th repeated
measure from the i-th student of the j-th classroom and piece1
and piece2 are the time variables with the exact same coding
scheme. The major difference between this model and Model
1 is the presentation and meaning of the subscript (specifically
the “j” subscript). Unlike in Model 1 where the j subscript is
only for a particular kindergarten classroom, the j subscript in
Model 2 represents a particular classroom of any grade level
(i.e., from kindergarten to third grade). That is, the students are
no longer nested only within the kindergarten classrooms, as
shown in Figure 1B. Instead, as shown in Figure 1A, the repeated
measures are now nested within the i-th students and the j-th
classroom whereas student and classroom are now crossed with
each other. Hence the subscripts i and j in Equation (5) are
now grouped in the parentheses (ij). For example, Student S1
in Figure 1A has three repeated measures (O11, O12 and O13),
as does Student S2 (O21, O22 and O23). Students S1 and S2 are
in different kindergarten classrooms (KC1 for S1 and KC2 for
S2) but are in the same classroom in first grade (G1C1) and are
assigned to different classrooms second grade (G2C1 for S1 and
G2C2 for S2). Hence, the repeated measures (i.e., Os) are nested
both within students (S1 and S2) and classrooms (KC1, KC2,
G1C1, G2C1 and G2C2), whereas students and classrooms are
crossed instead of nested.

Given that student and classrooms are crossed with each
other, the level-2 model in CCREM includes both students and
classrooms simultaneously as presented below:

Level 2 (student and classroom level)

π0(ij) = γ00 + γ01treatmentj + u0i + v0j (6)

π1(ij) = γ10 + γ11treatmentj + u1i

π2(ij) = γ20 + γ21treatmentj + u2i,

where γ00, γ10, and γ20 are the average intercept, piece1 and
piece2 coefficients across all classrooms, assuming the non-
significant treatment effect. On the other hand, given that
the randomization was at the classroom level, we included
the dummy-coded treatment variable, treatmentj, in the level-
2 equations. Hence, if there is a significant treatment effect
at intercept, γ00will be the intercept for the control condition
whereas γ00+ γ01 will be the intercept for the treatment
condition. Similarly, if there are significant treatment effects at
both piece1 and piece2, the average piece1 coefficient will be
γ10 for the control condition and γ10 + γ11 for the treatment
condition; the same holds for the average piece2 coefficient, with
γ20 for the control condition and γ20 + γ21 for the treatment
condition.
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By substituting Equation (6) back into Equation (5), we
obtained the following overall average (or mean) model, which
is almost the same as Equation (4) under Model 1:

ÊWPVt(ij) = γ00 + γ01treatmentj + γ10 piece1t(ij)

+ γ20 piece2t(ij) + γ11treatmentj
∗ piece1t(ij)

+ γ21treatmentj
∗ piece2t(ij) (7)

The corresponding random effect variances are as follows:
V(et(ij)) = σ2 (within-student-level variance with the identity

structure assumption)
V(u0i)= τ00 (between-student-level intercept variance)
V(u1i)= τ11 (between-student-level piece1 variance)
V(u2i)= τ22 (between-student-level piece2 variance)
V(v0j)= ψ2 (between-classroom-level variance).

The major difference between this CCREM model and Model
1 is with regard to the random effect part; specifically, the
classroom effect v0j with the corresponding variance equal to ψ2.
Even though it seems like only a slight change in the combined
equation (from v0j of the kindergarten random effects in Model
1 to v0j of all classroom random effects in Model 2), the actual
implication and the parameter estimates of Model 2 can be very
different from those of Model 1 due to the variance redistribution
mechanism (Luo and Kwok, 2009). The corresponding output for
this model may be found in Appendix A2. Below, we highlight
these differences.

Results of Model 2
The results are presented in Table 2 in the Model 2 (CCREM)
column. Instead of explaining each parameter estimate, we have
highlighted the major differences between Models 1 and 2.
First, the treatmentj

∗ piece2t(ij) interaction effect is no longer
significant in Model 2 (γ21 =.64 with the 95% CI covered
zero) compared with Model 1. This nonsignificant interaction
effect indicates that the rate of change or improvement in the
EWPV was the same for both treatment and control groups after
kindergarten.

In addition to the regression coefficient, some of the estimates
of the random effect variances were quite different between the
twomodels: Model 2 had a larger intercept variance (τ00 = 157.04
compared with Model 1 τ00 = 137.36), a smaller classroom
variance (ψ2

= 64.49 compared with Model 1 θ2 = 97.39), and
a smaller within-student variance (σ2 = 145.92 compared with
Model 1 σ2 = 165.12). These differences in the variance estimates
between the two models are likely the result of the variance
redistribution mechanism (Luo and Kwok, 2009). Although the
number of parameters are the same in the two models, the
meaning and setup (in terms of the design matrix) of the random
effects, especially the classroom random effects, can result in
quite different variance estimates which, in turn, can lead to
different standard error estimates and tests of significance of the
regression coefficients.

Regarding the limitation of this model, unlike Model 1 which
only takes into account the kindergarten classroom effect, Model
2 is able to fully take the classroom effect into account. However,
it does assume an acute classroom effect (i.e., it will not carry over
in later grades). In other words, once a student changes grade (i.e.,

classroom), he/she will get a new classroom effect. The classroom
effect at kindergarten is independent of the classroom effect at
grade 1, for example. Also, all classroom effects regardless the
grade (or time) have exactly the same variance given that they
are treated as a whole or a single crossed factor, even though
conceptually the classrooms at different grades/times may have
different effects on the EWPV scores.

Ideally, we wanted to analyze this data set with four classroom
crossed factors but, in reality, the specification for this model is
not straightforward, especially when using the common MLM
packages. Moreover, the model estimates only the variance for
the classroom factors, not the other effects, such as the potential
carryover effect from the previous classrooms on later EWPV
scores.

MODEL 3: xxM-UN1 PIECEWISE LATENT
GROWTH

Whereas the nesting relationship holds in cross-sectional data,
in longitudinal settings the relationship between students and
classrooms is not pure. To make things more complicated,
students’ scores at a given time point, say second grade, are not
only influenced by the classroom effect at second grade, but also
potentially by the classroom effects at both kindergarten and first
grade. Furthermore, the effect of the classroom may diminish,
such that the impact of first grade may have a stronger effect
on the second-grade scores than at third grade. Such a model
would include five crossed random effects (i.e., one at the student
level and four at the classroom level, including kindergarten,
first-, second-, and third-grade random effects) and would need
to allow the classroom effects to vary across time. None of the
default models from the standard statistical packages can fully
capture the key feature of this model.

Similar to Model 1, Model 3 (also see Figure 2) has also
effectively captured the growth pattern and the treatment
by pieces interaction effects after taking into account the
data dependency. However, both Models 1 and 2 may not
be the most optimal approach to analyze these data given
some of the restricted assumptions. For example, they both
assume that the residuals have a constant variance and are
independent across time (i.e., an identity structure for the within-
student variance-covariance structure). Moreover, they assume
a constant classroom effect across time without any impact or
carryover effect (from one grade level to the next).

The first limitation can be addressed by specifying a different
residual covariance structure than the default one (see Kwok
et al., 2007), which can be done in most multilevel software
programs, such as HLM, SAS, and SPSS, as well as with the latent
growthmodels under the SEM framework. The second limitation
requires specification of multiple, crossed random effects to
capture the potential non-constant classroom effects, which
cannot be easily estimated in standard multilevel software2.
Nevertheless, recent developments in the n-level SEM and the

2To our best knowledge, across all the commercial SEM related software, only
Mplus and Stata (the “gsem” routine) can handle cross-classified data with limited
number of crossed factors (e.g., Mplus can only handle two crossed factors).
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FIGURE 2 | Path diagram for the model accommodating carryover classroom effects with five levels. y1, beginning of kindergarten; y2, end of kindergarten; y3, end of

first grade; y4, end of second grade; y5, end of third grade. The rounded-corner boxes: Student, Student level; K, Kindergarten classroom level; Grade 1, Grade 1

classroom level; Grade 2, Grade 2 classroom level; Grade 3 classroom level.

corresponding R package xxM (Mehta, 2013) have provided the
potential to specify more complex multilevel models, including
Model 3, as presented in Figure 2.

The model specification in xxM requires a combination of
multilevel and SEM conventions. Due to its complexity, we only
discuss the portions that are relevant to our model. First, it
requires the longitudinal data to be in the wide rather than
the long format (Kwok et al., 2008) in order to model complex
residual covariance structures. This is identical to the latent
growth modeling approach using SEM. Second, it requires a
separate data set at each level, which is similar to the setup in
HLM. In our model, we want to model five levels: the student
level and four classrooms levels, including kindergarten (class-K),
first grade (class-G1), second grade (class-G2), and third grade
(class-G3). Third, it requires model specification at each level,
and also for each pairwise combination of levels. For example,
for a latent growth model with an additional classroom-level

random effect, we have y(1)i = 3
(1,1)η

(1)
i +3

(1,2)η
(2)
i + ε

(1)
i , where

y
(1)
i is the vector of the outcome scores of student i from Time

1 to Time 5, 3
(1,1) is a fixed pattern matrix for our piecewise

growth model, η
(1)
i is the vector of latent growth factor scores

(i.e., intercept, piece1, and piece2) with mean α(1) and variance-

covariance matrix9
(1,1), and ε

(1)
i is the student-level error terms.

The superscripts (1) and (1,1) denote a student-level model. At

the classroom-level there is one latent variable η
(2)
i denoting the

random intercept, with mean α(2)
= 0 and variance ψ(2), and

with direct paths on y
(1)
i through the between-class-K-student-

level matrix 3
(1,2)

= [1, 1, 1, 1, 1]T.
Because of the complexity associated with using xxM, we

skip the model equations here to focus more on the conceptual
formulation instead. The R code for fitting the model is presented
in Appendix B.

Student-Level Model
At the student level, we have a piecewise latent growth
model for the five EWPV measurement occasions,
which is equivalent to the piecewise growth model with
random intercept and random coefficients for both piece1
and piece2, as opposed to lme4 (Bates et al., 2015),
which requires the residual covariance structure to be a
constant σ2 over time (i.e., an identity (ID) structure) as
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follows:

σ2
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0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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In xxM, we can model many other kinds of structure, such
as freely estimating the residual variances for different time
points (i.e., the first-order unstructured [UN1] structure), as
presented here in which the residual variances vary across time
measures.
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This seems to be a more realistic choice than the ID structure.
The treatment condition that was assigned at kindergarten
or as a class-K level variable predicts the intercept and
the two piecewise growth factors (P1 and P2 in Figure 2).
The corresponding path coefficients (of the paths/arrows
from Treat to the growth latent factors in Figure 2) are
conceptually equivalent to γ01 (treatmentj), γ11(treatmentj

∗

piece1t(ij)) and γ21(treatmentj
∗ piece2t(ij)) in the previous two

models.

Four Classroom-Level Models
At the class-K level, we have a random intercept factor η(K) that
accounts for the variance at all five time points due to clustering
at kindergarten. We let the effect of such clustering differ across
time points, which is achieved by allowing the direct paths (or
factor loadings) from η(K) to be different on the fivemeasurement
occasions. It is reasonable to expect that the effect will diminish
across time, which means that the factor loadings should be
decreasing. At the class-G1 level, we again have a random
intercept factor η(G1) that accounts for the clustering at first
grade. Because classroom effect at first grade cannot affect prior

performance (i.e., at kindergarten), the factor loadings from η
(G1)
1

to the first two measures are fixed at zero. Similar procedures are
carried out for the remaining two random intercept factors, η(G2)

and η(G3), as shown in Figure 2.

Results of Model 3
Given that the interpretation of the coefficients of the average or
mean model is exactly the same as in the previous two models,
we will focus more on the differences between Model 3 and the
other two models. First, as shown in Table 2, all the fixed effects
or regression coefficients were statistically significant with the
95% profile likelihood CI not covering zero. Specifically, when
comparing the fixed effect estimates of Model 3 with those of the
other two models, both coefficients of treatment (γ01 = −7.06)
and Piece2× Treatment (γ21 = 1.42) became significant.

Figure 3 contains the estimated average models for both
groups based on the estimates from the xxM-UN1 column

in Table 2. As shown in Figure 3, the treatment group (the
dashed line group) has lower EWPV scores at the beginning
of kindergarten, and the growth (or improvement) rate of this
group is faster than the control group at both pieces (i.e.,
the kindergarten piece and the first- to second-grade piece).
The difference between the two groups on EWPV diminished
as time passed, and by the end of second grade, the two
lines crossed, which indicated no differences between the two
groups. In other words, even though the treatment students
started with significantly lower EWPV scores at the beginning
of kindergarten, they caught up with their control group
counterparts (by the end of second grade) and might even
outperform them at the later time points. Notice also that the
width of the CI is smaller for terms involving piece2 (compared
with the corresponding terms involving piece1). This is likely a
result of the decreasing classroom effect across time.

Another major difference between Model 3 and the previous
two models is found in the variance part of the model: not only
does Model 3 contain more random effects (i.e., four different
classroom effects for the four different grades), but the sizes of
the variance estimates (i.e., τ00, τ11, and τ22) are quite different
from Models 1 and 2. As shown in Table 2, unlike the other two
models with a single classroom variance, Model 3 contained four
classroom variances for the four different grades, respectively.

A closer analysis of these classroom variances reveals
that the kindergarten variance was the largest whereas the
third-grade variance was the smallest. This trend and the
substantial differences across grades may partly be the result of
missing data—the missing data rate increased as time passed,
and with fewer students at the later time points or grades,
it is not surprising to see the diminished variance estimates.
Other potential reasons may include the developmental
process (i.e., students learn more when they grow older)
and plausible treatment effect (e.g., students become more
homogeneous/similar to each other when they respond to
the treatment materials). Further investigation of this issue is
needed.

For the same random effect variances (i.e., τ00, τ11, and
τ22), Model 3 had substantially larger estimates than the other
two models. This again may be the result of the variance
redistribution mechanism (Luo and Kwok, 2009) due to the
additional classroom variances. Given that the standard errors
(SEs) of the fixed effect estimates (or regression coefficients) are a
function of the random effect variances, the additional significant
coefficients (i.e., γ01 & γ21) in Model 3 are likely the results of
these different variance estimates, which can directly affect the
tests of significance of these coefficients.

In addition to the fixed and random effect estimates
commonly found in the traditional multilevel models and
presented inTable 2, we further examined the potential carryover
effect using xxM due to its flexibility of specifying more complex
multilevel models. As shown in Figure 2, the direct paths
(arrows) from each classroom factor to the individual time
measures can be viewed as examining the carryover effect; that is,
the effect from the previous grade classroom to the current and
later time EWPV scores. Formodel identification, we constrained
the direct path of the current time measure to 1.0 (e.g., fixing the
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FIGURE 3 | Mean trajectories of EWPV scores by the two treatment conditions. Value labels for the time axis: 0, beginning of kindergarten; 1, end of kindergarten; 2,

end of first grade; 3, end of second grade; 4, end of third grade.

kindergarten effect to Y1 [K-begin] to 1.0, while freely estimating
other paths). As shown in Figure 2, the freely estimated direct
paths from kindergarten to all the timemeasures (K-end, 1st-end,
2nd-end, and 3rd-end) were significant, with the largest effect at
the immediate post measure (i.e., the end of kindergarten EWPV
score) followed by weaker effects at later time measures.

We found a similar pattern for the first-grade factor (i.e., larger
direct path coefficient to the immediate post measure followed
by smaller coefficient to later time measures), even though the
direct path coefficients were not all significant, possibly as a result
of the smaller sample sizes at this grade and the later grade
levels. Similar non-significant direct effects were also found for
the second-grade factor.

These significant and non-significant carryover effects at
different grade levels had some important and practical
implications. For example, the many significant carryover effects
from kindergarten may reflect the importance of the timing
(i.e., the start of the intervention) and the potential longitudinal
effect of the intervention. In other words, we may not see
the same treatment effect if the intervention starts at another
grade level as opposed to the beginning of kindergarten.
Moreover, the significant paths from kindergarten to later-grade
EWPV scores may reveal the importance of the kindergarten
classroom experience, which may relate to ELL students’ reading
performance in the later grades, and further examination of this
will be needed.

We compared the three models by using information
criteria; namely, the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC). Certain guidelines
apply to interpreting the absolute difference of the information
criteria (i.e., 1IC) between two competing models. For example,
Burnham and Anderson (1998) suggested that when 1AIC
between two compared models is larger than 4, we can establish

that the model with smaller AIC is better than the other model
with larger AIC. Likewise, Raftery (1996) pointed out that the
1BIC between two competing models should be at least 2 to
indicate a real difference. Based on these guidelines, we found
that Model 3 fit the data the best given the smallest AIC and BIC
values across all three models.

DISCUSSION

In this study, we first described the complexity of the educational
data, especially in longitudinal settings, which can result in data
with a non-strictly hierarchical but more complex multilevel
structure. With the use of the ELLA data, we demonstrated
the importance of capturing the complex data structure by
examining three different models with different random effect
specification.

As stated, researchers are generally interested in the overall
average model (or the mean part of the model containing the
regression coefficients), but they fail to pay close attention to
the variance part of the model. Yet, the variance part also
carries important information, such as the implication of the
developmental process. We have discussed and shown the
importance of carefully specifying the random part of the model,
which could affect estimation of the random effect variances and
further affect estimates of the standard errors of the regression
coefficients and the corresponding significance tests of these
coefficients. For example, we found that both Models 1 and 3
had significant treatment by pieces interaction effects whereas
Model 2 only had significant treatment by piece1 interaction
effect and only contained some but not all significant coefficients.
This finding provides evidence that only partially addressing the
complex data structure may result in lower statistical power and
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loss of some important findings such as the treatment by growth
piece (i.e. piece2 covering changes from the end of first to end of
third grade) interaction effect.

Another advantage of modeling the classroom effect by grade
levels separately (i.e., Model 3) instead of as a whole (e.g., Model
2 using CCREM) is that it allows researchers to investigate
interesting phenomena that cannot be captured by the mean part
of the model. For example, the decreasing classroom or grade
variances over time may reflect the important developmental
process. For example, the high heterogeneity (or variation)
among students at the beginning of kindergarten may be the
result of the diverse backgrounds and experiences the students
have before they entered formal schooling. Once they are exposed
to the formal grade-school curriculum in addition to their natural
cognitive development, the variation among the students may
become smaller, which in turn, may lead to a reduction in
grade-level variances over time.

This is a plausible explanation, but further systematic
investigation on the change in the variances is needed to validate
this interpretation. Again, researchers should not only focus on
the mean part of the model (i.e., the significance of the regression
coefficients), but also, they should examine different random
effect structure, which may provide different perspectives and
even lead to new research questions for the target phenomena.

Moreover, we have shown how to incorporate the carryover
effect in the model via the xxM program. The pattern of the
carryover effect has shed light on some important and practical
design issues, such as the timing of the study and the potential
longitudinal impact of the intervention. For example, the only
significant carryover effects from the kindergarten factor to the
later time measures may suggest the importance of starting this
type of intervention at kindergarten (rather than at other/later
grade level). In fact, such carryover impact was also supported
by empirical evidence on Project ELLA students’ subsequent
learning as they matriculated to grade 5 (e.g., Tong et al., 2014).

Despite the important results presented here, there are a
few limitations to the study. First, even though xxM is a very
powerful software for very complex multilevel data, its lack of
model-fit indices (e.g., RMSEA and CFI) restricts researchers to
evaluate their models only based on the deviance statistic and
the information criteria. Similarly, an appropriate standardized
effect size measure for this type of complex data structure has
not yet been developed. Another major limitation is that we only
used real data for the demonstration. Thus, the actual impact of
various factors such as the magnitude of the data dependency
(or intra-class correlation) and the missing data rate over time
can only be further examined by thoughtfully planned simulation
studies. Moreover, the carry-over effects found in Model 3 (also
see Figure 2) are in arbitrary metric, and researchers need to be
cautious when interpreting these findings. Besides xxM, a similar
type of model (Model 3) may possibly specify and analyze with

non-SEM Bayesian based programs such as STAN (Carpenter
et al., 2017). Further investigation on whether and how effective
this alternative approach on fitting the same type of carry-over
effect model to similar real, large scale randomized controlled
longitudinal data will be needed.

When analyzing complex longitudinal data, especially those
from different educational settings, researchers generally focus
only on the mean part (i.e., the regression coefficients) while
ignoring the equally important random part (i.e., the random
effect variances) of the model. Throughout this paper, we have
addressed the importance of adequately taking the complex data
structure into account by carefully specifying the random part
of the model—not only can it affect the variance estimates, the
standard errors, and the tests of significance of the regression
coefficients, it can also offer additional information such as the
potential developmental process and the carryover effect. We
used xxM, which allowed us to estimate different grade level
variances (i.e., from kindergarten to third grade, separately) and
the potential carryover effect from each grade factor to the later
time measures of the EWPV scores. In closing, we encourage
researchers to look beyond the mean part of the model (i.e.,
the regression coefficients) and explore the variance part of the
model that may lead them to different perspectives or even new
information of the phenomena they are studying.
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