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While substantial effort has been invested in making robots more reliable, experience

demonstrates that robots operating in unstructured environments are often challenged

by frequent failures. Despite this, robots have not yet reached a level of design that

allows effective management of faulty or unexpected behavior by untrained users. To

understand why this may be the case, an in-depth literature review was done to explore

when people perceive and resolve robot failures, how robots communicate failure,

how failures influence people’s perceptions and feelings toward robots, and how these

effects can be mitigated. Fifty-two studies were identified relating to communicating

failures and their causes, the influence of failures on human-robot interaction (HRI),

and mitigating failures. Since little research has been done on these topics within the

HRI community, insights from the fields of human computer interaction (HCI), human

factors engineering, cognitive engineering and experimental psychology are presented

and discussed. Based on the literature, we developed a model of information processing

for robotic failures (Robot Failure Human Information Processing, RF-HIP), that guides

the discussion of our findings. The model describes the way people perceive, process,

and act on failures in human robot interaction. The model includes three main parts: (1)

communicating failures, (2) perception and comprehension of failures, and (3) solving

failures. Each part contains several stages, all influenced by contextual considerations

and mitigation strategies. Several gaps in the literature have become evident as a result

of this evaluation. More focus has been given to technical failures than interaction failures.

Few studies focused on human errors, on communicating failures, or the cognitive,

psychological, and social determinants that impact the design of mitigation strategies.

By providing the stages of human information processing, RF-HIP can be used as a tool

to promote the development of user-centered failure-handling strategies for HRIs.
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INTRODUCTION

While substantial effort has been invested in making robots
more reliable, experience demonstrates that robots are often
challenged by frequent failures. The Mean Time Between Failure
(MTBF) for robots in field environments is often within a
few hours (Tsarouhas and Fourlas, 2016). Despite this, mobile
robots have not yet reached a level of design that allow effective
management of faulty or unexpected behavior. In fact, research
suggests that the relationship between symptoms and cause of
failure is often not clear even to trained roboticists (Steinbauer,
2013). Having to rely on a professional to understand and
resolve a robot’s faulty behavior is a barrier to acceptance
amongst untrained users. Customer support also becomes costly
when users are unable to differentiate between technical errors
(software bugs or hardware failures) and problems resulting
from improper use (misuse; Parasuraman and Riley, 1997) or
unrealistic expectations. Moreover, how a robot manages failure
influences willingness to use the robot again (Lee et al., 2010),
the degree of deterioration in task performance (Ragni et al.,
2016), user trust in the robot (Hamacher et al., 2016), and
people’s perceptions of the robot (Gompei and Umemuro, 2015),
suggesting that failure handlingmay have substantial commercial
and economic benefits. Yet, little is known about how to create
failure management tools for robots that are appropriate for
untrained users. We shed light on this topic, with the goal
of developing design tools and design guidelines that facilitate
development of robot interactions that enable untrained users to
quickly and easily identify and act on failures, while maintaining
a positive user experience.

To tackle the challenging problem of failure handling for
untrained users, it is first necessary to review the cognitive
considerations that critically influence naive users’ ability to
detect and solve robot failures, and evaluate whether these
considerations have been properly addressed in the existing
Human-Robot Interaction (HRI) literature. This paper presents
a detailed look at the literature in HRI regarding when people
perceive and resolve robot failures, how robots communicate
failure, how failures influence people’s perceptions and feelings
toward robots, and how these effects can be mitigated.
Since little research has been done on these topics within
the HRI community, insights from the fields of Human
Computer Interaction (HCI), human factors engineering,
cognitive engineering and experimental psychology are presented
and discussed. To the best of our knowledge, a thorough review
of robotic failure handling from a user-centered perspective
has not yet been conducted. Based on the literature, we
developed a model of information processing for robotic failures
(the Robot Failure Human Information Processing Model, RF-
HIP) that guides the discussion of our findings. As robots
become more present in day-to-day life, especially for elderly
users who are inexperienced with robotic applications (Beer
and Takayama, 2011), we anticipate that such reviews and
models will become increasingly useful. Researchers could use
them to better understand what influences failure handling
in HRIs, to identify possible knowledge gaps and to promote
future research directions. Roboticists, engineers, and designers

could use them to guide design choices that will increase
user acceptance and decrease customer support costs. Policy
makers could use them to decide on standards for the necessary
failure-handling techniques required to make robots safe for
general use.

The paper is organized as follows: first, the types of failures
that may occur during HRIs are discussed. Second, search criteria
and an overview of the relevant HRI literature that matched
these criteria is presented. Third, cognitive determinants that
are likely to influence a person’s ability to perceive and resolve
failures are combined with current research in robotic user-
centered failure handling to create a model of information
processing. Finally, gaps in the HRI literature are presented and
discussed.

DEFINING AND CLASSIFYING ERRORS

Various definitions exist for the terms “failure,” “error,” and
“fault.” In line with (Laprie, 1995; Carlson and Murphy, 2005;
Steinbauer, 2013; Brooks, 2017), we adopted terminology in
which failure refers to “a degraded state of ability which causes
the behavior or service being performed by the system to deviate
from the ideal, normal, or correct functionality” (Brooks, 2017).
This definition includes both perceived failures, unexpected
behavior and actual failures, which is consistent with findings that
suggest that intentional yet unexpected or incoherent behaviors
are sometimes interpreted as erroneous (Short et al., 2010;
Lemaignan et al., 2015). Failures result from one or more errors,
which refer to system states (electrical, logical, or mechanical)
that can lead to a failure. Errors result from one or more faults,
which refer to anything that causes the system to enter an error
state. For example, a robot may experience a failure resulting
from an error in face-recognition, caused by poor illumination
(fault).

It is improbable to identify all possible types of robotic
failures since mobile robots operate in unstructured changing
environments with a wide variety of possible interactions.
Yet, several taxonomies for classifying errors and failures have
been proposed. Laprie (1995) classified failures according to
severity, defining benign failures (failures whose consequences
are comparable to the benefits of the service they are preventing)
and catastrophic failures (failures with a higher cost by one
or more orders of magnitude than the service). Ross (Ross
et al., 2004) categorized system errors according to failure
recoverability, defining anticipated errors (when the agent
backtracks through the plan to achieve the same goal through
an alternate course of action), exceptional errors (when the
current plan cannot cope with the failure, and re-planning can
be done to formulate a strategy to achieve the original goal),
unrecoverable errors (when the current plan cannot cope with the
error and re-planning cannot be done), and socially recoverable
errors (when the agent can continue on with the original
plan with appropriate assistance from other agents within its
environment). Giuliani et al. (2015) classified failures according
to their type, defining technical failures (caused by technical
shortcomings of the robot) and social norm violations (when
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the robot deviates from the social script or uses inappropriate
social signals, e.g., looking away from a person while talking to
them).

Carlson and Murphy (2005) devised an extensive error
classification taxonomy by analyzing how Unmanned Ground
Vehicles (UGVs) failed in the field using studies from
urban search and rescue and military field applications. The
classification, based on Laprie (1995) and Norman (2002)
categorized errors according to the source of failure (the fault),
and included two main categories: (1) physical failures, which
are failures caused by physical errors in the system’s effectors,
sensors, control system, power sources, or communications,
and (2) human failures, which are caused by human-made
errors. They further classified physical failures according
to severity (terminal failure—terminates the system’s current
mission; nonterminal failures—degrades its ability to perform
its mission) and repairability (field repairable—repairable with
tools that accompany the system in the field; nonfield
repairable—cannot be repaired with tools that accompany the
system in the field), and human failures according to design
failures (errors introduced during design, construction, or post-
production modifications, e.g., programmed to greet people
with “goodbye”) and interaction failures (errors introduced
by unintended violations of operating procedures). Interaction
failures included mistakes (performing an action that is wrong),
and slips [attempting to do the right thing unsuccessfully,
e.g., accidentally pressing the wrong button (Barakova et al.,
2015)].

While the (Carlson andMurphy, 2005) taxonomy is extensive,

there are additional interaction failures that were not accounted

for. For example, it did not consider other types of human errors,

such as lapses, which occur as a result of lapses of memory and/or
attention (e.g., forgetting to turn the robot off), and deliberate
violations, which are intentional illegitimate actions (e.g.,
directing the robot to run into a wall) (Reason, 1990). Three main
taxonomies of human errors are frequently cited in the literature
(Stanton and Salmon, 2009): (1) Norman’s error categorization

(Norman, 1981), which divides human errors into those that
result from misinterpretations of the situation, those that result

from faulty activation of schemas (knowledge structures) due to
similar trigger conditions, and those that result from activating
schemas too early, too late, or not at all; (2) Rasmussen’s
error categorization (Rasmussen, 1982), which divides human

errors by the level of cognitive control within which they
occur (skill-, rule-, or knowledge-based), and (3) Reason’s

categorization (Reason, 1990), which builds on Rassmussen’s
ideas and divides human errors into slips, lapses, mistakes
and violations (described above). Moreover, the (Carlson and
Murphy, 2005) taxonomy doesn’t consider uncertainties in the

interaction that result from varying environments and other
agents. (Sutcliffe and Rugg, 1998) described 10 environmental
and social factors that may increase the likelihood of errors, and

classified them into group level judgement, working environment,
and organizational flaws.

Steinbauer (2013) collected information regarding failures
that occurred to teams in RoboCup competitions, and classified

them into four categories: Interaction (problems that arise
from uncertainties in the interaction with the environment,
other agents, and humans), algorithms (problems in methods
and algorithms), software (design and implementation faults
of software systems), and hardware (physical faults of the
robotic equipment). They used several attributes to classify
faults and their properties, including the fault’s relevance to
different robotic systems (relevance), the context in which the
fault occurred (condition), indicators used to identify the failure
(symptoms), how the failure impacted the mission (impact:
non-critical, repairable, and terminal), and the frequency of
the occurrence of a fault (frequency: never, sporadic, regularly,
frequently).

Brooks (2017), based on Lutz and Woodhouse (1999),
identified two main types of failure: communication failures
and processing failures. Communication failures are related to
data being passed between modules, including missing data
(incomplete messages or dropped packets), incorrect data (data
generated incorrectly or distorted during transmission), bad
timing (data sent too early, before the receiver is ready to
handle it, or too late, causing delays in reaction), and extra data
(data sent multiple times but only expected once, or sending
larger messages than expected). Processing failures include
abnormal terminations, that could happen due to unhandled
exceptions, segmentation fault, or dead-lock; missing events, that
could happen when a conditional statement is not triggered
or a callback or interrupt never fires; incorrect logic due
to bad assumptions or unforeseen conditions; and timing or
ordering, where events take place in a different order than
expected or a waiting period times-out before information
arrives.

We propose an inclusive human-robot failure taxonomy
that combines the above system and human oriented
classifications (Figure 1). According to this taxonomy, the
main distinction is between two types of failures: technical
failures and interaction failures. Technical failures are caused
either by hardware errors or problems in the robot’s software
system. Software errors are further classified into design failures,
communication failures, and processing failures. Following
Steinbauer’s categorization (Steinbauer, 2013), interaction
failures refer to problems that arise from uncertainties in the
interaction with the environment, other agents, and humans.
These include social norm violations and various types of
human errors as noted in Reason (1990). Each failure event,
regardless of its source, can be categorized by the following
attributes:

• Functional Severity: criticality of the failure to the robot’s
functioning (non-critical, recoverable, terminal).

• Social Severity: criticality of the failure to future acceptance of
the robot’s services (non-critical, recoverable, unrecoverable).

• Relevance: relevance of the fault to different robot systems,
which can be high (relevant to almost all robotic systems),
medium (relevant only to some robotic systems), or low
(highly specialized failures).

• Frequency: how often the failure occurs (never, sporadic,
regularly, frequently).
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FIGURE 1 | A human-robot failure taxonomy.

• Condition: the context in which the fault and failure occurred.
• Symptoms: indicators used to identify the failure.

LITERATURE REVIEW ON
USER-CENTERED FAILURE HANDLING

Various search engines were used to conduct the online
literature search on human-centered failure handling in robots,
including Google Scholar, IEEE, ACM, Science Direct, Springer,
Sage Journals, Taylor & Francis Online, and Cambridge Core.
Robotics conferences and journals covered in this search include
ICRA, IROS, RO-MAN, SMC, Robotics and Autonomous
Systems, Human Machine Systems, HRI, International Journal
of Social Robotics, Autonomous Robots, International Journal of
Robotics Research, Robotica, Intelligent Robots and Systems, and
Advanced Robotics, amongst others. Keywords used were: robot,
error, failure, recovery, reliability. Included in the review are
articles that address robotic failure-handling from the perspective
of the human operator, user or bystander, rather than from a
systems perspective. That is, we focused on studies that evaluated
some aspect of the bilateral relationship between end-user’s
needs, wants and limitations and robotic failure. Articles that
dealt with errors without addressing the user or the interaction
were not included in the review. Given the vast amount of
research on technical considerations of robot reliability and error
handling, we cannot claim our search to be exhaustive, however
given the large number of resources surveyed, we do believe it is
indicative of current trends.

Figure 2 shows the result of the literature search of HRI
articles that evaluated some aspect of user-centered failure
handling. Altogether, 52 relevant papers were identified, where 40
of them were published in conference proceedings, 8 in academic
journals, 1 doctoral dissertation, 2 theses, and 1 technical report.

Papers were classified into three main topics: (a) communicating
failures and their causes, i.e., how should a robot communicate
to its user and bystanders that an error has occurred; (b) the
influence of failures on HRI, i.e., how do failures influence user
perceptions of the robot and user behavior; and (c) mitigating
failures, i.e., approaches on how to mitigate the negative effects
of failure on HRIs. The following sections provide an overview of
methodologies used in the literature, including the types of errors
and symptoms studied, evaluation methods and metrics, the
types of robotic systems used, and experimental environments.

Errors and Symptoms Studied
Almost all errors researched in the literature exemplified
technical failures (e.g., Gieselmann, 2006; Kim and Hinds, 2006;
Gieselmann and Ostendorf, 2007; Spexard et al., 2008; Kim et al.,
2009; Groom et al., 2010; Lee et al., 2010; Takayama et al., 2011;
Desai et al., 2012, 2013; Kahn et al., 2012; Rosenthal et al., 2012;
Shiomi et al., 2013; Yasuda and Matsumoto, 2013; Kaniarasu
and Steinfeld, 2014; Lohan et al., 2014; Cha et al., 2015; Gehle
et al., 2015; Giuliani et al., 2015; Gompei and Umemuro, 2015;
Hamacher, 2015; Knepper et al., 2015; Mirnig et al., 2015, 2017;
Mubin and Bartneck, 2015; Salem et al., 2015; Bajones et al., 2016;
Brooks et al., 2016; Hamacher et al., 2016; Hayes et al., 2016;
Ragni et al., 2016; Robinette et al., 2016; Engelhardt and Hansson,
2017; Law et al., 2017; Sarkar et al., 2017; van der Woerdt and
Haselager, 2017; Kwon et al., 2018). Only a few evaluated the
impact of social norm violations (e.g., Short et al., 2010; Salem
et al., 2013; Giuliani et al., 2015; Mirnig et al., 2015, 2017; van
der Woerdt and Haselager, 2017), and none focused on human
errors. Some articles did not specify the type of error used (e.g.,
Ross et al., 2004; Cassenti, 2007).

A robot’s failure symptoms in the literature include the robot
not completing a given task (e.g., Takayama et al., 2011; Rosenthal
et al., 2012; Brooks et al., 2016; Robinette et al., 2016;Mirnig et al.,
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FIGURE 2 | Distribution of user-centered failure handling by topic (Top) and by publication year (Bottom).

2017; Kwon et al., 2018), running into obstacles (e.g., Brooks
et al., 2016), performing the wrong action (e.g., Kim et al., 2009;
Lee et al., 2010; Desai et al., 2012, 2013; Yasuda and Matsumoto,
2013; Kaniarasu and Steinfeld, 2014; Gehle et al., 2015; Mubin
and Bartneck, 2015; Salem et al., 2015; Brooks et al., 2016; Hayes
et al., 2016; Robinette et al., 2016; Mirnig et al., 2017; Sarkar
et al., 2017; van der Woerdt and Haselager, 2017), performing
the right action incorrectly or incompletely (e.g., Takayama et al.,
2011; Shiomi et al., 2013; Cha et al., 2015; Hamacher, 2015;
Brooks et al., 2016; Hamacher et al., 2016; Adubor et al., 2017;
Sarkar et al., 2017; van der Woerdt and Haselager, 2017; Kwon
et al., 2018), producing no action or speech (irresponsiveness)
(e.g., Gieselmann, 2006; Lohan et al., 2014; Bajones et al., 2016;
Robinette et al., 2016; Lucas et al., 2017, 2018), timing speech
improperly (e.g., Mirnig et al., 2017), failing to produce speech
(e.g., Gieselmann and Ostendorf, 2007; Mirnig et al., 2017),
producing inappropriate speech or erroneous instruction (e.g.,
Gieselmann, 2006; Gieselmann and Ostendorf, 2007; Short et al.,
2010; Gehle et al., 2015; Gompei and Umemuro, 2015; Lucas
et al., 2017, 2018; Mirnig et al., 2017; Sarkar et al., 2017),
repeating statements or body movements (e.g., Gieselmann and
Ostendorf, 2007; Spexard et al., 2008; Lucas et al., 2017; Kwon
et al., 2018), producing unexpected or erratic behavior (e.g., Kim

and Hinds, 2006; Spexard et al., 2008; Short et al., 2010; Desai
et al., 2012; Salem et al., 2013, 2015; Lemaignan et al., 2015;
Robinette et al., 2016; van der Woerdt and Haselager, 2017),
making knowledge-based mistakes (e.g., Groom et al., 2010;
Short et al., 2010; Kahn et al., 2012; Rosenthal et al., 2012; Salem
et al., 2015; Hayes et al., 2016; Ragni et al., 2016; Engelhardt
and Hansson, 2017; Law et al., 2017), overtly stating there is a
problem (e.g., Spexard et al., 2008; Bajones et al., 2016; Lucas
et al., 2018), asking for help (e.g., Ross et al., 2004; Hüttenrauch
and Severinson-Eklundh, 2006; Spexard et al., 2008; Rosenthal
et al., 2012; Yasuda and Matsumoto, 2013; Knepper et al., 2015;
Bajones et al., 2016; Srinivasan and Takayama, 2016), producing
body language associated with failure (e.g., Takayama et al., 2011),
and questioning for additional information (e.g., Gieselmann,
2006; Lucas et al., 2018).

Evaluation Methods and Metrics
Error recovery strategies and reactions to errors have been
evaluated using surveys (e.g., Lee et al., 2010; Takayama et al.,
2011; Cha et al., 2015; Brooks et al., 2016; Adubor et al., 2017; Kim
et al., 2017; Rossi et al., 2017b; van der Woerdt and Haselager,
2017; Kwon et al., 2018), video analysis of HRIs (e.g., Giuliani
et al., 2015; Mirnig et al., 2015), and unstructured observational
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studies (e.g., Gieselmann, 2006; Gehle et al., 2015), however most
studies used controlled user experiments (e.g., Spexard et al.,
2008; Short et al., 2010; Desai et al., 2013; Salem et al., 2013,
2015; Gompei and Umemuro, 2015; Knepper et al., 2015; Hayes
et al., 2016; Ragni et al., 2016; Robinette et al., 2016; Mirnig
et al., 2017; Lucas et al., 2018). One study introduced an idea
on how to improve situation awareness (SA; see Comprehension
andMemory section) in erroneous situations without any formal
evaluation (Cassenti, 2007).

User perceptions of the robot that have been evaluated
in erroneous situations include the robot’s perceived agency
(Lemaignan et al., 2015; van der Woerdt and Haselager,
2017), predictability (van der Woerdt and Haselager, 2017),
apologeticness (Shiomi et al., 2013), moral accountability (Kahn
et al., 2012), friendliness (Groom et al., 2010; Shiomi et al.,
2013; Kim et al., 2017), propensity to damage (van der Woerdt
and Haselager, 2017), trustworthiness (Gompei and Umemuro,
2015; Brooks et al., 2016; Hamacher et al., 2016; Rossi et al.,
2017a; Sarkar et al., 2017; van der Woerdt and Haselager, 2017;
Kwon et al., 2018), likeability (Groom et al., 2010; Salem et al.,
2013; Bajones et al., 2016; Engelhardt and Hansson, 2017; Mirnig
et al., 2017; Sarkar et al., 2017), reliability (Short et al., 2010;
Salem et al., 2015), familiarity (Gompei and Umemuro, 2015),
anthropomorphism (Lee et al., 2010; Salem et al., 2013, 2015;
Lemaignan et al., 2015; Mubin and Bartneck, 2015; Mirnig et al.,
2017; Sarkar et al., 2017), animacy (Engelhardt and Hansson,
2017; Sarkar et al., 2017), technical competence (Groom et al.,
2010; Short et al., 2010; Desai et al., 2013; Salem et al., 2015;
Brooks et al., 2016; Engelhardt and Hansson, 2017; Sarkar et al.,
2017), dependability (Brooks et al., 2016), intelligence (Mubin
and Bartneck, 2015; Salem et al., 2015; Bajones et al., 2016;
Engelhardt and Hansson, 2017; Mirnig et al., 2017; Sarkar et al.,
2017), belligerence (Groom et al., 2010) and safety (Salem et al.,
2015; Adubor et al., 2017; Sarkar et al., 2017). Studies have also
evaluated the effects of errors on engagement (Lemaignan et al.,
2015; Law et al., 2017), future contact intensions with the robot
(Short et al., 2010; Salem et al., 2013, 2015; Brooks et al., 2016;
Robinette et al., 2016; Kwon et al., 2018), the robot being a
good teammate (Kwon et al., 2018), psychological closeness with
the robot (Salem et al., 2015; Sarkar et al., 2017), rapport and
persuasion (Lucas et al., 2018), creating a shared reality (Salem
et al., 2013), compliance (Rosenthal et al., 2012; Salem et al., 2015;
Robinette et al., 2016; Mirnig et al., 2017), attitudes toward robots
(Salem et al., 2013; Gompei and Umemuro, 2015; Kim et al.,
2017; Sarkar et al., 2017), and participant’s emotional state (e.g.,
comfortable, safe, relaxed, confused) (Groom et al., 2010; Yasuda
and Matsumoto, 2013; Hamacher, 2015; Robinette et al., 2016).

The quality of error recovery and communication strategies
have been evaluated using various performance metrics,
including whether users managed to resolve the problems
(Spexard et al., 2008), attribution of blame (Kim and Hinds,
2006), the frequency of use of recovery feature (Spexard et al.,
2008), the number of error-free user interactions (Gieselmann
and Ostendorf, 2007; Knepper et al., 2015), time per repair
(Rosenthal et al., 2012; Knepper et al., 2015; van der Woerdt
and Haselager, 2017), time until task completion (De Visser
and Parasuraman, 2011; Rosenthal et al., 2012; Schütte et al.,

2017), user comfort (Engelhardt and Hansson, 2017), user
satisfaction (Gieselmann and Ostendorf, 2007; Shiomi et al.,
2013), task performance and completion (Gieselmann and
Ostendorf, 2007; De Visser and Parasuraman, 2011; Desai et al.,
2013; Salem et al., 2013; Knepper et al., 2015; Brooks, 2017;
Schütte et al., 2017), workload (Brooks, 2017), confidence (De
Visser and Parasuraman, 2011; Brooks, 2017), comprehension of
information (Brooks, 2017; Kwon et al., 2018), the number of
times participant had to stop their primary task to handle the
robot (Brooks, 2017), trust in robot (De Visser and Parasuraman,
2011; Rosenthal et al., 2012; Hamacher et al., 2016), the
participant’s emotional state (Groom et al., 2010) and their
influence on user impressions of the robot (Groom et al., 2010;
Shiomi et al., 2013; Bajones et al., 2016; Engelhardt and Hansson,
2017; Kwon et al., 2018). Brooks (2017) devised a measurement
scale of people’s reaction to failure called the REACTION scale,
which claims to compare different failure situations based on the
severity of the failures, the context risk involved, and effectiveness
of recovery strategy. Rossi et al. (2017b) found that people,
regardless of age or gender, are fairly consistent in how they rate
the severity of robot errors.

The method of measuring each criterion varied; to assess the
quality of interaction, research teams mainly used custom made
questionnaires with Likert scales and unstructured interviews
with a large variety of different questions (e.g., Kim and
Hinds, 2006; Short et al., 2010; Rosenthal et al., 2012; Desai
et al., 2013; Knepper et al., 2015; Hayes et al., 2016; Robinette
et al., 2016; Kwon et al., 2018; Lucas et al., 2018). The most
common structured and validated questionnaires used include
the Godspeed questionnaire (used in Salem et al., 2015; Bajones
et al., 2016; Engelhardt and Hansson, 2017; Mirnig et al., 2017;
Sarkar et al., 2017) and NASA TLX (used in Desai et al.,
2012, 2013; Hamacher, 2015; Hamacher et al., 2016; Brooks,
2017). Some evaluations were done using video-analysis (Kahn
et al., 2012; Hamacher et al., 2016; Sarkar et al., 2017); looking
at behavioral data (Kahn et al., 2012; Bajones et al., 2016;
Hamacher et al., 2016; Sarkar et al., 2017), verbal statementsmade
during the experiment (Kahn et al., 2012; Bajones et al., 2016;
Hamacher et al., 2016), and the number and type of errors made
(Bajones et al., 2016). About half of the experimental studies
were performed using the Wizard-of-Oz technique (Riek, 2012)
(e.g., Gieselmann, 2006; Groom et al., 2010; Short et al., 2010;
Kahn et al., 2012; Rosenthal et al., 2012; Yasuda and Matsumoto,
2013; Mubin and Bartneck, 2015; Lucas et al., 2018), and half
programmed erroneous behavior to be performed automatically
(e.g., Gehle et al., 2015; Gompei and Umemuro, 2015; Hamacher,
2015; Hayes et al., 2016). Only a few studied unplanned failures
(e.g., Giuliani et al., 2015; Knepper et al., 2015; Mirnig et al.,
2015).

The number of participants used in each study varied,
however with the exception of Gieselmann (2006), all had
more than 10, which is arguably sufficient to obtain meaningful
results through user studies (Nielson, 2000). Most experiments
were done on Americans (21) and Europeans (18). Few studies
involved non-Western participants (Shiomi et al., 2013; Yasuda
and Matsumoto, 2013; Gompei and Umemuro, 2015; Kim
et al., 2017), and only one evaluated cross-cultural differences
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(Rossi et al., 2017a). Participants varied in age, however
most studies were primarily implemented on younger adults.
One study evaluated children (Lemaignan et al., 2015); none
focused on elderly participants above the age of 75. With
the exception of seven studies, the distribution between male
and female participants was relatively equal (more equal than
60–40%). Sixteen (31%) of the studies evaluated participants
with little experience with robots, 2 (3.8%) studies evaluated
experienced participants, and 30 (58%) studies did not state
the participants’ level of experience with robots. Only four
studies (7.7%) evaluated both experienced and inexperienced
participants (Hamacher, 2015; Hamacher et al., 2016; Rossi et al.,
2017a; Lucas et al., 2018).

Robotic Systems
A wide variety of robotic systems are used to study human
centered failure handling. NAO was by far the most commonly
used robot (Gehle et al., 2015; Giuliani et al., 2015; Gompei
and Umemuro, 2015; Mirnig et al., 2015, 2017; Engelhardt and
Hansson, 2017; van der Woerdt and Haselager, 2017; Lucas et al.,
2018), however several other off-the-shelf solutions were used,
including BIRON (Spexard et al., 2008), Kuka youBots (Knepper
et al., 2015), iRobot ATRV-JR (Desai et al., 2012), Robovie-
mR2 (Shiomi et al., 2013), Snackbot (Lee et al., 2010), and
Baxter (Adubor et al., 2017; Sarkar et al., 2017). Several systems
were custom made for the purpose of the research (Yasuda and
Matsumoto, 2013; Lohan et al., 2014; Lemaignan et al., 2015;
Mubin and Bartneck, 2015). About half of the 52 studies used
humanoid robots [robots that possess some human-like features
(Walters et al., 2008)], and half used mechanoid robots [robots
that are machine-like in appearance (Walters et al., 2008)].

Environment
Experimental evaluations were mostly done indoors, with single-
persons (86%). Only one study evaluated robotic failures in
outdoor environments (Giuliani et al., 2015), and five of the
studies evaluated robotic failures indoors when more than one
person was present (Kim and Hinds, 2006; Rosenthal et al., 2012;
Gehle et al., 2015; Lemaignan et al., 2015; Bajones et al., 2016).
With the exception of Cassenti (2007), which proposed a strategy
for helping users recover from errors after prolonged time in
which no interaction with the robot was made, all of the studies
focused on errors that occurred during interaction with the robot.

A UNIFIED INFORMATION PROCESSING
MODEL FOR USER CENTERED FAILURE
HANDLING

In order to develop interactions that enable untrained users to
easily identify and solve failures, it is critical to consider cognitive
factors that influence the ability to perceive and act upon a
robotic failure. Interacting with a robot in a moment of failure
is inherently an information-processing task—the user must
perceive information from the robot and environment, process
it to identify if an error has occurred, recall what can be done to
fix it or enter a command to obtain additional information, select

and then execute responses based on that information. Thus,
for failure-handling management tools to be easy to use, the
human-robot interface must be designed to meet the information
processing capabilities of users.

There are many theories regarding how people process
information (e.g., McClelland, 1979; Card et al., 1983, 1986;
Miller, 1988; Kieras and Meyer, 1997). One information-
processing model that seems particular relevant is the
Communication-Human Information Processing (C-HIP)
Model (Wogalter, 2006a), which describes the way people
process warnings. In situations of failure, indicators from the
robot, user and environment can be viewed as warnings of the
robot’s degraded state of ability. The model includes three main
parts: (1) sending the warning, (2) processing it by the receiver,
and (3) acting. The parts are described using nine stages that
must be completed for people to be compliant with a warning.
A bottleneck at any given stage can impede on processing at
subsequent stages, and feedback from later stages and additional
sources (such as environmental and personal attributes of the
receiver) can affect processing in earlier stages.

After reviewing the cognitive considerations that influence
people’s ability to detect and solve robot failures, as well as the
current literature in failure handling in HRIs, we developed an
information processing model called the Robot Failure Human
Information Processing (RF-HIP) Model, modeled after C-HIP
(Wogalter, 2006a), to describe the way people perceive, process,
and act on failures in human robot interactions (Figure 3). By
providing the stages of information processing and factors that
influence them, RF-HIP can be used as a tool to systematize
the assessment process involved in determining why a particular
approach of handling failure is successful or unsuccessful in
order to facilitate better design. The model, which will be used
to guide the presentation of the relevant literature, includes
three main parts: (1) communicating failures, (2) perception
and comprehension of failures, and (3) solving failures. Each
part contains several stages, all heavily influenced by contextual
considerations (the source, task, receiver, environment and other
agents) and mitigation strategies. The model differs from C-
HIP in three primary ways: (1) there is a separate stage for
decision making, (2) it accounts for unplanned failure indicators
(symptoms) and for subconscious behavior, and (3) it highlights
the bilateral relationship between all stages of information
processing, contextual factors and mitigation strategies. The
components of the model are discussed in the following sections.

Source
The source is the transmitter of symptoms indicative of a failure.
The source of failure is typically the robot, however it could
also be the user or other humans in the environment (e.g., in
case of human error or when a person produces behavioral
responses to robot failure). In situations where a symptom is
identified by the source, the source must determine whether it
can handle it on its own by ignoring or eliminating the problem,
or whether it needs to produce a warning of the symptom to
others. If the failure is technical, there are several automatic
methods that can be used to detect the error (e.g., Murphy
and Hershberger, 1999; Canham et al., 2003) and automatically

Frontiers in Psychology | www.frontiersin.org 7 June 2018 | Volume 9 | Article 861

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Honig and Oron-Gilad Failures in HRI

FIGURE 3 | The RF-HIP Model.

determine the appropriate recovery method, without involving
human assistance (e.g., Murphy andHershberger, 1999;Mendoza
et al., 2015). Several methods also exist to predict and resolve
human error in HCI that could be applied to robots (e.g., Embrey,
1986; Baber and Stanton, 1994). Sometimes the symptom is itself
a type of warning that is outwardly projected (e.g., the robot’s
wheel falling off), so the receiver perceives it without the source
actively deciding on how to communicate the failure. In such
cases, the source may not always be aware of the symptom (e.g., a
robot may not be aware when it deviates from social norms).

Warnings can be direct or indirect: a direct warning occurs
when the person is directly exposed to the symptom or to
a warning from the source, whereas an indirect warning is
received in other ways (e.g., learning about the problem from a
family member). Various characteristics of the source influence
perceived beliefs, credibility, and relevance of symptoms and
warnings (Wogalter, 2006a).

Communicating Failures
Channel
The channel is the medium and modality which the source uses
to transmit information regarding a failure to receivers. While
some robot failures can be detected through changes in the
robot’s behavior or posture (e.g., Takayama et al., 2011; Kwon
et al., 2018), changes in the robot’s physicality (e.g., a wheel
falling off), or changes in the user’s behavior (see section Act),
other issues (e.g., missing data) produce no obvious symptoms.
Moreover, overt changes in robotic behavior may remain
undetected by users as a result of poor situation awareness,
inexperience with the robot, or lack of supervision (Brooks,
2017). Consequently, various methods have been suggested to
intentionally communicate failures and their causes to users
and bystanders of robotic systems when possible. If the source
identifies a need for a direct warning, it must determine how
the relevant agents should be warned. Depending on the source,
different channels of communication and delivery methods will
be possible.

Visual indicators on robot
Brooks (2017) investigated the use of standardized icons
displayed on the body of a robot as a method of conveying
information about an autonomous robot’s internal system state.
Specifically, they attempted to convey information about whether
the robot is safe to be around and whether it is working
properly using five target messages (ok, help, off, safe, and
dangerous). Results indicated that icons are a viable method
for communicating system state information to untrained
bystanders.

Other types of on-robot visual indicators have also been used
to indicate robotic errors. One approach is using light (or lack
of it)—the Neato robotic vacuum cleaners display an amber light
around the main button when it cannot start cleaning1; Baraka
et al. (2016) used flashing red lights to indicate path obstructions;
and Robinette et al. (2016) turned off the robot’s lights to indicate
inoperability. Another commonmethod is using on-robot screen
displays. In Sarkar et al. (2017), Baxter’s screen showed a sad
smiley face with explanatory text whenever an error was made.
Similarly, Jibo2 (a personal assistant robot) shows an error code
and message on its screen whenever there is an issue3.

The primary advantage of using visual indicators on the robot
to display failure states is that their placement allows the message
to be communicated not only to the robot operator but also to
bystanders without any mediating artifacts. Another advantage
is that insights and design principles from human factors and
HCI literature (e.g., Nielsen, 2001;Wogalter and, 2006c; Egelman
et al., 2009; Bauer et al., 2013) could be used as inspiration. There
are, however, disadvantages to using visual indicators on the
robot. For one, visual indicators on the robot can only influence
people who are actively looking and paying attention to the robot.

1“Status Lights,” Neato Robotics (2017). Available online at: https://support.

neatorobotics.com/hc/en-us/articles/225370027-Status-Lights (Accessed

December 14, 2017).
2“Hey! I’m Jibo.” Available online at: https://www.jibo.com/. [Accessed: 14-Dec-

2017].
3“Jibo - Error messages.” Available online at: https://support.jibo.com/jibo/

articles/en_US/FAQ/error-messages. [Accessed: 14-Dec-2017].
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Remote operators and people performing multiple tasks may
not notice the indicators in time to act upon them, which is
particularly important in failure situations. Second, the message
could at times be occluded, depending on the robot’s speed and
posture relative to the human observer. Third, icons and status
lights can effectively convey only simple messaging that represent
distinct alternative states of the robot. Screens on the robot can
communicatemore complex information, however it requires the
user to physically come close to the robot, which may not always
be safe for certain types of failure. Lastly, the public nature of
such indicators may not always be socially appropriate—people
may feel uncomfortable having others know about certain errors
taking place. For example, a robot unable to track the users’ legs
because they are too wide or narrow relative to its expectations
may cause embarrassment.

Secondary screens
Another method of communicating a robot’s failure state is by
using a secondary screen (such as a smartphone) to provide
additional information about the robot. This strategy is one of the
most popular in today’s commercial robots (e.g., Kuri4, iRobot
Home Robots5, Neato Robotics6) and has several advantages:
(1) it enables users to interact with the robot using familiar
methods of interaction, (2) complex information can be more
easily conveyed on-screen, and (3) status information can be
accessed remotely and covertly. The main disadvantage of this
method is that it inherently shifts the user’s eyes and attention
away from the robot and from the tasks they are performing,
which hinders situation-awareness and could be dangerous in
threatening situations. Cassenti (2007) proposed presenting a
video replay strategy using a secondary screen to quickly provide
situation awareness after prolonged times of robot neglect.

Audio and speech
Our ability to localize acoustic sources and apply selective
attention to one acoustic stream out of many, even at a
distance, makes the audio modality popular for communicating
failures. As such, many mobile robots use audio and speech
to communicate robotic failures. Some use simple audio tones
to gather user attention (e.g., Brooks, 2017), whereas others
communicate failure using more complicated speech, such as
Jibo2 and the robot in Schütte et al. (2017). Cha et al. (2015)
found that people perceived robots speaking conversationally as
more capable than those that could only maintain a functional
level of speech. However, this changed when the robot made
an error—after an error, robots with conversational speech were
perceived as less capable than those with functional speech.
This effect is similar to equivalent research in HCI (Weinstock
et al., 2012) that found that when a visually aesthetic user
interface errors, the error lowers perceptions of satisfaction,
human automation cooperation and trust more than when a non-
visually aesthetic interface errors. Several researchers suggest to

4Life with Kuri (2017). Available online at: https://www.heykuri.com/living-with-

a-personal-robot (Accessed December 13, 2017)
5iRobot Home Robots (2018). Available online at: http://www.irobot.com/

(Accessed January 06, 2018).
6Neato Robotics. Available online at: https://www.neatorobotics.com/ (Accessed

January 01, 2018).

use verbal communication cautiously since dialogue can lead to
biased perceptions of the robot’s capabilities (Fong et al., 2003;
Cha et al., 2015). Simpler audio signals can be used to signal the
existance of a problem, however, they cannot effectively explain
the cause of error.

Modality comparisons
Very few studies assessed the benefits of different modalities for
communicating failures in HRIs. Cha et al. (2016) evaluated a
robot which utilized both light and sound of varying levels of
urgency to request help from bystanders when it experienced
difficulty. Results indicated that participants interpreted light
and sound signals differently: sound alerted the user that the
robot needed help and the light indicated the level of urgency
of the help request. Moreover, participants preferred a more
attention-grabbing signal when the urgency of the request
was high, and when the urgency of the request was lower,
they preferred the robot to take into account the participant’s
level of availability by utilizing greetings and being more
polite.

Brooks (2017) compared between a designated smartphone
application and a light-and-button based interface in their ability
to help inexperienced users better detect and solve failures while
performing a secondary task. Unlike the previous example, which
used an indicator to help users detect robot requests, this example
focused also on its ability to help users solve errors. Results
indicated that participants were able to obtain information about
the robots, identify solutions to problems and allocate their time
more appropriately using the app.

Further studies from the warning literature provide insight
regarding how to create comprehensible warnings. Warnings
presented in more than one modality generally facilitate better
comprehension than those presented in a single modality
(Wogalter, 2006a). While there is conflicting evidence of whether
written text or speech are better for comprehending language-
based warnings (Mayer, 2002; Wogalter, 2006b), reading
language allows people to review the material and tends to
be faster, so it may be more appropriate for long or complex
messages. In contrast, shorter, less complex messages have a
greater impact when presented auditorily than visually, and
are generally better for switching attention (Wogalter, 2006a).
A short auditory warning that directs the users’ attention to
more detailed information could be used to capture attention
while facilitating the processing of more complex information
(Wogalter, 2006a).

Perception and Comprehension of Failures
Attention Switch and Maintenance
For a failure event to influence user behavior, attention must be
switched to it for the user to perceive the information (Wogalter,
2006a). Moreover, attention must be maintained by users to
perform desired behaviors properly and avoid certain types of
human errors, such as slips (Reason, 1990). The conditions
under which a person shifts their attention can be used to
guide the design of robotic failure indicators. Sudden changes in
the environment [e.g., change in luminance (Theeuwes, 1995),
motion onset (Abrams and Christ, 2003), and abrupt appearance
or disappearance of stimuli (Pratt and McAuliffe, 2001)] or the
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robot’s behavior (Okada et al., 2003; Sato et al., 2007) could
be used to quickly and involuntarily shift people’s attention to
urgent failure situations or to cue users to attend to information
elsewhere. These involuntary shifts of attention tend to be brief
(Buschman and Miller, 2010), and are dependent upon users’
expectations (Posner et al., 1978; Folk et al., 1992). In contrast,
long term exposure to a warning could make it unable to
attract attention at later times (“inhibition of return”; Posner and
Cohen, 1984; Klein, 2000), so the use of permanent cues must be
considered carefully.

Voluntary shifts of attention can be sustained for longer
periods of time (Welsh et al., 2009) and can result from a wider
variety of stimuli (Sears and Jacko, 2009), allowing more freedom
in the design of failure indicators. Various factors affect people’s
ability to identify and attend to a specific stimulus, including
the degree of similarity to other items in the environment (von
Grünau et al., 1994; Gorbunova, 2017), interest (Renninger and
Wozniak, 1985), temporal and physical location of warnings
(Frantz and Rhoades, 1993; Wogalter et al., 1995), the task
(Welsh et al., 2009), age (Yamaguchi et al., 1995), and practice
(Feinstein et al., 1994). This emphasizes the importance of taking
contextual factors into consideration when designing warnings
for failure. Fischer et al. (2014) found that verbal greetings
attracted attention better than simpler audio signals, but they did
not improve the likelihood of the person to perform the robot’s
request.

The design of a warning should be guided by the response
required from the user (stimuli-response compatibility; Sears and
Jacko, 2009). For example, reaction time is lower when people
are asked to respond vocally to an auditory stimulus or with
motion to a spatial attribute (Wang and Proctor, 1996). Spatial
correspondence (Fitts and Seeger, 1953; Fitts and Deininger,
1954; Reeve and Proctor, 1990), similarity (Kornblum et al.,
1990), and logical relations (rules) (Duncan, 1978) between the
stimulus and response sets have all been shown to improve
stimulus-response compatibility. Since it is not always clear in
which circumstances compatibility effects are going to occur
(Proctor and Vu, 2009), designers need to repeatedly test
warnings on users, particularly for urgent failures.

A robot’s warning can be noticed yet fail to maintain attention
long enough for the user to extract meaning from it (Wogalter,
2006a). The required duration of attention maintenance has
been shown to rely on the channel of communication as well as
on the complexity and form of the content (Wogalter, 2006a).
Generally speaking, if a warning contains too much information,
is too hard to read, or the relevance of the information is
low or unclear, people may decide it is too much effort,
lose interest and direct their attention elsewhere (Wogalter,
2006a). Moreover, as felt involvement with product information
increases, consumers have been shown to spend more time
attending to the information (Celsi and Olson, 1988). Combining
pictures with written or spoken text has been shown to increase
attention to information in comparison to text alone (Houts et al.,
2006). Visual warnings with organized information groupings
and generous white space are more likely to hold attention
than a single block of text (Wogalter and Vigilante, 2006). The
use of humor has also been shown as an effective way to gain

and maintain attention (Weinberger and Gulas, 1992). These
strategies could be used in the design of warnings to promote
compliance.

Comprehension and Memory
Users must be able to understand the meaning of a failing robot’s
symptoms or the warning it provides to understand what the
failure is and how to react. During the comprehension process,
incoming perceptual inputs that have passed attentional filters
are connected to past experiences or knowledge to construct an
understanding of the event (Harris et al., 2006). This continuing
interaction of comprehension and memory is important to
understanding what may influence a person’s ability to relate
erroneous behavior to “normal” robotic behavior, to comprehend
the meaning of a failure indicator and to resolve robotic failures.

Characteristics of memory have several implications for
robotic failure situations. While people can remember large
amounts of information over their lifetime, only a small portion
is available to them at any given time for processing (Bettman,
1979; Lang, 2000). As a result, memories and knowledge may not
become available without an external cue (Wogalter, 2006a), and
those that are readily available may quickly become unavailable
due to interference or decay (Proctor and Vu, 2009). This
emphasizes the importance of considering external factors, such
as user tasks and bystanders, and of providing informative cues
to help the user recall and resolve a failure.

In failure-handling situations, recall and comprehension of
relevant information (warnings, robotic commands, and possible
solutions) could be made easier by exploring influential factors.
Studies indicate that it is easier to recall information that is
visual (Paivio and Csapo, 1973), concrete (Butter, 1970; Sheehan
and Antrobus, 1972), repeated (Kintsch et al., 1975), specific
(Mani and Johnson-Laird, 1982), personal (Van Lancker, 1991),
novel (Kishiyama and Yonelinas, 2003), typical (Reeve and
Aggleton, 1998), humorous (Schmidt, 1994; Summerfelt et al.,
2010; Carlson, 2011) and self-generated (Wheeler and Gabbert,
2017). The likelihood a retrieval cue leads to recollection depends
on the similarity between the features encoded initially and those
provided by the retrieval cue, distinguishability from other cues,
and associationwith the newly learned information (Wheeler and
Gabbert, 2017). Storing information to memory seems to depend
on deep processing of the meaning of new material, determined
by the degree to which one understands the information to
form meaningful associations and elaborations with existing
knowledge (Bower, 2000), as well as on arousal (Butter, 1970)
and individual differences (Verhaeghen andMarcoen, 1996) [e.g.,
age (Anderson et al., 2000), mood (Bower et al., 1978)]. Various
techniques have been developed to improve recall and storage
from and to memory (e.g., Bower, 1970a,b; Ritchie and Karge,
1996; Gobet et al., 2001). Such techniques could be used by robot
designers to help select appropriate cues that help users recall
information that is relevant to the failure.

Comprehension has been shown to be influenced by
background knowledge (Tannenbaum et al., 2006), wording
(Kintsch et al., 1975), typographic design (Frase and Schwartz,
1979), personality (Sadeghi et al., 2012), felt involvement (Celsi
and Olson, 1988), motivation (Sideridis et al., 2006), expectations
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(Haberlandt, 1982), training (Dewitz et al., 1987), experience
(Macias, 2003), level of automation (Carmody and Gluckman,
1993), interface design (Canham and Hegarty, 2010), workload
(Perry et al., 2008) and stress level (Perry et al., 2008). One
common way to classify a person’s level of comprehension is
by evaluating their Situation Awareness (SA) (Endsley, 1988).
Drury et al. (2003) defined components of situation awareness
that are relevant to HRI: (1) awareness of the locations, identities,
activities, states, and surroundings of the robot and fellow human
collaborators, (2) awareness of the robot’s knowledge of the
human’s commands and any human constraints, (3) awareness
of the knowledge that the robots have of the activities and plans
of other robots, and (4) awareness of the overall goals of the
joint human-robot activities and progress toward the goal. They
then related these types of awareness to critical incidents at
an urban search and rescue competition in which the operator
or robot encountered a problem, and found that all critical
incidents resulted from awareness violations (Drury et al., 2003).
Techniques that improve situation awareness could be used by
robot designers to help prevent various types of failures.

Beliefs and Attitudes
At this stage of processing, the comprehended information
merges with existing beliefs and attitudes. A mental model
can be a useful concept for understanding this process. As
the user interacts with the robot, they receive feedback from
the system and the environment that allows them to develop
a representation (a mental model) of how they believe the
system behaves for a given task. These representations lead
to expectations, which in turn direct perception and behavior
(Stanton, 2009). Studies in the field of HCI found that users
infer models that are consistent with their experiences, even
when there is lack of evidence that supports their assumptions
(Payne, 2009). Moreover, instead of developing unified models,
they develop separate beliefs about parts of the system, processes,
or behaviors that are not necessarily complementary (Payne,
1991). While incorrect mental models can lead to difficulties
in problem solving, the use of appropriate mental models can
help people learn, remember and execute procedures faster
(Kieras and Bovair, 1984). Mental models can also explain
human errors: if action is directed by mental models, then the
selection of inappropriate models or erroneous activation of
appropriate models will lead to errors (Norman, 1981). Designers
can increase the usability of a robotic interface for handling
failures using metaphors that promote the use of applicable
mental models and by correcting inappropriate mental models
through feedback.

In the HRI literature, mistakes made by robots influence
how the robot is perceived. Failures reduce robots’ perceived
sincerity (Gompei and Umemuro, 2015), competence (Cha
et al., 2015; Salem et al., 2015; Ragni et al., 2016), reliability
(Salem et al., 2015; Ragni et al., 2016), understandability (Salem
et al., 2015), trustworthiness (De Visser and Parasuraman,
2011; Desai et al., 2013; Salem et al., 2015; Law et al., 2017),
intelligence (Takayama et al., 2011; Bajones et al., 2016; Ragni
et al., 2016), and likeability (Bajones et al., 2016; Mirnig
et al., 2017), and increase perceived familiarity (Gompei and

Umemuro, 2015). In Kahn et al. (2012), participants who
interacted with a humanoid robot that incorrectly assessed
their performance perceived the robot as having emotional and
social attributes. Research is inconclusive regarding the effect
of failures on the robot’s perceived anthropomorphism. Salem
et al. (2013) found that errors made robots seem more human,
whereas Salem et al. (2015) found that it made robots seem
less human. Mirnig et al. (2017), in contrast, did not find
differences in people’s ratings of the robot’s anthropomorphism
and perceived intelligence. These differences may be a result of
the different robots used, or the different interaction contexts
(task, environment).

User perceptions of the robot in a failure situation seem to
be influenced by a number of factors. In contrast to Salem et al.
(2015), which found that failure reduced perceived reliability,
technical competence, understandability, and trustworthiness of
a home-care assistant robot, the manufacturing robot in Sarkar
et al. (2017) was perceived in a similar manner regardless whether
it was faulty or not. According to Sarkar et al. (2017), these
differences may stem from the type of failures (Sarkar et al.,
2017 involved subtle interaction failures, whereas Salem et al.,
2015 produced physical failures with potentially irreversible
consequences), or the nature of the experimental task (the
industrial context in Sarkar et al., 2017 compared to a more
“social” setting in Salem et al., 2015). Rossi et al. (2017a)
found that errors with severe consequences lead to greater loss
of trust in the robot. Furthermore, user perceptions of the
robot in a failure situation may depend on attribution of the
cause of failure—in an online survey (van der Woerdt and
Haselager, 2017), participants were shown a video portraying
a NAO robot failing a task either due to lack of ability or
lack of effort. In case of failure, participants attributed more
agency to the robot that displayed lack of effort compared to
videos in which it displayed lack of ability. The timing of failure
also seems to influence how the failure affects perceptions of
the robot. Gompei and Umemuro (2015) investigated the effect
of a failure’s timing: when the robot made speech errors on
the first day of contact, the robot’s familiarity score did not
change; when the robot made its first speech error on the
second day of contact, the robots’ familiarity score moderately
improved as a result of the error. Similarly, Lucas et al. (2017,
2018) found that errors that occur later in a robot’s dialogue,
particularly after a period of good performance, reduce the
robot’s persuasiveness.

While robotic failures have been shown to reduce the
perceived trustworthiness of robots (De Visser and Parasuraman,
2011; Hancock et al., 2011; Desai et al., 2013; Salem et al., 2015;
Law et al., 2017), users’ compliance with robot instructions may
not be affected. Robinette et al. (2016, 2017) evaluated whether
people will trust and follow the directions of a faulty robot
in emergency evacuee scenarios. Results showed that the vast
majority of participants followed the instructions of the robot
despite erraneous behaviors. In line with this finding, Salem
et al. (2015) found that while the robot’s erratic behavior affected
its perceived reliability and trustworthiness, it did not impact
participants’ willingness to comply with its instructions, even
when the requests were unusual. Severity of the outcome affected
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compliance with robot requests (Salem et al., 2015). Similar
effects were found by Tokushige et al. (2017) as a result of
unexpected recommendations.

While there are some indicators that people may prefer
predictable behavior in robots (Mubin and Bartneck, 2015),
others suggest that people feel more engaged by unpredictable
behavior (Short et al., 2010; Fink et al., 2012; Lemaignan
et al., 2015; Law et al., 2017). Various studies seem to suggest
that failures can be a source of pleasurable interaction with
robots (Bainbridge et al., 2008; Yasuda and Matsumoto, 2013;
Gompei and Umemuro, 2015; Ragni et al., 2016; Mirnig
et al., 2017). In a study by Ragni et al. (2016) despite the
faulty robot being rated worse than the error-free robot,
participants reported greater enjoyment when the robot made
errors. Similarly, Mirnig et al. (2017) found that participants
liked faulty robots better than robots that interacted flawlessly.
Annotations of video data showed that gaze shifts, smiling and
laughter are typical reactions to unexpected robot behavior.
While these studies provide insight regarding reactions to
robotic failures, the non-criticality of the errors coupled with
low personal relevance to the participants may have impacted
results.

Desai et al. (2013) investigated the influence of varying
reliability on real-time trust and found that periods of low
reliability earlier during the interaction have a more negative
impact on overall trust than periods of low reliability later in
the interaction. In contrast, a preliminary study by Desai et al.
(2012) found that people trust a robot less when reliability drops
occurred late or in the middle of runs. Within the broader
human-automation literature there is certain agreement that
trust depends on the timing, consequence, and expectations
associated with failures of the automation (Lee and See,
2004).

Solving Failures
Motivation
Solving a robotic failure requires the user to be motivated to
solve the problem. Even if the users are not capable of solving
the failure themselves, they need to be motivated enough to
inform other agents of the problem (such as a caregiver or a
technician) in order for it to be addressed. While some problems
may significantly impact users, motivating them implicitly, other
failures may not be sufficient to motivate them enough to solve
the problem, particularly if the interface is hard to understand
or operate. Thus, creating successful failure-handling solutions
requires skills in motivating and persuading people. Captology,
the study of persuasive technologies is a relatively new endeavor
in HRI (see Siegel, 2008; Ham and Spahn, 2015). Research has
explored effect of a robot’s physical presence (Kidd and Breazeal,
2004; Shinozawa et al., 2005; Bainbridge et al., 2008), touch and
gesture (Shiomi et al., 2010; Ham et al., 2011; Nakagawa et al.,
2011; Chidambaram et al., 2012; Baroni et al., 2014), gazing
(Ham et al., 2011), robot and user gender (Siegel, 2008; Nakagawa
et al., 2011), vocal cues (Chidambaram et al., 2012; Baroni et al.,
2014), interpersonal distance (Siegel, 2008), reciprocity (Lee and
Liang, 2016), conversational errors (Lucas et al., 2018), agency
(Ham andMidden, 2011), and perceived autonomy (Siegel, 2008)

on persuasive effects. However, none of these studies focused
specifically on the influence of motivation in solving robotic
failures.

Robots are sometimes viewed as tools, and other times viewed
more as social actors (Breazeal, 2004). According to Fogg et al.
(2009), there is a difference in how computers can be used
to persuade, depending on whether they are viewed as a tool
or social actor. Computers as tools can persuade by providing
tailored information, triggering decision making, increasing self-
efficacy, and guiding people through a process. In contrast,
computers as social actors can persuade people by providing
social support via praise or criticism, modeling behaviors or
attitudes, and leveraging social rules (e.g., turn taking, politeness
norms, praise and reciprocity).

Decision-Making
Once individuals have perceived the failure symptoms and/or
warnings, comprehended them, formed beliefs and attitudes
regarding the situation, and gained enough motivation to solve
the issues, they must decide what can be done to solve the failure.
Most problems are well beyond the capacity of comprehension
to be solved optimally. Reaction time typically increases with
the number of stimulus-response alternatives (the Hick-Hyman
law; Hick, 1952; Hyman, 1953). Consequently, for problem
solving to be effective in a robotic failure situation, search must
be constrained to a limited number of possible solutions or
approaches (Proctor and Vu, 2009).

A common way novice users constrain search in situations of
uncertainty is to use heuristics (Tversky and Kahneman, 1974).
Research demonstrates that our judgements are based on the
subset of relevant information most accessible in memory, and
that we rarely retrieve all relevant information (Bodenhausen
and Wyer, 1987; Schwarz, 1998). One particularly common
strategy is “satisficing” (Simon, 1956), which refers to searching
through available alternatives and choosing the first that meets
some minimum acceptable threshold. Some other examples
include (but are not limited to) representativeness (Tversky
and Kahneman, 1973), availability (Tversky and Kahneman,
1973), and adjustment (Epley and Gilovich, 2006) heuristics. The
problem with using heuristics is that they often lead to cognitive
biases, which influence the quality of the decision. Many biases
in human decision making have been discovered (Croskerry,
2003) [e.g., the framing effect (Tversky and Kahneman, 1981),
confirmation bias (Nickerson, 1998), and overconfidence effect
(Dunning et al., 1990)]. Consequently, people generally make
nonoptimal decisions.

Various efforts have been made to improve and debias
decision making, which could be implemented to better
support users during robotic failure situations. Three general
approaches have been suggested and shown to produce
positive results (Morewedge et al., 2015): (1) recalibrating
incentives to reward healthy behavior, (2) optimizing how
choice options are presented and obtained, and (3) debiasing
training interventions. Small changes in presentation and
elicitation of choices are particularly effective, cheap and
easy to implement, taking many forms such as information
framing (Levin and Gaeth, 1988; Larrick and Soll, 2008)
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and default selection (Johnson and Goldstein, 2003; Chapman
et al., 2010). These recommendations, alongside additional
strategies (e.g., Croskerry, 2003), could be used to help
facilitate the design of failure-management interfaces for
robots to improve the problem-solving abilities of untrained
users.

Act
This stage of processing refers to both the execution of the
person’s decision regarding how to respond to the robotic
failure, as well as automatic behaviors that are triggered without
maintaining attention. People seem to have various predictable
behavioral responses to robotic failures that can be used by
robots to identify when a failure has occurred. Failure has been
shown to influence users’ gaze patterns (Gehle et al., 2015; Hayes
et al., 2016; Mirnig et al., 2017), facial expressions (Hayes et al.,
2016; Mirnig et al., 2017), head movements (Hayes et al., 2016;
Mirnig et al., 2017; Trung et al., 2017), body movements (Mirnig
et al., 2017; Trung et al., 2017), and verbal communication
(Gieselmann, 2006; Giuliani et al., 2015). Gieselmann (2006)
found that indicators for errors in human-robot conversation
included sudden changes of the current dialogue topic, indicating
non-understanding by asking unspecific questions, asking for
additional information and repeating the previous question.
Additional indicators used to detect errors in spoken human-
robot dialogues include people being silent, asking for help,
repeating central elements or asking the robot repeatedly for
the same information, saying things that are inconsistent with
the current discourse or with the robot’s expectations, trying
to correct a preceeding utterance, hyperarticulating speech, or
asking for something they know the robot cannot do, such as
making coffee (Gieselmann and Ostendorf, 2007).

Giuliani et al. (2015) and Mirnig et al. (2015) analyzed video
data showing social HRIs in which the robot unintentionally
made an error. Results indicated that in erraneous situations,
participants often used head movements, smiled, raised
eyebrows, and looked back and forth between the robot and
experimenter or a group member if present. Moreover, the type
of error (social norm violation or technical failure) as well as the
presence of other people seemed to impact people’s reactions
to the failure. More specifically, during social norm violations,
participants spoke more, were more likely to look back and
forth between the robot and objects in front of them and say
task-related sentences to the robot than during technical failures.
When no experimenter or person was visible, participants used
fewer non-verbal social signals (e.g., smiling, nodding, and head
shaking), and more often shifted their gaze between the robot’s
hand, the robot’s head, and other objects in front of them than
when the experimenter was visible, or when interacting in groups
with the robot. The presence and response speed of these social
signals were dependent on the type of error made and the type of
task the robot was performing.

There is also reason to believe that the modality of
the failure influences people’s reactions. Short et al. (2010)
investigated people’s reactions to playing rock–paper–scissors
with a humanoid robot that either played fair, cheated through
action by changing the selected hand gesture or cheated verbally

by declaring a different hand gesture than the one used.
Results indicated that participants showed more verbal social
signals to the robot that cheated. Interestingly, verbal cheating
was perceived as malfunctions, often leading to reactions of
confusion, whereas cheating through action was perceived as
deliberate cheating, leading to more exaggerated reactions,
showing surprise, amusement, and occasionally anger.

Contextual Factors
Receiver
The receiver is the person(s) or target audience whom witness
the warning or symptom, typically the user. Personal attributes
of robot users have been shown to affect all stages of
information processing, and in turn, the stage of information
processing influences the users’ experiences and behaviors.
Contributing factors surveyed include the user’s attitudes and
beliefs, interest, practice and training, experience, background
knowledge, workload, stress level, situation awareness, mental
model, and gender.

Environment and Other Agents
External stimuli from the environment compete for the
receiver’s limited attention and comprehension resources,
limiting information processing. For instance, a friend saying
“Hi” when the robot is trying to indicate that the motors stopped
working could prevent the user from attending to a visual
warning. A noisy environment may cause the user not to hear
the robot’s low battery beep, or not to be able to concentrate
enough to lead it back to its charger. In some cases, this could
be an advantage: social norm violations, for instance, could be
missed and therefore not negatively influence the interaction. The
individual may act on the environment and change it, so there is
a bilateral relationship between the environment and the stages
of information processing. In situations where the user does not
have the know-how, ability or the tools to fix the problem, the
involvement of other agents may be necessary to solve the failure.

Task
Task refers to attributes of either the robot’s task, the person’s
task, or a joint task to be completed together. From the literature,
it is evident that the task a person is performing can compete
for their limited attention and comprehension resources and
by doing so, impact the stages of information processing. In
turn, cognitive resources devoted to the failure have an impact
on the task: an increase in automation during failure condition
reduces operator performance (the “lumberjack analogy”; Sebok
and Wickens, 2017). Several studies seem to indicate that task
performance is significantly influenced by robotic failures. In
Ragni et al. (2016), participants competed against a robot in
reasoning and memory tasks where the robot either performed
with or without errors. Results indicated that task performance
was significantly lower in the faulty robot condition. Similarly,
in Desai et al. (2012), drops in reliability were shown to
affect participants’ self-assessments of performance. Salem et al.
(2013) evaluated whether participants who were presented with
incongruent multimodal instructions by the robot performed
worse at their task than those who were presented with unimodal
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or congruent multimodal information by the robot and found
that incongruent coverbal gesturing reduced task performance.
One contrasting account is the manufacturing scenario described
in Sarkar et al. (2017), where a physical object was assembled
and then disassembled under regular and error conditions. In
this scenario, faults did not affect the successful completion of a
manufacturing task. The authors proposed that these results may
be because the types of failures they implemented (missing an
action and/or giving the wrong instructions) did not impede the
possibility of a successful manufacturing outcome.

Mitigation Strategies
Various mitigation strategies can be attempted both by the user
and robot in order to prevent and handle the negative influences
of failure. Mitigation strategies could be applied in any stage
of information processing. The stage of processing, in turn,
affects the effectiveness of the mitigation strategy applied. The
following sections discuss the various strategies that have been
implemented to mitigate the negative effects of failure in HRI.

Setting Expectations
Giving the user advance notice regarding potential failures
influences how they respond to subsequent failures. This is
consistent with studies that found that robotic errors have a
stronger negative effect after a period of good performance (Lucas
et al., 2018). One online study by Lee et al. (2010) found that
setting expectations by forewarning participants of the abilities of
the robot improved evaluations of the robot and judgments of the
quality of the service. Providing options helped increase people’s
willingness to use the robotic service again after failure, however
was not particularly effective in improving perceptions of the
robot (Lee et al., 2010). Additional studies found that providing
confidence feedback on the robot’s performance encourages
better control allocation without affecting user trust (Desai et al.,
2013; Kaniarasu et al., 2013).

Communicating Properly
Several researchers have evaluated the impact of politeness
strategies, such as apologizing (Lee et al., 2010; Peltason
and Wrede, 2011) or expressing regret (Hamacher, 2015), on
human-robot error interactions. When robots employ these
strategies, perceptions of robots and responses to disagreement
are improved (Takayama et al., 2009; Torrey, 2009). In Hamacher
et al. (2016) apologizing, expressing regret and expressing
reparation lead to similar trust ratings as a non-failing robot.

Various repair strategies have been used to help robots
gracefully recover from verbal misunderstandings and speech
errors (Gieselmann, 2006). Achievement strategies involve
explaining the meaning of an utterance, e.g., paraphrasing,
restructuring the sentence, repetition, and asking for help.
Functional reduction strategies involve replacing the original
intention by a different, simpler one, for instance, telling the
robot to go to the kitchen instead of telling it to pick up the
cup in the kitchen. Formal reduction strategies involve simplifying
the grammar or the vocabulary used, and ratification involves
confirming or repeating the last utterancemade (e.g., “yes, I asked
you to press the green button”). Gieselmann (2006) evaluated the

use of these strategies in a domestic HRI scenario, and found that
the most common error recovery strategies were achievement
strategies and functional reduction strategies.

There is little research evaluating what information should be
communicated to help users cope with robotic failure situations.
One research study (Cameron et al., 2016a) proposed a method
to evaluate whether a robot should respond to an error with
(1) simple instructions for the user to follow (e.g., “Follow
me back to the lift”); (2) competency-oriented statements that
emphasize the robot’s abilities, the current situation, and goal
(e.g., “That sign said we are on C floor and we need to go to
B floor. Follow me back to the lift”); (3) inclusion of apology-
oriented statements that emphasize attempts to relate to users
but do not indicate competency (e.g., “Sorry about the error;
we all make mistakes sometimes. Follow me back to the lift”);
or (4) inclusion of both the competency- and apology-oriented
statements. However, to the best of our knowledge, the results
of this experiment have yet to be published. Other studies
proposed communicating the cause of error with varying degrees
of success. One experiment found that having the robot place
blame for a failure reduced user trust (Kaniarasu and Steinfeld,
2014). Another study found that attributing blame to the user
led people to feel less comfortable with the robot, perceiving
it as less friendly and competent, even when the person was
likely aware that they were the source of problem (Groom et al.,
2010). Kim and Hinds (2006) found that providing the cause
of failure could facilitate more accurate blame-attribution as
long as the robots’ explanation correlated to the background
knowledge of participants. If not, providing the cause decreased
people’s perceived understanding of the system. Kwon et al.
(2018) proposed expressing physical limitations throughmotions
that communicate what the robot attempted to accomplish and
why it was unable to accomplish it. The use of these motions
was found to increase positive evaluations of the robot and
willingness to collaborate.

It also seems to be important for the robot to produce
appropriate verbal and non-verbal responses to an error.
One study evaluated how a robot’s gaze behavior (no gaze,
looking at the other, looking down, and looking away) during
mistakes change people’s impressions (Shiomi et al., 2013).
Experimental results showed that “looking at the other”
outperformed different gaze behaviors, communicating degrees
of perceived apologetics and friendliness and providing more
reflection. Takayama et al. (2011) found that showing a goal-
oriented reaction to a task outcome (i.e., disappointment in
response to failure and happiness in response to success)
made the robot appear smarter than when it did not react,
regardless of whether the robot succeeded or failed in the task.
Hamacher et al. (2016) found that demonstrating appropriate
emotions and awareness of error (e.g., regret or enthusiasm)
significantly tempers dissatisfaction with a robot’s erroneous
behavior and improves trust. Gieselmann (2006) evaluated
user reactions to different robot error indicators and found
that people preferred the robot asking a specific question
to obtain additional information when it didn’t understand
their utterance. Indicating non-understanding with unspecific
questions left users confused, since they did not know what the
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robot did not understand, hindering their ability to solve the
error.

Asking for Help
Several researchers proposed having robots request help from a
human partner when they encounter an error (Ross et al., 2004;
Hüttenrauch and Severinson-Eklundh, 2006; Rosenthal et al.,
2012; Yasuda andMatsumoto, 2013; Knepper et al., 2015; Bajones
et al., 2016). This strategy is computationally less expensive
than re-planning, however it is not always applicable (e.g., when
the people around do not have the ability or knowledge to
help the robot solve the problem). In situations where it is
applicable, asking for help can lead to negative experiences
(e.g., Mutlu and Forlizzi, 2008) and can be very expensive in
terms of monitoring time and cognitive load (Rosenthal et al.,
2012). In such cases, it seems the way the robot asks for help
matters. Knepper et al. (2015) developed a system that allows
a robot to specify the kind of help that is needed in a way
that removes as much ambiguity as possible. Users reported
that they felt the system was more effective at communicating
needs than other tested methods; preferring the precise requests
over general phrasings. Moreover, the system improved the
subjective evaluation of the robot and the speed and accuracy
of human intervention when the robot experienced a problem.
Maintaining polite communication also seems to matter: Yasuda
andMatsumoto (2013) experimented with a robotic trashcan that
spilled garbage, asked a person to pick up the trash for it and
then “bowed” in appreciation. Most people found the experience
to be positive, despite the spilled garbage and request for help.
Another study found that participants who saw the robot stating
its limitations before asking for help reported liking the robot
more than those who saw control statements (Cameron et al.,
2016b).

Rosenthal et al. (2012) sought to understand the willingness
and availability of occupants to help a service robot. In their
study, a robot visited different offices at different times of day,
with different types of requests, and recorded willingness to
provide help and the duration of that help. Participants were
equally willing to help with all types of requests. Interestingly,
willingness to help was not affected by the length of time
the question took to answer nor the incentives the occupants
received. In a related study, Srinivasan and Takayama (2016)
evaluated factors that influence people’s behavioral willingness
to help a robot, finding that it depends on the robot’s social
role (peer or assistant), familiarity (new vs. 10 years experience),
level of autonomy (autonomous or teleoperated), politeness
strategy (direct request, positive politeness, negative politeness,
or indirect request), and size of request (small or large). More
specifically, people were more willing to help a peer robot that
made smaller requests (i.e. that require less effort to fulfill), was
more familiar, and used a positive politeness strategy (attended
to the listener’s wants, conveyed liking, and made the listener
feel good about themselves). Moreover, Participants were nearly
50% quicker to help the robot when they believed that it was
behaving autonomously rather than being teleoperated by a
person.

The aforementioned work largely deals with preventing
failures related to limited capabilities or missing information
by proactively requesting help. However, some failures cannot
be foreseen in advance and may not be included in the robot’s
planner (i.e., Black Swans; Sebok and Wickens, 2017). Bajones
et al. (2016) performed a multi-user Wizard-of-Oz experiment
in which they asked participants to help a malfunctioning robot
restore the interaction flow after an error occurred. Results
indicated that all 38 participants were willing to help the robot
with repeated failure situations, regardless of the role they were
given in the interaction (“director” or “builder”). Moreover, they
found that the personwho gave the last commandwasmore likely
to help, followed by the person who was closer. Malfunctions
that could be actively fixed by the participants did not
negatively impact perceived intelligence and likability ratings of
the robot.

Mix and Match
Researchers have combined mitigation strategies in order to
increase their effect. Spexard et al. (2008) implemented a model
that decided on the best strategy based on the initiative taker and
the solution provider of an error. Hardware defects caused the
robot to inform the user of the reason why it could not move and
ask for help, mode confusion or the robot behaving unexpectedly
caused it to prompt the user to reset the system, software failures
caused the robot to inform the user about the break-down,
asking them to contact a technician. Using these help strategies,
all participants successfully coped with the problem without
external help.

There is very little work on comparing different failure
recovery strategies. One exception is Lee et al. (2010), which
investigated people’s reactions to different recovery methods
(apologies, compensation, and options for the user) in an online
survey. All the recovery strategies increased positive ratings of
the robot’s politeness, however, only the apology strategy was
effective in making the robot seem more competent, and in
making the participants feel closer to the robot and liking it
more. The compensation strategy wasmost effective in increasing
perception of satisfaction with the service, but less effective
than the apology and option strategies in increasing their
perceived willingness to use the service again. The results also
suggest that tailoring the recovery strategy to people’s orientation
to services is important—people with a relational orientation
responded particularly well to an apology whereas those with a
more utilitarian orientation responded better to compensation.
Moreover, apologies were shown to be better for people who
treated the robot more like an agent, while compensation was
better for people who treating it like a tool. Another study that
investigated different failure recovery strategies is Engelhardt and
Hansson (2017), which compared between: “ignore” (the robot
ignores that a failure has occurred and moves on with the task),
“apology” (the robot apologizes for failing and moves on) and
“problem solving” (the robot tries to solve the problem with the
help of the human). Results showed that the apology strategy
scored the lowest on likeability and perceived intelligence, and
that the ignore strategy lead to better perceptions of perceived
intelligence and animacy. Problem-solving clearly minimized
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the negative effects of failure better than apologizing, but the
“ignore” condition often scored at least as well as problem-
solving.

Several theories have been suggested to explain successful
mitigation strategies. According to Booth (1991), whether system
errors are helpful or disruptive depends on (i) the ease with
which the user can recover from an error; and (ii) the extent
to which the system provides cues or features that productively
direct the user toward a more appropriate understanding.
In line with this theory, Brooks et al. (2016) argued that
providing human support (providing information that supports
or improves the user’s situation awareness with respect to the
failure and the status of the task being performed) or task
support (helping the user complete the task they wanted to
accomplish) will mitigate negative effects caused by failure; and
that combining the two techniques should minimize problems
without negative side effects. Moreover, they hypothesized that
recovery strategies which reduce the negative effects of a failure
will also increase the likelihood of users wanting to use the
system again. To test these hypotheses, they conducted two
between-subjects survey studies (Brooks et al., 2016). Results
indicated that human support was better correlated to whether
the information conveyed could be used by the person to
affect the outcome of the situation. Task support, as well as a
combination of task support and human support, significantly
improved people’s reaction to failure in all but one scenario.
Recovery strategies that reduced the negative effects of a failure
were shown to increase the likelihood of users to want to use the
system again.

DISCUSSION

The majority of published works on robotic failures focus
on technical aspects of making the robots more reliable. Few
studies have actively worked toward making failure-handling
user friendly, however the growing number of publications on the
topic seems to indicate an increase in interest. Successful failure-
handling strategies that enable untrained users to quickly and
easily identify and solve failures require a holistic approach to
design and development. The technical knowledge of hardware
and software must be integrated with cognitive aspects of
information processing, psychological knowledge of interaction
dynamics and domain-specific knowledge of the user, the robot,
the target application, and the environment. To achieve this,
additional research is essential. By combining insights from a
large variety of fields into a single framework, RF-HIP can
be used to guide these discussions, and provides an initial
hypothesis regarding how people might process symptoms and
warnings in situations of robotic failure. In a similar manner
to how C-HIP supports the design of new warnings and alerts,
the stages of processing could be used to help determine why
a particular approach of handling failure is successful while
another is unsuccessful; leading to informed design tools and
guidelines that facilitate the development of robot interactions
that enable untrained users to quickly and easily identify and act
upon failures.

Several gaps in the literature have become evident as a
result of this analysis. First, it seems that most efforts have
been focused on how failures influence user perceptions of the
robot and user behavior, looking primarily at cause and effect.
Little work has been done on evaluating how a robot should
communicate that an error has occurred. Almost no work has
been done to understand the underlying cognitive, psychological,
and social determinants behind these relationships and how
they may impact selection of mitigation strategies. Second, there
seems to be a great asymmetry in the types of failures being
studied and subsequent failure-handling strategies proposed:
while there is a lot of emphasis on recovery strategies to cope with
technical failures, there aren’t any strategies to cope with recovery
from human errors—equivalent to cancel or undo in HCI.
Moreover, social-environmental considerations such as the work
environment, group-level judgement, and organizational flaws
have not been taken into consideration. Third, the importance
of motivation to how people perceive, comprehend and solve
robotic failures seems to be lost in the literature—studies typically
evaluate people in unnatural settings, using tasks that are low in
personal relevance. As a result, the ecological validity of most
of the studies is low. It would be interesting to evaluate how
motivation might influence responses in a more natural setting,
when participants have a real stake in whether the robot will
succeed or fail. Fourth, the failure attributes identified (functional
severity, social severity, relevance, frequency, condition and
symptoms) have not received almost any consideration in the
HRI literature in terms of how they influence the way in which
the failure should be communicated, the HRI, and the selection
of mitigation strategies. For the most part, these attributes are
unexplored territory and require targeted assessment. Lastly,
since most studies used indoor, single-person environments, the
effects of various aspects of the environment (e.g., other agents,
weather, lighting, size of space) on perceptions of failures and
preferences of communication and mitigation strategies remain
unknown.

Another challenge the robotics community is facing in
failure-handling is benchmarking and comparability. The wide
variety of robotic implementations, evaluation environments
and measures, coupled with lack of consistency on which
implementation and evaluation details are reported in scientific
publications, make it difficult and nearly impossible to compare
subjective and objective performance metrics from different
failure-handling studies. We are unaware of any frameworks
that specify how all the contextual considerations identified in
this paper should affect robot behavior in order to produce
a pleasurable experience. Development of such frameworks
are likely going to come from comparing and combining
different implementation methods with insights from a wide
variety of user studies. A common benchmark must be crafted
for a set of robots, tasks, environments, and conditions.
Consistent subjective measures and batteries of questionnaires
along with clear quantitative evaluation measures must also
be defined.

From the literature survey it is evident that many aspects
remain to be studied in the field of user-centered failure handling,
making this an exciting time to be active in the field. The
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importance of studying cognitive considerations that critically
influence naive users’ ability to detect and solve robot failures is
evident. While the current paper proposes how failure warnings
and symptoms may be perceived by people, the specifics of the
proposed framework must be thoroughly tested and verified.
Moreover, whether the RF-HIP model can be used to predict
the impact of various forms of robot design on a users’ ability
to handle failures is still to be determined. Hopefully, this
review provides a good starting point for discussing what
needs to be done in order to develop robot interactions that
enable untrained users to quickly and easily identify and solve
failures.
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