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In behavioral research, exploring bivariate relationships between variables X and Y based

on the concept of probability-of-superiority (PS) has received increasing attention. Unlike

the conventional, linear-based bivariate relationship (e.g., Pearson’s correlation), PS

defines that X and Y can be related based on their likelihood—e.g., a student who

is above mean in SAT has 63% likelihood of achieving an above-mean college GPA.

Despite its increasing attention, the concept of PS is restricted to a simple bivariate

scenario (X-Y pair), which hinders the development and application of PS in popular

multivariate modeling such as structural equation modeling (SEM). Therefore, this study

addresses an empirical-based simulation study that explores the potential of detecting

PS-based relationship in SEM, called PS-SEM. The simulation results showed that

the proposed PS-SEM method can detect and identify PS-based when data follow

PS-based relationships, thereby providing a useful method for researchers to explore

PS-based SEM in their studies. Conclusions, implications, and future directions based

on the findings are also discussed.

Keywords: probability-of-superiority, structural equation modeling, monte carlo simulation, nonlinear modeling,

factor analysis

INTRODUCTION

Structural Equation Modeling (SEM) is one of the most widely employed statistical models in
behavioral and social sciences (Bentler, 1995; Byrne, 2011). SEM aims to identify relationships
among observed variables based on a conceptual model that involves two parts: measurement
and structural. The measurement part examines whether or not observed variables or items
(e.g., SAT) can be loaded onto the associated latent factors (i.e., reading/writing and math). The
structural part examines the extent to which these latent factors are related (e.g., reading/writing
andmath factors regressed on test takers’ intelligence). To date, SEM has been extended to complex
multivariate modeling (or generalized SEM): growth curve models, robust mean modeling, multi-
level modeling, and multi-level meta-analysis (e.g., Fan and Hancock, 2012; Cheung, 2015; Danner
et al., 2015; Kline, 2015; Newsom, 2015; Grimm et al., 2016).

In SEM, researchers often fit a model based on the linear relationships between
observed variables and latent factors (i.e., measurement part), and the relationships between
latent factors (i.e., structural part) are linear. For the measurement part, an estimated
factor loading between an observed variable and a latent factor (e.g., 0.80) assumes
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that a one unit increase in the factor is expected to produce
a 0.80-unit increase in the variable (i.e., linearity assumption).
For the structural part, an estimated regression slope between
an exogenous latent factor and an endogenous latent factor
(e.g., 0.50) also implies the linearity assumption. That is, a 1-
unit increase in the exogenous factor is expected to induce a
0.50-unit increase in the endogenous factor. Indeed, the model-
implied covariance matrix in SEM, a crucial matrix based on the
multiplications across coefficients (e.g., factor loadings, slopes,
correlations, etc.) implied by a researcher’s specified conceptual
model, also depends upon the linearity assumption among
variables.

In addition to the linear-based SEM, researchers could also
fit a nonlinear SEM, i.e., variables that are correlated based on
nonlinear relationships. Curvilinear SEM is one example that
allows researchers to examine any curvilinear (e.g., squared,
cubic) relationships between an exogenous factor and an
endogenous factor. A common approach is that researchers
can add an extra slope parameter that governs the relationship
between the squared scores of the exogenous factor and the
raw scores of the endogenous factor for detecting curvilinear
relationships (Kline, 2015).

Another type of nonlinear relationship—probability of
superiority (PS)—is an important statistical concept that
originates from a research scenario involving one categorical
variable (e.g., treatment/control) and one continuous variable
(e.g., body weight) (McGraw and Wong, 1992; Cliff, 1993;
Ruscio, 2008; Li, 2016). For example, there is 70% likelihood
that a randomly selected person has a lower body weight in
the treatment group than a randomly selected person in the
control group. There are few studies that explore PS in research
scenarios involving two continuous variables. Dunlap (1994) is
one of these studies and defines that PS measures the extent to
which a randomly chosen score is above-mean in X, the paired
Y score is also above-mean in Y. For example, “a father who is
above average in height has a 63% likelihood of having a son of
above-average height” (Dunlap, 1994, p. 510). Without exploring
the full potential of PS, Dunlap only regarded PS (πr) as simple
transformation from Pearson’s correlation (r),

πr = sin−1(r)/pi+ .5 (1)

where r is Pearson’s correlation, sin−1 is the inverse sine function
and pi is constant (3.14159), such that r (bivariate linearity)
can be translated into a metric that is more understandable and
interpretable. Note that the value of 0.5 in PS corresponds to
zero (or lack of) association between two variables (i.e., 50%
likelihood by chance). Based on Equation (1), PS (or πr) is bound
between 0 and 1 (no negative values). Recently, some studies
(e.g., Brooks et al., 2014; Li, 2016) have shown that πr is not
only restricted to enhanced interpretability than r, but it can be
extended and developed as a new modeling framework that can
detect and identify PS-based bivariate relationships. In light of
the potential of PS, a primary purpose of this study is to propose
and develop the algorithm that can detect PS-based multivariate
relationships in SEM, a popular statistical modeling in behavioral
research.

The paper is divided into 4 sections. In first section, I review
the background of PS-based bivariate relationships. In second
section, I discuss the present development of the PS algorithms
for the SEM framework, namely PS-SEM. In third section,
I describe the design and methodology of the Monte Carlo
experiment that compare and evaluate the performance of the
estimates based on the conventional linear-based SEM and PS-
SEM. In fourth section, conclusions and implications of the
findings are discussed.

BACKGROUND OF PS-BASED BIVARIATE
RELATIONSHIP

Scenario 1: One Categorical Variable and
One Continuous Variable
The statistical concept of PS can be traced back in the 1970s,
when Wolfe and Hogg (1971) first discussed the potential of PS
in behavioral research. McGraw and Wong (1992) formalized an
algorithm that can measure and quantify PS in an independent-
samples t-test data scenario. Let {Xi ∼ N

(

µi, σ
2
i

)

; i = 1, 2} be
jointly normally and independently distributed random variables
that represent the responses to two conditions. PS quantifies a
statistic that reflects PS, i.e., P(X1 > X2). In equation,

π = 8

[

(

X1 − X2

)

/

√

s21 + s22

]

, (2)

where
(

X1 − X2

)

is the mean difference between two groups, s2i
is the variance for group i = 1, 2, and 8 is the standard normal
distribution function. Stated in words, PS converts an effect into
a probability estimate, which examines whether a score sampled
at random from distribution 1 is larger than a score sampled at
random from distribution 2. A value of 0.5 indicates equivalence
between the two distributions, and a value of 1 implies perfect
superiority of one distribution over another. This PS estimate and
its derivatives are further explained and developed in behavioral,
medical, education, and social sciences in general (e.g., Ruscio,
2008; Li, 2016).

Scenario 2: Two Continuous Variables
It is common among behavioral researchers to evaluate bivariate
relationship between two continuous variables. Pearson’s
correlation r is commonly used to quantify the association
between two continuous variables. Dunlap (1994) developed
Equation (1) so that r can be translated to PS. For example, when
r = 0.40, this value can be converted to 0.631 through Equation
(1), meaning that there is 63.1% likelihood that a father who is
above-mean in height will also have a son who is also above-mean
in height. People are often more familiar and understand easier
with 63.1% likelihood than 16% of variance explained (or 16% of
variance of sons’ height is accounted for by his fathers’ height)
in this case. The improved interpretability of the PS estimates
is supported in real-world research. For example, Brooks et al.
(2014) conducted two experiments that recruited a sample of
undergraduate students in psychology to rate their level of
understandability, usefulness, and effectiveness about statistical
information, which was presented as (a) proportion of variance
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explained (or coefficient of determination; r2), (b) probability-
based common-language effect size (CLES), and (c) tabular
binomial effect size display (BESD). Participants perceived both
the CLES and BESD as significantly more understandable and
useful than the conventional r and r2.

Despite the potential of πr , Dunlap (1994) stated that the
two variables should be continuously and normally distributed,
and πr can only be applied in bivariate relationship involving
two variables, which lead to the motivation for extending and
developing the PS-based multivariate algorithm in this study.

DEVELOPMENT OF THE PS-BASED
ALGORITHMS FOR THE SEM
FRAMEWORK (PS-SEM)

Bivariate PS
Mathematically speaking, the concept of PS is beyond enhanced
understanding and interpretation stated in Dunlap (1994).
Rather, PS can be used to quantify PS-based bivariate relationship
that cannot be detected from r. Or, stated differently, when
the assumption of bivariate continuous normality is met, r is
the maximum-likelihood estimator for the linear association
between X and Y, when they are linearly related and bivariate
normal,

r =
∑n

i=1
(xi − x) ·

(

yi − y
)

/

√

∑n

i=1
(xi − x)2 ·

∑n

i=1

(

yi − y
)2
, (3)

where x =
∑n

i=1 xi/n is the mean of scores in X, and y =
∑n

i=1 yi/n is the mean of scores in Y. Possible values of r range
from −1 to +1 (i.e., perfect-negative to perfect-positive linear
correlation). Given r in (3), it can be converted to PS through
Equation (1).

As an extension, some studies (e.g., Blomqvist, 1950; Wolfe
and Hogg, 1971; Li, 2016) have already demonstrated that X
and Y can be associated based on a level of PS, and this
association does not depend upon the assumption of bivariate
normality and linearity in r. Assuming that xi follow a probability
distribution (e.g., normal, lognormal, uniform, etc.), there exists
a marginal probability distribution for Yi that is generated from
the following function (Blomqvist, 1950, Equation 2),

Yi























∼ U(µY , c), if Xi > µX and τ ≤ γ ,
∼ U(µY , c), if Xi < µX and τ > γ ,
∼ U(−c,µY ), if Xi < µX and τ ≤ γ ,
∼ U(−c,µY ), if Xi > µX and τ > γ ,
= µY , if Xi = µX ,

(4)

where c is the limit in a uniform distribution,µX is the population
mean of X, µY is the population mean of Y, τ ∼ U(0, 1)
follows a uniform distribution with min = 0 and max = 1,
and γ is the population PS that relates X and Y. Given (4),
the level of probability-of-superiority between X and Y can be
mathematically derived and presented as πp (Dunlap, 1994; Li,
2016),

πp =
(

∑n

i=1
#
[

sign (xi − x) · sign
(

yi − y
)

> 0
]

+ 0.5#
[

sign (xi − x) = sign
(

yi − y
)

= 0
]

)/

n, (5)

where n is the number of paired x-y observations, # is
the count function that counts the number of times
sign (xi − x) · sign

(

yi − y
)

> 0 (or = 0), xi and yi are the
scores from a X-Y pair in a sample, x is the sample mean of X,
and y is the sample mean of Y. Conceptually, the function of
#
[

sign (xi − x) · sign
(

yi − y
)

> 0
]

counts the number of times
when an X score is above (or below) the mean of X its paired
Y score is also above (or below) the mean of Y. If both the X
and Y scores are identical to their corresponding means {i.e.,
0.5#

[

sign (xi − x) = sign
(

yi − y
)

= 0
]

}, then a count of 0.50 is
used.

Figure 1 clearly shows the visual differences for bivariate
relationship based on linearity and PS. The top panel of
Figure 1 shows the scatterplots for X-Y that are generated
from a multivariate normal distribution with a mean vector

of 0 and a correlation matrix of
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, and the

bottom panel shows the scatterplots for X-Y that are generated
from the same mean vector but with a r-to-PS converted

matrix of
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based on Equation (1) and

through the data generation function in Equation (4). It is
likely that most researchers may believe that there are no
clear or obvious patterns of relationships in the bottom panel
(PS-assumed relationships), when they only use conventional
r as an estimator for understanding relationships among
variables.

Using Multivariate PS as an Input
Covariance Matrix in SEM
In behavioral research, examination of multivariate relationships
in SEM has become the state-of-the-art practice in many
research scenarios. SEM is a multivariate and highly flexible
model that incorporates the degree and extent to which the
observed variables can be loaded onto their corresponding
latent variables (i.e., measurement part), and examine how
the latent variables are related to one another (i.e., structural
part). Statistically speaking, a researcher aims to conduct a
SEM analysis such that the observed covariance matrix, S, is
as close as to the model-implied covariance matrix, 6, which
is implied from the researcher’s specified theory. 6 cannot be
directly observed from a dataset. Rather, researchers should
input their sample observed covariance matrix S among all the
observed indicators in their dataset and specify their theory
or causal model in the SEM framework. Next, researchers can
select and use an estimator (e.g., maximum likelihood) with
a statistical package [e.g., lavaan (Rosseel, 2012) in R Studio
Team (2017)] that estimates the coefficients in the model-implied
covariance matrix 6 such that the difference between S and 6

can be minimized. In this study, I propose the use of PS-based
covariance elements in S, with the diagonal elements equal to
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FIGURE 1 | Scatterplots based on the linear-based and PS-based data. The

top panel is based on the linear-based correlations among four variables with a

correlation matrix of
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, and the bottom panel is based on the

PS-based associations among four variables with a r-to-PS transformed

matrix of
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, with a sample size of 200, respectively.

the variances of the observed variables [Var
(

yp
)

], and the off-

diagonal elements are substituted by πpp ·
√

Var(yp) · Var(yp),
such that

SPS =



















Var
(

y1
)

Var
(

y2
)

π12 ·
√

Var(y1) · Var(y2)
Var

(

y2
)

· · · π1p ·
√

Var(y1) · Var(yp)

· · · π2p ·
√

Var(y2) · Var(yp)
.
.
.

.

.

.
.
.
.

Var
(

yp
)

πp2 ·
√

Var(yp) · Var(y2) · · · Var
(

yp
)



















,

(6)

where πpp for any paired variables in the covariance matrix
can be estimated and obtained in (5). There are three common
estimators that are commonly used and can be considered in this
study.

Maximum Likelihood (ML)
ML is the conventional approach to estimating fit and coefficients
in SEM, and it was developed based on the assumption that
the variables are multivariate normal. ML uses derivatives to
minimize a fit function (TML),

TML = −2
{

−0.5
[

tr
(

S6−1
)

+ log |6| − log |S| − (p+ q)
]}

,
(7)

where TML follows a χ2 distribution with degrees of freedom
equals df = 0.5

[(

p+ q
) (

p+ q+ 1
)]

− t, where t is the number
of estimated coefficients in SEM, and (p + q) is the number
of observed indicators (p: endogenous, q: exogenous; Hayduk,
1987).

Weighted Least Squares (WLS) and Unweighted

Least Squares (ULS)
According to Olsson et al. (2000), both WLS and ULS
are asymptotic free distribution functions that minimize the
difference between S and 6, and they not depend upon
multivariate normality. Browne (1984), and Jöreskog and
Sörbom (1982) showed that the ML, WLS, and ULS can be
presented as a generalized form in which their difference depends
upon the choice of a weight matrix that adjusts for any skewness
or kurtosis in observed data, i.e.,

TML = (s− σ ) ′WML
−1 (s− σ ) ,

TWLS = (s− σ ) ′WWLS
−1 (s− σ ) ,

TULS = (s− σ ) ′WULS
−1 (s− σ ) , (8)

where s =
(

s11, s21, s21, . . . , spp
) ′ refer to the elements in S,

σ =
(

σ 11, σ 21, σ 21, . . . , σ pp

) ′ refer to the elements in 6, WML,
WWLS, orWULS is a

[

p
(

p+ 1
)]

/2 by
[

p
(

p+ 1
)]

/2 weight matrix
unique to ML, WLS, and ULS, respectively. Comparatively
speaking, according to Olsson et al. (2000), the weight matrix for
ML can be expressed asWML

−1 = K−1
p

(

S−1 ⊗ S−1
)

K−1
p , where

K−1
p is formally defined in (Browne, 1974). On the other hand, the

elements in WWLS
−1are only functions of second- and fourth-

order moments of the observed variables in order to adjust for
skewness and kurtosis, andWULS is the identity matrix in ULS.

Goodness-of-Fit Indices in PS-SEM
In practice, researchers have to check for the accuracy and
goodness-of-fit indices of6, their specified causal model, because
a mis-specified model often inappropriately links the true
casual relationships among observed indicators. It is rare that
researchers may question about the accuracy of their inputted
observed covariance matrix S. Specifically, if any possible
pairwise observed indicators in S are associated based on PS
instead of the bivariate linearity assumption in conventional
Pearson’s correlation r, then the inputted coefficients in S are
inaccurate, which cannot reflect the true associations among the
observed indicators (i.e., Equations 4 and 5). Hence, this study
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proposes the use of PS coefficients in (6) as the input elements
in the observed covariance matrix S for the SEM analysis. This
approach could explore and open a new era that conventional,
linearly based SEM cannot detect the PS-based multivariate
relationships.

In conventional linear-based SEM, researchers are interested
in examining the test function values (i.e., TML, TWLS, and TULS)
with a smaller value means a smaller discrepancy (or better
fit) between S and 6. TML and TWLS values are expected to
follow a χ2 distribution with df = 0.5

[(

p+ q
) (

p+ q+ 1
)]

− t,
whereas TULS produces an unscaled value that do not follow
a χ2 distribution. In addition, researchers often report and
interpret many different types of goodness-of-fit indices—e.g.,
CFI, RMSEA—as supplementary to the χ2 test (Jackson et al.,
2009). In this study, I propose the use of PS-based observed
covariance matrix (SPS in Equation 6) and plugged into the three
estimators. Given that the original fit functions (TML, TWLS,
and TULS) were developed based on the conventional linear-
based bivariate correlations between the observed variables,
the fit functions based on SPS may compromise and may not
be comparable with the linear-based estimates coming from
TML, TWLS, and TULS.

MONTE CARLO SIMULATION

A Monte Carlo simulation study is regarded as a computer-
simulated experiment that aims to assess the accuracy or
robustness of a statistical method across a number of replicated
samples. The purpose of the current simulation is to examine
whether the conventional linear-based estimators and the
proposed PS-based estimators could produce accurate or robust
parameter estimates (e.g., factor loadings, factor correlations,
etc.) and goodness-of-fit indices (e.g., CFI, RMSEA, etc.) in
SEM/CFA, when variables are related based on linear or PS
relationships. The goal of this simulation is to offer empirical
evidence and guidelines for researchers to choose an appropriate
estimation method for obtaining these parameter estimates and
fit indices, when their data are linear- or PS-related.

Design
A key feature of the simulation study is to mimic a realistic
research scenario that is often found in behavioral research.
According to DiStefano andHess’s (2005) review of 100 empirical
SEM (or confirmatory factor analysis; CFA) studies, they showed
clear guidelines about the common factor structure—i.e., number
of factors, factor loadings, and factor correlations—in behavioral
research. Specifically, they found that a typical SEM/CFA model
in behavioral research consists of four correlated factors with
a median value of 0.30, and each factor consists of five items
or indicators with a median factor loading of 0.70. Moreover,
DiStefano and Morgan’s (2014) Monte Carlo experiment follow
these guidelines in simulating observations for the SEM/CFA
model, and evaluate the performance of parameter estimates and
goodness-of-fit indices based on different estimators (e.g., ML,
robust ML) by different levels of sample sizes (i.e., 400, 800, 1200,
1600) and scales of measurement (i.e., 2-, 3-, 5-, 7-point). This
also provides guidelines for the design of the currentMonte Carlo
experiment, meaning that the factor correlations are fixed at 0.30,

and factor loadings are fixed at 0.70. The scores are generated
from the conventional linear-based correlation matrix and the
PS-based matrix, and their parameter estimates are compared
with the true population values.

1. Sample size (4 levels). Three levels are examined, including
400, 800, 1,200, and 1,600, which follow a similar design in
DiStefano and Morgan (2014).

2. Scale ofmeasurement (10 levels). Following DiStefano and
Morgan (2014), this study evaluates five types of measurement:
continuous normal, 2-point, 3-point, 5-point, and 7-point scales
for data that follow the conventional linear-based relationships.
Moreover, this study also examines five types of PS-based types
of measurement: continuous uniform, 2-point, 3-point, 5-point,
and 7-point scales based on the function in (4).

Regarding data generation, without loss of generality,
observations were first generated from a multivariate normal
distribution, N ∼ (µ,6) (or the ordinal form, 2-, 3-, 5-,
and 7-point, of multivariate normal data based on the function
ordsample in RStudio), where µ is a 20 (i.e., number of items)
by 1 vector that contains all zeros, and 6 is a 20 by 20
covariance/correlation matrix that presents the true population
correlation among items based on the manipulated level of
factor correlation and factor loading. These distributions refer
to the data scenarios, in which the assumption of linearity
is met.

Moreover, to convert the continuous correlation-based scores
xij, where i refers to 1,. . . , n observations, and j indicates 1,. . . ,20
item, into continuous PS-based scores zij, zij was generated from

a uniform distribution with min = −
√
12/2 and max = 0 when

xij is smaller than (or equal to) its item mean xj, and from a

uniform distribution with min= 0 and max=
√
12/2 when xij is

larger than its item mean xj. That is,

zij







U ∼
(

0,
√
12/2

)

, when xij > xj

U ∼
(

−
√
12/2, 0

)

, when xij ≤ xj
. (9)

The use of ±
√
12/2 is to ensure that the expected SD of the

generated zij scores equals 1 without loss of generality. For
generating the 2-point PS-based scores, the original xij scores
were transformed to binary scores with the condition that

zij

{

1, when xij > xj
0, when xij ≤ xj

. (10)

For generating the 3-, 5-, and 7-point PS-based scores, the
original xij scores were converted to uniform integer distribution,

zij

{

Z ∼ (0, c) , when xij > xj
Z ∼ (c, 0), when xij ≤ xj

, (11)

where c is the cutoff value (or medium value) of the point scale
manipulated in the study, i.e., c = b/2 + .01, where b is the
number of points manipulated in a scale. The inclusion of 0.01
is to ensure that the point-scale PS-categorized scores are still
uniformly and evenly distributed.

Three estimations are examined. First, the conventional
maximum likelihood (ML) estimator for linear-based SEM is
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evaluated. Second, given that the ML estimator depends upon
the standard parametric assumption (multivariate normality),
the ML estimation with robust (Huber-White) standard errors
(MLR), WLS, and ULS in the lavaan package are also examined.
Third, the proposed PS-based covariance matrix (SPS) serving as
an input in the ML, WLS, and ULS (i.e., PS-ML, PS-WLS, and
PS-ULS) are examined.

In sum, this study produces a total design with 4 × 10 = 40
conditions. Each condition was replicated 1,000 times, producing
a total of 40,000 simulated data-sets. Each data-set is used to
compute the factor loadings, factor correlations, and goodness-
of-fit indices (χ2, CFI, and RMSEA) based on PS-ML, PS-WLS,
PS-ULS, ML, MLR, WLS, and ULS estimators, respectively. The
code was executed in RStudio (R Studio Team, 2017), with
the package MASS loaded for generating the multivariate data
(Venables and Ripley, 2002) and the package lavaan (Rosseel,
2012) for running and executing a CFA/SEM analysis. The
simulation code is shown in the supplementary materials.

Evaluation Criteria
Percentage bias is used to evaluate the performance of the
estimated factor correlations and factor loadings, i.e., bias =

(γ − ϕ)/ϕ, where γ is the mean of 1,000 replicated factor
correlations or loadings, and ϕ is the associated true value in
the population level. According to Li et al. (2011), bias that is
within±0.10 (or±10%) is considered reasonable. Moreover, the
standard error (SE) of the parameter estimates (factor loadings
and correlations) is important for researchers to understand and
compare the sampling errors based the linear-based and PS-based
estimators. Regarding the model fit, a lower χ2 indicates a better
fit between the observed and model-implied covariance matrices.
In addition, a CFI larger than .90 and a RMSEA smaller than 0.08
are often considered a reasonable fit in practice.

RESULTS

Biases of Parameter Estimates (Figure 2)
Linear-Based Data
First, the ML and MLR estimators result in the same results. This
is because the MLR estimator only adjusts for the standard errors
of the estimates, and this estimator results in the same sample
estimates through the likelihood maximization as in the ML
estimator. Hence, the biases of the MLR are dropped in Figure 2.
Second, the conventional ML, WLS, and ULS estimators produce

FIGURE 2 | Biases of the factor loadings and factor correlations when data are linear or PS-related. The top left panel shows the mean, min, and max of the biases of

20 factor loadings across 40 conditions, and the top right panel shows the mean, min, and max of the biases of 6 factor correlations across 40 conditions, when data

are linear-based. The bottom left panel shows the mean, min, and max of the biases of 20 factor loadings across 40 conditions, and the bottom right panel shows the

mean, min, and max of the biases of 6 factor correlations across 40 conditions, when data are PS-based.
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highly accurate results as predicted, when data are linearly
related. For ML, the biases range from −0.001 to 0.001 with a
mean of 0.000 [i.e., range = (−0.009, 0.015), mean = 0.000]. For
WLS, range= (0.002, 0.232) andmean= 0.028. For ULS, range=
(−0.006, 0.020) andmean= 0.001. Third, the proposed PS-based
estimators, however, produce estimates that are more biased than
the conventional linear-based ML, WLS, and ULS estimators,
when variables are linearly related to one another. Regarding PS-
ML, the range of the biases was (−0.226, 0.228) with a mean of
.017. PS-WLS produces upward biases: range = (−0.128, 0.268)
and mean = 0.093. For PS-ULS, range = (−0.302, 0.193) and
mean = −0.008. These results suggest that researchers should
only use the conventional linear-based estimators, if they observe
that their data are linearly related.

To further examine how the manipulated factors influence the
variability of the biases, we can refer to the results in Figure 3.
When the number of points increases from 2 to infinity (i.e.,
continuous normal), the biases of the three PS-based (i.e., PS-ML,
PS-WLS, and PS-ULS) factor loadings and factor correlations
decrease, and these biases become closer to the biases obtained
through most of the conventional linear-based estimators such
as ML, MLR, and ULS. Of the 3 PS-based estimators, PS-ML
appears to produce more reasonable factor-loading and factor-
correlation estimates, when the number of points becomes 7
or data become continuous normal. However, this estimator is
still less accurate than ML, MLR, or ULS. In sum, researchers
should use the conventional linear-based estimators, when data
are linearly related in their sample.

FIGURE 3 | Biases of the factor loadings and factor correlations when data are linearly related. The horizontal axis shows the 20 simulation conditions, where the first

number of the bracket indicates the scale of measurement (i.e., 2 = 2-point, 3 = 3-point, 5 = 5-point, 7 = 7-point, and 0 = continuous normal), and the second

number refers to the sample size.
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PS-Based Data
When data follow PS-based relationships, the conventional
estimators (ML, WLS, and ULS) produce noticeable downward-
biased parameter estimates, as shown in Figure 2. For ML, the
20 factor loadings and 6 factor correlations contain biases with
range= (−0.219, 0.007) and mean=−0.176. For WLS, range=
(0.283, 0.142) and mean = −0.141. For ULS, range = (−0.299,
0.013), mean = −0.175. Comparatively, the proposed PS-based
estimators produce more accurate estimates than ML, WLS, and
ULS. For PS-ML, the biases of the 20 factor loadings and 6 factor
correlations are minimal with range= (−0.022, 0.015) and mean
= −0.003. For PS-WLS, range = (−0.047, 0.075) and mean =
0.025. For PS-ULS, range= (−0.023, 0.026) and mean=−0.001.

To further examine the effects of the manipulated factors
on the parameter estimates, we can refer to the results in
Figure 4. When data are PS-related, both the PS-ML and PS-ULS
produce accurate factor-loading and factor-correlation estimates.
The remaining PS-based estimator, PS-WLS, only produce

reasonable estimates when sample size increases from 400 to
1600. Comparatively, the conventional linear-based estimators,
ML, MLR, WLS, and ULS, produce downward-biased factor-
loading estimates, when data are PS-related. Regarding factor
correlations, ML, MLR, and ULS also produce downward-biased
estimates across the 20 conditions with PS-based data. WLS may
result in slightly less biased factor-correlation estimates, when
sample size increases from 400 to 1600, but this estimator is still
less accurate than PS-ML or PS-ULS. In sum, researchers should
use the PS-based estimators, when data are PS-related in their
sample.

SEs of the Parameter Estimates (Figure 5)
The PS-based estimators produce slightly more precise estimates
than the conventional estimators, when data are linear-based.
Specifically, the PS-ML estimator produces SE values with
range = (0.007, 0.054) and mean = 0.020, for the factor
correlations and loadings. For PS-WLS, range = (0.009,

FIGURE 4 | Biases of the factor loadings and factor correlations when data are PS-related. The horizontal axis shows the 20 simulation conditions, where the first

number of the bracket indicates the scale of measurement (i.e., 2 = 2-point, 3 = 3-point, 5 = 5-point, 7 = 7-point, and 0 = continuous uniform), and the second

number refers to the sample size.
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FIGURE 5 | Standard errors of the factor loadings and factor correlations across 40 conditions. The top left panel shows the mean, min, and max of the standard

errors of 20 factor loadings across 40 conditions, and the top right panel shows the mean, min, and max of the standard errors of 6 factor correlations across 40

conditions, when data are linear-based. The bottom left panel shows the mean, min, and max of the standard errors of 20 factor loadings across 40 conditions, and

the bottom right panel shows the mean, min, and max of the standard errors of 6 factor correlations across 40 conditions, when data are PS-based.

0.058) and mean = 0.022. For PS-ULS, range = (0.005,
0.136) and mean = 0.039. For the conventional estimators,
the ML estimator produces the SD values with range =
(0.016, 0.056) and mean = 0.026. For MLR, range = (0.016,
0.058) and mean = 0.027. For WLS, range = (0.015, 0.042)
and mean = 0.022. For ULS, range = (0.005, 0.149) and
mean= 0.045.

When data follow the PS-based relationships, the PS-
based estimators also produce more precise (or smaller)
SE values than the conventional estimators. For PS-ML,
range = (0.016, 0.056) and mean = 0.026. For PS-WLS,
range = (0.016, 0.058) and mean = 0.026. For PS-ULS,
range = (0.003, 0.148) and mean = 0.032. Comparatively,
the SE values for the factor loadings and correlations are
generally less precise based on ML with range = (0.016,
0.076) and mean = 0.037. For MLR, range = (0.016,
0.080) and mean = 0.038. For WLS, range = (0.015, 0.053)
and mean = 0.031. For ULS, range = (0.005, 0.171) and
mean= 0.040.

Goodness-of-Fit Indices
Both ULS and PS-ULS produce unscaled fit-function values that
are not distributed as χ2 values, and hence, these results are
not reported in this section. The goodness-of-fit indices yielded
good results based on the conventional ML, MLR, WLS, and
ULS estimators, no matter whether the data are linear-based or
PS-based, as shown in Figure 6. For χ2, the ranges are (164.51,
169.55), (163.34, 168.93) and (5.78, 2111.50), and the means are
169.55, 166.28, and 346.18, respectively, based on ML, MLR,
and WLS. For CFI, the ranges are (0.986, 0.999), (0.987, 0.999),
(0.918, 1) and (0.887, 0.997), and the means are 0.996, 0.996,
0.992, and 0.963, respectively, based onML,MLR,WLS, andULS.
For RMSEA, the ranges are (0.003, 0.012), (0.003, 0.012), (0.016,
0.039) and (0.019, 0.084), and the means are 0.006, 0.006, 0.025,
and 0.034, respectively, based on ML, MLR, WLS, and ULS. Note
that a general pattern of good fitted results from these estimators
does not mean that the results are desirable, especially when data
are PS-based. This is because researchers tend to conclude that
the data fits the hypothesized model well-based on the desirable
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FIGURE 6 | Goodness-of-fit indices based on linear estimators across 40 conditions.

fit indices, but they may underestimate the parameter estimates
(i.e., factor loading and correlation; Figure 2) and misinterpret
the size of the effects in the model, when data follow a PS-based
distribution.

For the PS-based estimators, the χ2, CFI, and RMSEA values
are found to be less desirable when data are linear-based than PS-
based, as shown in Figure 7. For χ2 under linear-based data, the
ranges are (635.20, 4185.02) and (635.86, 1689.01), and themeans
are 1802.68 and 1024.49, respectively, based on PS-ML, and PS-
WLS. For CFI, the ranges are (0.717, 0.966), (0.364, 0.812) and
(0.827, 1), and the means are 0.854, 0.584, and 0.941, respectively,
based on PS-ML, PS-WLS, and PS-ULS. For RMSEA, the ranges

are (0.042, 0.159), (0.036, 0.433), and (0.025, 0.128), and the
means are 0.100, 0.173, and 0.074, respectively, based on PS-ML,
PS-WLS, and PS-ULS.

Comparatively, when data follow a PS-based distribution, the
fit indices improve substantially. For χ2, the ranges are (625.13,
712.09) and (648.77, 627.15), and the means are 659.28 and
648.77, respectively, based on PS-ML and PS-WLS. For CFI, the
ranges are (0.831, 0.958), (0.686, 0.492) and (0.951, 0.988), and
the means are 0.913, 0.686, and 0.988, respectively, based on PS-
ML, PS-WLS, and PS-ULS. For RMSEA, the ranges are (0.042,
0.091), (0.036, 0.105) and (0.029, 0.058), and the means are 0.016,
0.061, and 0.040, respectively, based on PS-ML, PS-WLS, and
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FIGURE 7 | Goodness-of-fit indices based on PS estimators across 40 conditions.

PS-ULS. These results show that, when data indeed follow a PS-
based distribution in population, the conventional goodness-of-
fit indices (χ2, CFI, RMSEA) provide a decent diagnostic tool for
researchers to examine whether a hypothesized model fits to the
observed data, and these indices perform more desirably in the
PS-based data than the linear-based data.

WORKING EXAMPLE

Appendix A shows the step-by-step procedures of how to obtain
the results from the PS-based SEM analyses. A real-world data-
set can be found on the online website (Raw Data from Online

Personality Tests, 2018) that includes the raw scores of 973 valid
respondents, who responded to the four factors or domains [i.e.,
assertiveness (AS), social confidence (SC), dominance (DO), and
adventurousness (AD)] of the 40 experimental, 5-point Likert-
scale items for the DISC Personality Test (2018). Details of the
items and their association with the corresponding domains are
documented in the associated codebook file through the online
link.

For demonstration purposes, I am interested in examining
whether age and gender could significantly predict factors on AS,
SC, DO, and AD. The original model consists of a 4-correlated
factor structure, and each factor is loaded onto 10 items,
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FIGURE 8 | An interpreted SEM with the PS-ML estimates. AS refers to assertiveness, SC refers to social confidence, DO refers to dominance, and AD refers to

adventurousness. PS-based estimates with p < 0.01 are presented in red.

respectively (Raw Data from Online Personality Tests, 2018).
However, according to previous studies (e.g., Hayduk, 1987),
it is not necessary for researchers to include all the items in
a SEM because this would increase the number of estimated
parameters (i.e., factor loadings) that are redundant in measuring
the associated factors, especially when the focus is on examining
the regression effects in the structural part. Rather, researchers
can select 2–4 items that possess the largest associations with
the associated factors. This practice can reduce the number of
unnecessary parameters and simplify a SEM for a higher chance
of convergence with solution. In light of this, I decided to simplify
the model through a series of preliminary analyses based on
linear-based correlations, PS-based correlations, and exploratory
factor analyses (with PS-ML andML estimators), with the goal to
select 2 items per factor. In addition, I am interested in whether
age and gender (1 = male, 2–female) could significantly predict
the factors of AS, SC, DO, andAD, respectively. Eventually, I have
found a final interpreted model (Figure 8) after a series of model
re-specification processes, which is regarded as an acceptable
practice according to the APA Task Force (Appelbaum et al.,
2018).

Given this interpreted model, I had to decide whether the
variables involving in the model are linear- or PS-related so
that I can choose a linear- or PS-based estimator for the SEM
analysis. As shown in Figure 9, most of the possible bivariate
relationships in the hypothesized model do not show a clear
pattern of linear relationship. Rather, these bivariate relationships
appear to follow a PS-based relationship similar to the pattern
shown in the bottom panel of Figure 1. Hence, my decision was
to estimate the parameters for the hypothesized model based on
the PS-ML estimator.

To obtain the PS-based results, one can use the pr function
in Appendix A, pr(data, cor = FALSE), where “data” refers to
the dataset imported to R, and “cor = FALSE” means that a
PS-adjusted covariance matrix is outputted as default, unless
cor is stated as true to obtain a PS-adjusted correlation matrix.
Given this function, one can test a SEM/CFA model based on the
conventional cfa function in lavaan, i.e., cfa(HS.model, estimator
= “ML,” sample.cov = pr(data), sample.nobs = n, std.lv =
TRUE), in order to obtain the PS-ML results, in Appendix A.

As shown in Figure 8, the goodness-of-fit indices are
reasonable, especially for the purposes of demonstrating the
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FIGURE 9 | Scatterplots with heat density for the variables in the DISC Personality Test. AS refers to assertiveness, SC refers to social confidence, DO refers to

dominance, AD refers to adventurousness.

potential of the proposed PS-ML estimator in an open-access
data-set. χ2 test produces a significant result, χ2 (22) =
165.22, p < .05, meaning that the observed covariance matrix
may not fit to the hypothesized model. However, it is common
that the χ2 test is often over-sensitive with a large sample size
(e.g., n > 400; Kenny, 2015) in reaching this conclusion, and
hence, other fit indices are also evaluated. In this case, CFI =
0.954 is larger than the criterion of 0.95, and RMSEA = 0.082 is
on the edge of meeting the criterion for a reasonable fit (< 0.08).

Regarding the parameter estimates, first, the PS-based factor
loadings range from 0.74 to 0.89 with a mean of 0.81. For
example, when someone’s score on the factor (AS: assertiveness)
is above the mean of the AS factor scores, there is 84% likelihood
that this person’s observed score on AS7 (i.e., question #7 of AS)
is above the mean of the observed AS7 scores. Second, the PS-
based regression estimates range from 0.41 to 0.54 with a mean of
0.50. Of the 8 regression estimates, 7 are statistically significant.
Specifically, age is a significant predictor of AS, SC, DO, and
AD, respectively. Taking one example for interpretation, when
someone’s age is above the mean age of all other participants
(35.55 years old), there is 41% (or 59%) likelihood that this
person’s AS factor score is above (or below) the mean of the
AS factor scores. Gender is a significant predictor of AS, DO,
and AD, respectively. Given that gender is a categorical variable,
when someone’s gender score is above the mean of all other
gender scores, this is equivalent to saying that when gender
changes from (1 male) to 2 (female) given a relatively balanced
gender ratio. Taking one example for interpretation, there is
54% likelihood that female participants score higher on AS than

male participants. Third, the PS-based factor correlations range
from 0.34 to 0.58 with a mean of 0.46. Taking one example for
interpretation, when someone’s AS factor score is above the mean
of the AS factor scores, there is 38% (or 62%) likelihood that
this person’s SC factor score is above (or below) the mean of
the SC factor scores. It is noteworthy that the interpretations
of the PS-based coefficients are different from the conventional
regression (slope) coefficients or correlation coefficients (r) in the
linear model. For the case of slope and correlation coefficients,
the value of 0 indicates zero (or lack of) association between
variables. For the case of PS-based coefficients, the value of 0.5
corresponds to zero (or lack of) association between variables
(i.e., 50% likelihood by chance).

CONCLUSION AND DISCUSSION

In light of the increasing attention of the PS-based bivariate
relationships, this study aims to explore the potential of
applying PS-based relationship in the framework of CFA/SEM, a
modern, widely employed multivariate latent variable modeling
in behavioral research. The proposed PS-based method (e.g., PS-
ML) provides a good statistical tool for researchers to estimate the
parameters (e.g., factor loading, factor correlation) in CFA/SEM,
especially when they are interested in understanding how the
variables are related to one another based on the concept of PS
in addition to linear-based SEM.

The simulation results show that researchers can use the
proposed PS-based estimators (e.g., PS-ML) to obtain good
parameter estimates (e.g., factor loadings, factor correlations,
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etc.), when data are PS-related in their sample. If researchers use
the conventional estimators (e.g., ML, MLR, WLS, or ULS) for
estimating the parameters in their hypothesized SEM with the
PS-based data, then they will obtain downward-biased estimates
(i.e., factor loadings). On the other hand, when data are linearly
related, researchers should stick with and use the conventional
linear-based estimators in obtaining the parameter estimates,
given that the PS estimators tend to produce estimates with
more variability (i.e., either under-estimation or over-estimation
across the 20 simulation conditions). In practice, researchers
can first visualize a scatterplot for their variables, and decide
whether they would choose a linear- or PS-based estimator
for their hypothesized model. When data are linearly related
based on the scatterplot, a conventional linear-based estimator
should be the most appropriate. On the other hand, when data
are PS-related, researchers should choose a PS-based estimator
(e.g., PS-ML), and this would result in less biased parameter
estimates. This study tests and develops different types of PS-
based estimators so that researchers can test their hypothesized
model with estimators that can estimate PS-based relationships
in addition to the conventional linear-based relationships, when
they find that their sample data appear to be PS-related. It
is noteworthy that when a scatterplot does not show a linear
pattern, there could be two possibilities: (1) the data could have
the PS-based relations, or (2) there is no relation at all. Hence,
researchers should check whether their data have the PS-based
relations and use a PS-SEM estimator, when the scatterplot does
not show a linear pattern.

This study offers a free, easy-to-execute code in R or RStudio
so that researchers can conveniently explore whether or not
their data adhere to a PS-based SEM than the conventional
linear-based SEM, especially when they cannot find any clear
linear pattern of relationships based on correlational analysis. In
this case, applied researchers can visualize the data points in a
scatterplot similar to the one in Figure 1. If the data points do
not follow a linear pattern of relationship, but they appear to PS-
related such as the patterns in the lower panel of Figure 1, the
present study provides a good tool for the researchers to have a
second thought and explore whether their data can be fitted to a
PS-based SEM. The working example provides the details of how
to execute the code, and this will open new era for behavioral
researchers not only re-conceptualizing their causal models in
CFA/SEM, but also potentially re-analyzing their CFA/SEM that
may not show large effects (e.g., factor correlations, loadings,
slopes, etc.) in previous research.

LIMITATIONS AND FUTURE DIRECTIONS

As the proposed PS-SEM is a relatively new concept, there are a
number of limitations, leading to some future directions. First,
this study simulates and evaluates only one CFA/SEM model

based on DiStefano and Hess’s (2005) review of 100 empirical
SEM/CFA studies. As a starting point of PS-SEM, I believe
that this is sufficient enough to show its potential in behavioral
research. Future research can examine how the proposed PS-
SEM estimator can be applied and used in complex CFA/SEM

models (e.g., mediation/moderation, multi-level). Second, in
light of the different assumption in PS-based CFA/SEM than
the conventional linear-based CFA/SEM, the performance of
the goodness-of-fit indices compromise under the proposed PS-
based method. Additional research can explore and develop
new goodness-of-fit indices that can be used and are more
tailor-made in the framework of PS-SEM. Third, this study is
an empirical, simulation-based study, which aims to provide
empirical evidence of the potential of fitting a PS-based model
in CFA/SEM. Future researchers can conduct a theoretical study
that focuses on the mathematical proof of PS-based CFA/SEM,
which can be formalized under the broader framework of
generalized SEM (e.g., Skrondal and Rabe-Hesketh, 2004; Huber,
2013). Indeed, generalized SEM have included many other
types of distribution of observed variables (e.g., binary, count,
categorical, ordinal, censored continuous, survival, etc.), but no
study, as I know, has attempted to incorporate the idea of
how the observed variables are related based on the level of
PS (i.e., PS-SEM) instead of distributions of scores (e.g., binary,
categorical, etc.) under the generalized SEM.Given amore formal
definition of PS-SEM under generalized SEM, researchers can
better understand the future direction of the proposed PS-SEM,
which in turn, providing a more complete picture about the
sampling distributions and estimates of statistical coefficients
(e.g., goodness-of-fit indices) in PS-SEM. Fourth, the present
study only handles and focuses on simulated or real-world
research scenarios with a full data-set. In the future, researchers
can explore the use of other estimators (e.g., full information
ML, multiple imputation) to model PS-based data with missing
values.
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