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Intelligent tutor systems (ITSs) in mobile devices take us through learning tasks and
make learning ubiquitous, autonomous, and at low cost (Nye, 2015). In this paper, we
describe guided embodiment as an ITS essential feature for second language learning
(L2) and aphasia rehabilitation (ARe) that enhances efficiency in the learning process. In
embodiment, cognitive processes, here specifically language (re)learning are grounded
in actions and gestures (Pecher and Zwaan, 2005; Fischer and Zwaan, 2008; Dijkstra
and Post, 2015). In order to guide users through embodiment, ITSs must track action
and gesture, and give corrective feed-back to achieve the users’ goals. Therefore, sensor
systems are essential to guided embodiment. In the next sections, we describe sensor
systems that can be implemented in ITS for guided embodiment.

Keywords: tutor systems, language instruction, aphasia therapy, intelligent tutor system, gesture production,
gesture recognition, learning

Today in L2 learning, ITSs transpose classroom activities as reading, listening, and making exercises
in electronic environments (Holland et al., 2013). Similarly in ARe, a virtual therapist in a tablet
helps patients in the treatment of verbal anomia by presenting pictures (Lavoie et al., 2016). Virtual
therapists do basically what a human therapist would do, i.e., they ask patients to name the pictures
presented (Brandenburg et al., 2013; Kurland et al., 2014; Szabo and Dittelman, 2014).

Both domains, L2 and ARe, still treat language a purely mentalistic process, a manipulation
of symbols in our minds (Fodor, 1976, 1983). Consequently, symbols such as written words or
pictures representing the word’s semantics are the base of main stream language educational
and rehabilitation methods. Despite this, in the last three decades, a growing number of studies
have converged to suggest that language as a cognitive capacity is grounded in our bodily
experiences in the environment, in perception and action (Lakoff, 2012; Dijkstra and Post,
2015; Borghi and Zarcone, 2016). Words are not symbols any more. Instead, they have been
described as “experience related brain networks” (Pulvermiiller, 2002). Interestingly, not only
concrete but also abstract vocabulary is rooted in the body. In a comprehensive review of
neuroscientific studies, Meteyard and colleagues show that simple recognition of abstract words
elicits activity in sensorimotor brain regions (Meteyard et al., 2012). This is explained by the
fact that abstract concepts are also internalized by real experiences that in their turn are related
to the body. Take for example the word love: it is embodied because acquired from concrete
and experienced concepts, i.e., perceiving the partner physically, doing things with the partner,
and so on. All these experiences converge to a metaphorical extension which is labeled as love.
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In fact, first language acquisition is tightly connected to
sensorimotor experiences (Inkster et al., 2016; Thill and Twomey,
2016). In infancy, the body is the main vehicle that collects
experiences related to language units as nouns and verbs
(Tomasello et al., 2017). Furthermore, very early in development,
gestures make their appearance. They are precursors of spoken
language (Mattos and Hinzen, 2015) and tightly bound to it.
Language and gestures represent the two sides of the human
communicative system (Kelly et al., 2010).

In adult age, the body can be used as a tool to enhance
memory for verbal information (Zimmer, 2001). This is achieved
by performing gestures to words or phrases that are to be
memorized. The effect of gestures on memory for verbal
information has been named “enactment effect” (EE) Engelkamp
and Zimmer (1985) and “self-performed task effect” (Cohen,
1981). The EE is robust and has been extensively investigated
with different materials, tests, and populations (Von Essen and
Nilsson, 2003). In memory research, the EE effect has been
reconducted to a motor trace that the gesture leaves in words’
representations (Engelkamp, 1998).

Also, in second language learning, self-performed gestures
accompanying words enhance memory performance compared
to just reading the words and/or listening to them (Macedonia,
2014), in the short and in the long term (Macedonia and
Klimesch, 2014). In a study with functional Magnet Resonance
Imaging (fMRI), Macedonia and Mueller (2016) have shown
that passive recognition of second language words trained
with gestures activates extended sensorimotor networks. These
networks involve motor cortices and subcortical structures as
the basal ganglia, and the cerebellum. They all participate to
a large motor network. It is thus conceivable that retention
is superior because words learned with gestures might engage
procedural memory in addition to declarative memory (Nilsson
and Backman, 1989). Interestingly, recent studies on patients
with impaired procedural memory have demonstrated that the
patients could not take advantage of learning through gestures
(Klooster et al., 2014).

In aphasia, gestures produced by patients trying to
communicate can easily be observed. These gestures fulfill
compensatory functions (Goksun et al, 2015; Rose et al,
2016) if the patients’ language is impoverished or omitted
(Pritchard et al., 2015). However, because of the high variance
in lesion patterns, age of the patients, patho-linguistic profile,
intensity of intervention, etc., studies employing gestures and
studies employing other therapeutic instruments are difficult
to compare. Hence, effects of gestures on rehabilitation can be
diverging (Kroenke et al., 2013). Main stream aphasia therapy
is still constrained to the verbal modality and bans gestures as
tool that might help to restore language networks (Pulvermidiller,
2002). Nevertheless, a growing number of studies show that
action and gesture can help support the missing side of the
communicative coin (Rose, 2013). Whereas simple observation
of action has a positive impact on word recovery (Bonifazi
et al., 2013), observation followed by execution of action leads
to better recovery results (Marangolo and Caltagirone, 2014).
These studies pave the way for a novel understanding of aphasia
therapy in which the body helps the mind to regain language

functions, as long as brain structures serving procedural memory
are not compromised (Klooster et al., 2014).

This is to say that humans need the body to acquire first
language, to support memory for verbal information, to learn a
second language, and to reacquire language functions disrupted
by brain lesions. At this point, a core issue is to stress that
embodiment of language needs active experience. In enactment
research, it has long been known that it is not enough to observe
gestures and actions, one must perform them (Cohen, 1981;
Engelkamp et al., 1994). When interacting with an ITS, the user is
first presented with the language to be trained and the gestures to
be performed. Thereafter, the user must perform the actions and
the gestures. Monitoring can make action performance accurate
in execution. Thus, one component of the ITS must detect
motion and gesture, compare it with a template and give feed-
back on execution accuracy. Execution monitoring needs sensor
systems.

TECHNOLOGIES FOR GESTURE
PERFORMANCE MONITORING

Guided embodiment requires an interaction between ITS and
user: A gesture representing a concept is performed by an ITS
avatar. The user observes the gesture and imitates it. The user’s
gesture must be sensed during performance. Performance is
evaluated by the system on the base of a template. Visual, auditory
and or tactile feedback is given by the ITS (please see Figure 1).

Audio-Visual Gesture Presentation (AVGP)

First, a written word is presented to the user on a display
simultaneously with a video in which an actor performs a
representational gesture. The gesture can be presented by a
human through a video or by an avatar, or an agent (Bergmann,

ITS User

a Audiovisual
Gesture Presentation

Perception of
presented gesture

Performing gesture and
vocalizing instruction

awiy

b Motion {and Audio)
Capturing
Gesture (and Audio)
Analysis

Visual/Audio/Tactile
Presentation of Result

l

FIGURE 1 | Embodiment interaction model.
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2015). Synchronously, an audio file of the word is played via
loudspeaker.

Motion Capturing

Motion is the change of body position in time. Motion
capturing occurs as a two-phases process. First, a single motion
is sensed generating data (motion sensing) (Moeslund et al.,
2006). Secondly, the data are sampled (motion sampling) and
sequenced in time into a movement path, a so-called motion
trajectory model. Depending on the location of the sensors
used to detect the motion, Motion capturing can be subdivided
into two categories: infrastructure based or through wearables.
Infrastructure-based systems rely on hardware that is rigidly
mounted inside a room as high-speed infrared cameras in a gait
analysis laboratory, or sensors in a blue screen environment.
Infrastructure based systems use sensors with high power
consumption.

Systems based on microwave, ultrasonic or radar sensors
operate by emitting electromagnetic or sonic waves and sensing
the echo received. Depending on the purpose of motion
capturing, sensor technologies can vary. For example, ultrasonic
motion detection is quite common in prenatal diagnostics
(Birnholz et al., 1978). For remote vital sign detection radar-based
motion detection is frequently used (Lubecke et al., 2002).

Vision-based systems (VBS), including single camera,
multiple cameras, and depth camera systems, play the most
important role in human motion capture. Sensors detect light
which can be visible or invisible to the human eye which is
emitted or reflected by the body or an object (Moeslund et al.,
2006).

Single camera-based motion detection systems are present
in notebooks, tablets, and mobiles. Although these systems often
have a high-quality resolution, they operate with a single camera.
A single camera cannot capture the motion of body parts that
are occluded by other body parts. This results in an inaccurate or
incomplete analysis of the motion.

Multiple camera systems with two or more cameras allow
3D capturing. Algorithms combining 2D images from the
cameras calculate a 3D-resolution (Aggarwal and Cai, 1997; Cai
and Aggarwal, 1999). In the 3D-resolution, the synchronized
recordings are combined. The combination includes the
positions of the cameras relative to each other and their angles of
view. Multiple camera systems are used in rigid mounted setups,
in laboratories or dedicated rooms for example in rehabilitation
(gait analysis), and sports (motion analysis).

Depth cameras sense 3D-information by means of infrared
light. They calculate the distance between the camera and a body
in two ways. They project an invisible grid onto the scenery and
sense the grid’s deformations. Alternatively, they measure the
distance to the scenery and they calculate the transfer time of the
infrared light from the camera to the object. This second kind
of depth camera is also called “Time-of-flight’-camera (ToF)
(Barnachon et al., 2014; Cunha et al., 2016; Garn et al., 2016).

Depth camera systems with a single device do not overcome
the problem of occluded parts (Han et al., 2013). However, they
have an advantage: they provide information about the distance
of each object or body within the camera’s view relative to the

cameras position. These systems do not rely on heuristics about
proportions of the object in order to determine its distance. This
information increases accuracy in calculating the position of a
human body or object.

Wearables are sensors worn on the body. They are light-
weighted and have low power consumption. They are often used
in sports (Roetenberg et al., 2013). Among wearables, we find
inertial measurement units (IMUs) and sensing textiles.

Inertial Measurement Units (IMUs) are small electronic
devices that measure acceleration, angular changes and changes
in the magnetic field surrounding the body or object (Roetenberg,
2006; Shkel, 2011). If the starting position is known, an
approximate position at time ¢ is can be calculated by
implementing the changes in forces, angles and magnetic field
from the starting position up to t. IMUs differ from camera-
based systems: while the latter measure the absolute position of
the body at every time point t, IMUs acquire a starting position
and the movement’s sequence.

IMUs are integrated into wearable objects and respond
on minimal deviations of the sensors by showing a drift.
This drift can sum up to false positions over time. Fusion
algorithms combining filtering and validation of sensor are used
to compensate, respectively minimize drifts values (Luinge and
Veltink, 2005; Sabatini, 2011; Roetenberg et al., 2013).

Sensing textiles represent a novel way of capturing motion.
They consist of fabrics containing enwoven pressure sensitive
fibers. These fibers change their electric resistance depending on
the pressure changes that they sense (Mazzoldi et al., 2002; Parzer
et al., 2016). Clothes tailored with these fabrics enable to calculate
movements of the body in a fine-grained way (Parzer et al., 2016).
The choice of the adequate type of motion sensing technology
depends on the application domain. In our case, sensing of
human body movements for an ITS can be accomplished with
four sensor technologies: camera, depth-camera, IMUs, and
sensing textiles.

Vision-based systems (VBS) take pictures over time and
analyze them in order to detect body parts. Thereafter, VBS
transform the detected body parts into digital representations,
into human body models. Common models are skeletal, joint-
based (Badler and Smoliar, 1979; Han et al., 2017), and mesh-
based (de Aguiar et al., 2007). For an overview and classification
of the major techniques used for sampling 3D data, please see
Aggarwal and Xia (2014).

Additionally, VBS can increase the accuracy of the human
body model by markers as light-emitting diodes, passive
reflectors or patterns. These markers are fixed on pre-defined
body parts and map them to the according representation
within the model. Marker-less systems use heuristics about
shapes, dimensions, and relations between body parts
estimating and calculating the model according to these
constraints.

Body data are sampled and thereafter transferred into a digital
form in constant periods of time. This is done in order to obtain
the motion trajectory model needed. It represents the body parts
and their changes in posture over the time of recording (Poppe,
2010). Hence, motion sampling results in a motion trajectory
model.
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TABLE 1 | Evaluation of sensor technologies.

Single Multiple Depth Sensing IMUs
camera cameras camera textiles
Accuracy 0 ++ + ++ 0
Setup ++ + + ++ +
Mobility + + + ++ ++
Size + + 0 ++ +

0, moderately fulfiling the users’ requirements; +, fulfilling the requirements; ++, fulfilling
the requirements very well.

Gesture (and Audio) Analysis

In the literature, different approaches for matching motion
trajectory models are discussed. Kollorz et al. (2008) ground their
model on projections of image depth. Mitra and Acharya (2007)
describe the use of hidden Markov models (Rabiner and Juang,
1986), finite-state machines (Marvin, 1967) and, neural networks
(Lippmann, 1987). Other authors use a support-vector machine-
based approach (Cristianini and Shawe-Taylor, 2000; Schuldt
et al., 2004; Miranda et al., 2014). A template-based method
for matching motion has been developed by Miiller and Roder
(2006). Stiefmeier et al. (2007) convert the motion trajectory
model into strings of symbols. This is done in order to apply
string matching algorithms that are faster in running analyses.
Detailed reviews on vision-based human motion recognition
methods are provided by Poppe (2010) and Weinland et al.
(2011).

Embodiment-based ITS employed in language learning and
rehabilitation need real-time processing of sensed gestures
because of the immediate feedback on gesture accuracy that users
need (Ganapathi et al., 2010).

Accuracy in sound reproduction is an important issue in both,
second language learning and aphasia rehabilitation. Language
output by the user is recorded and analyzed by different methods
(Rabiner and Juang, 1993). Recent approaches employ complex
models as neural networks for speech recognition (Hinton et al.,
2012; Graves et al., 2013).

After a match between the sensed gesture or the voice and
the template within the representing motion trajectory model has
occurred, feedback can follow. It can be visual via the display,
acoustical with sound through a speaker (built-in or external),
and tactorial by means of a vibration given by the device.
Feedback can be simple (i.e., a sound or synthesized speech).

Evaluation of Sensor Technologies
In order to give an overview of the sensor technologies
presented in the preceding sections, we created Tablel. It
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