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Mental calculation is thought to be tightly related to visuospatial abilities. One of the
strongest evidence for this link is the widely replicated operational momentum (OM)
effect: the tendency to overestimate the result of additions and to underestimate
the result of subtractions. Although the OM effect has been found in both infants
and adults, no study has directly investigated its developmental trajectory until now.
However, to fully understand the cognitive mechanisms lying at the core of the OM
effect it is important to investigate its developmental dynamics. In the present study,
we investigated the development of the OM effect in a group of 162 children from
8 to 12 years old. Participants had to select among five response alternatives the
correct result of approximate addition and subtraction problems. Response alternatives
were simultaneously presented on the screen at different locations. While no effect was
observed for the youngest age group, children aged 9 and older showed a clear OM
effect. Interestingly, the OM effect monotonically increased with age. The increase of
the OM effect was accompanied by an increase in overall accuracy. That is, while
younger children made more and non-systematic errors, older children made less but
systematic errors. This monotonous increase of the OM effect with age is not predicted
by the compression account (i.e., linear calculation performed on a compressed
code). The attentional shift account, however, provides a possible explanation of these
results based on the functional relationship between visuospatial attention and mental
calculation and on the influence of formal schooling. We propose that the acquisition of
arithmetical skills could reinforce the systematic reliance on the spatial mental number
line and attentional mechanisms that control the displacement along this metric. Our
results provide a step in the understanding of the mechanisms underlying approximate
calculation and an important empirical constraint for current accounts on the origin of
the OM effect.

Keywords: operational momentum, approximate addition, approximate subtraction, children, development,
attentional shift account, compression account, heuristic account
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INTRODUCTION

Adults and children (Barth et al., 2006), and even infants (Wynn,
1992), are able to perform approximate mental calculation, which
consists in the capacity to add or subtract numbers expressed in
non-symbolic notations (e.g., dots). This skill requires to estimate
the numerosity (i.e., cardinality) of two sets of elements and
to encode it on an internal representation on which cognitive
processes operate to generate the approximate outcome of the
calculation. Growing evidence (McCrink et al., 2007; Pinhas and
Fischer, 2008; Knops et al., 2009b; McCrink and Wynn, 2009;
Lindemann and Tira, 2011; Chen and Verguts, 2012; Knops
et al., 2013, 2014; Klein et al., 2014; Marghetis et al., 2014;
Pinheiro-Chagas et al., 2017) shows that approximate addition
and subtraction are subjected to an Operational Momentum
(hereafter, OM) effect: results of addition are overestimated and
results of subtraction are underestimated. Although an OM
effect has been found in infants (McCrink and Wynn, 2009)
and an inverse OM effect emerged in 6/7 years old children
(Knops et al., 2013), no studies investigated the developmental
trajectory of this effect. Therefore, it is still unclear how the
OM effect evolves during the acquisition of formal mathematical
knowledge. The relevance of the OM effect lies in the knowledge
it provides regarding the cognitive mechanisms involved in the
representation and the manipulation of non-symbolic numerical
magnitudes. In this study, we aimed to measure how the OM
effect evolves in children between 8 and 12 years of age. Moreover,
the developmental trajectory of the OM effect can also provide
evidence in favor of or against the current accounts proposed to
explain this effect.

A prerequisite to perform approximate mental calculation is
the capacity to estimate and manipulate numerical quantities,
which is a phylogenetically ancient cognitive tool that humans
share with other animals (Flombaum et al., 2005; Cantlon
and Brannon, 2007; Piazza, 2010) and that arises early in life
(Xu and Spelke, 2000; Izard et al., 2009). A widely accepted
view (Dehaene, 1997) assumes that the mental representation
of numerical magnitudes takes the form of an analog mental
number line (hereafter, MNL). In the last decades, evidence has
been collected to support the idea that on the MNL numerosities
are spatially oriented in ascending order from left to right
(Dehaene et al., 1993; Fias and Fischer, 2005; Hubbard et al., 2005;
Rugani and Sartori, 2016; de Hevia et al., 2017). The SNARC
effect (spatial numerical association of response codes; Dehaene
et al., 1993) is often interpreted as evidence for the functional
association between numbers and space: in a parity judgment
tasks, where participant have to decide whether a displayed
number is odd or even, left-hand responses are faster for
relatively small number and right-hand responses for relatively
large numbers (Dehaene et al., 1993; Fias and Fischer, 2005;
Hubbard et al., 2005). Since the magnitude of the number is
not relevant for the task, this spatial bias is assumed to reflect
the automatic activation of the spatial mapping of magnitudes
on the MNL (but for an alternative account see Santens and
Gevers, 2008). The functional association between visuospatial
processing and numerical magnitudes is additionally suggested
by the mounting evidence showing that a shift of spatial attention

can be induced by number processing (Sallilas et al., 2008;
Ranzini et al., 2015, 2016; for a review see Fischer and Knops,
2014). It is worth noting that a functional association also
emerges between shifts of spatial attention and mental arithmetic
(Masson and Pesenti, 2014, 2016; Mathieu et al., 2016, 2017;
Masson et al., 2017a,b). Moreover, converging evidence from
behavioral (Izard and Dehaene, 2008), computational (Dehaene
and Changeux, 1993), and neurophysiological studies (Nieder
and Miller, 2003) suggests that the MNL is logarithmically
compressed, which means that the representational overlap
between adjacent quantities increases proportionally to their size,
in accordance with the Weber–Fechner law (see Piazza et al.,
2010).

Approximate calculation also follows the Weber–Fechner law
(Barth et al., 2006; Dehaene, 2007), but it also shows an additional
response bias, that is the OM effect. Three mutually not exclusive
mechanisms have been proposed to explain the OM effect:
attentional shift account, heuristic account, and compression
account. However, none of them aimed to describe how this
effect changes over development. Evidence shows that the neural
network that supports mental calculation undergoes substantial
functional changes during development and reaches an adult-
like configuration only during adolescence (Rosenberg-Lee et al.,
2011; Soltanlou et al., 2017, 2018; Arsalidou et al., 2018; Peters
and De Smedt, 2018). Therefore, in order to fully understand
the cognitive mechanisms lying at the core of the OM effect
it is important to measure its developmental dynamics and to
evaluate whether the current accounts are able to explain these
age-related changes. In what follows, we introduce these accounts
of the OM effect and discuss the developmental trajectories
predicted by each of them.

It has been proposed that mental calculation is grounded in
neural circuits that originally evolved for processing visuospatial
information (Anderson, 2007; Dehaene and Cohen, 2007; Knops
et al., 2009a). Moreover, various evidence supports the existence
of a functional relationship between visuospatial attention (i.e.,
shift of spatial attention) and mental calculation (Masson and
Pesenti, 2014, 2016; Mathieu et al., 2016, 2017; Masson et al.,
2017a,b). In line with these studies, the attentional shift account
proposes that the OM effect is the result of this functional
relationship (McCrink et al., 2007; Knops et al., 2009b; Pinheiro-
Chagas et al., 2017). The central assumption of the attentional
shift account hypothesizes that non-symbolic addition and
subtraction are implemented by shifting spatial attention on a
spatially oriented MNL. During approximate calculation, the first
operand is mapped on the MNL, then the attentional focus
shifts from the current position (i.e., the point corresponding
to the magnitude of the first operand) to a new position (i.e.,
the point corresponding to the magnitude of the result) by a
distance corresponding to the magnitude of the second operand.
The OM effect is produced by a bias in the attentional shift,
that is the attentional focus moves too far along the MNL in
the direction of the operation, generating an overestimation and
an underestimation of the result of addition and subtraction,
respectively. Strong evidence for the hypothesis that visuospatial
attention is co-opted during mental calculation is provided by
the overlap in the posterior superior parietal lobule (PSPL)
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of the neural activity associated with left/right saccades (i.e.,
visuospatial orientation) and mental calculation (Knops et al.,
2009a).

McCrink and Wynn (2009) proposed the heuristic account to
explain the finding that the OM effect also affects performance in
9 months old infants. This account assumes that infants adopted
a simple heuristic to solve the problems: “if adding, accept
larger outcomes,” “if subtracting, accept smaller outcomes.” For
addition, this heuristic approach might encourage infants to
perceive larger outcomes as more plausible compared smaller
ones, and vice versa for subtraction. Recently, McCrink and
Hubbard (2017) interpreted the finding that the OM effect
increased in adults when available attentional resources were
limited by dividing attention between two concurrent tasks
as further evidence for the heuristics account. However, the
heuristic account and the attentional shift account are deeply
intertwined and can be considered as a single mechanism (i.e.,
heuristics-via-spatial-shifts account), that is the heuristic decision
results from the visuospatial system (McCrink and Hubbard,
2017). Therefore, we will only focus on the attentional shift
account, assuming that the two accounts provide equivalent
predictions.

The attentional shift account has been developed to explain
the OM effect in adults. Therefore, no predictions or hypotheses
were proposed regarding how the attentional shifts on the MNL
that accompany addition and subtraction emerge and whether
they undergo substantial changes during development. Here,
we propose that formal schooling (i.e., acquiring arithmetical
skills) could reinforce (or even contribute to develop) the idea
that addition is related with shifts toward larger numbers and
subtraction toward smaller numbers. Namely, although mental
calculation might be implemented as an attentional shift on the
MNL before formal schooling, repeated exposition to spatial-
numerical associations (e.g., the number line) might consolidate
a systematic movement direction during the acquisition of
arithmetical skills. Moreover, the systematic association between
operations and results (i.e., when adding, the result is always
larger than both operands; when subtracting, the result is
always smaller than the first operand), that children are
exposed to, could boost the attentional shift on the MNL.
The influence of the attentional shift in the estimation of
the result might increase with age and in turn a larger
and more systematic bias would emerge. Therefore, one may
predict an increasing OM effect during childhood. Moreover,
it is worth noting that the co-opting of visuospatial attention
during mental calculation seems to increase with age. In fact,
significant functional changes associated with the neural activity
elicited by symbolic arithmetic problem-solving have been found
between 2nd and 3rd graders, that is 7–9 years old children
(Rosenberg-Lee et al., 2011). During the processing of symbolic
arithmetic problems, 3rd grade children showed greater activity
in brain regions related to visuospatial attentional processes
(posterior parietal cortex: intraparietal sulcus, superior parietal
lobule, and angular gyrus) and high-order visual processing
(ventral visual areas: lingual gyrus, right lateral occipital cortex,
and right parahippocampal gyrus), compared to 2nd grade
children.

The compression account has been proposed by McCrink et al.
(2007) and deploys the logarithmic compression of the MNL to
explain the OM effect. This compressed metric would generate
a systematic operational bias in the direction of the operation
due to the implementation of a linear arithmetic operation
(i.e., addition or subtraction) on a logarithmically scaled mental
representation. This mechanism acts in three steps. First, the
operands are encoded as logarithmically compressed magnitudes
on the MNL. Second, the logarithmic transformation is undone,
which means that the operands are uncompressed to a linear
scale. Third, the two uncompressed operands are added or
subtracted. The OM effect results from the inaccuracy of the
uncompression process. If the uncompression is ineffective the
arithmetic operation is performed on logarithmic values and thus
the generated outcome corresponds to an extreme overestimation
or underestimation for addition and subtraction, respectively. If
the uncompression is highly accurate the operation is performed
on the linear scale, in which case the generated outcome
corresponds (approximately) to the arithmetically correct result.
A more plausible scenario is to assume that the actual degree
of uncompression lies between these two extreme possibilities.
An example can help describe this idea. If uncompression
fails, adding two operands (e.g., 26 and 14) corresponds to
adding their logarithmically compressed internal representation,
that is log(26) ≈ 3.26 and log(14) ≈ 2.64, respectively.
Since adding the logarithm of two numbers is equivalent to
multiplying their linear values, the system generates an extreme
overestimation of the correct result: log(26) + log(14) ≈ 5.9,
which in linear scale corresponds to e5.9

≈ 26 × 14 ≈ 364.
However, the actual approximate addition performed by the
system is much more accurate (see for example McCrink
et al., 2007), and thus the uncompression is to some extent
carried out and the generated outcome is much closer to
the correct result. The same reasoning is valid to explain the
mechanisms underpinning the underestimation of subtraction
outcomes.

What developmental trajectory of the OM effect is expected
according to the compression account? This account focuses
on the logarithmic compression of the MNL. A large body of
evidence suggests that the representational metric of the MNL
shifts from a logarithmic to a linear scale during childhood
(Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth and
Siegler, 2006, 2008; Laski and Siegler, 2007; Opfer and Siegler,
2007 but for a different interpretation see Barth and Paladino,
2011). The logarithmic-to-linear shift of the MNL implies that
the compression of this magnitude representation decreases with
age and probably with accumulation of experience in formal
mathematics teaching. Therefore, the uncompression of the
operands, performed before the approximate mental calculation,
starts from a highly logarithmic scale in young children and
from a more linear scale in adults. The degree of uncompression
required to generate an accurate outcome is thus greater in young
children and this in turn could lead to a stronger OM effect. The
compression account therefore predicts that the size of the OM
effect is higher in young children and decreases with age to reach
an adult-like pattern in older children. It is worth noting that,
as discussed below, the inverse OM effect (i.e., overestimation
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of subtraction problems) found in 6/7 years old children (Knops
et al., 2013) already provides evidence against this account.

MATERIALS AND METHODS

The sample and the tasks analyzed in the present paper were
administered to children as part of a larger study conducted in
Brazil (for a more precise description of this larger study see
Pinheiro-Chagas et al., 2014).

Participants
One hundred seventy-two children from first to sixth grade were
recruited from private and public schools in Brazil. Ten children
were not able to perform non-symbolic numerical tasks, as shown
by the fact that they failed to perform a non-symbolic number
comparison task (this task is not reported here, for a more
detailed description of this task see Pinheiro-Chagas et al., 2014).
In that non-symbolic number comparison task, children had an
accuracy less than 55% and a poor fit (R2 < 0.2) in the estimation
of the Weber fraction, and thus were excluded from the study.
These ten children were also not included in the present analyses.
The final sample consisted of 162 children (66 boys, 96 girls)
between 8 and 12 years of age (mean = 9.7 years, SD = 1.1; 8 years
old: 24 children, 9 years old: 54, 10 years old: 50, 11 years old: 20,
12 years old: 14). Informed written consent was obtained from
the parents and oral consent from the children. This study was
approved by the ethics review board of the Federal University of
Minas Gerais, Brazil (COEP–UFMG).

All children performed above the 25th percentile in the
spelling (mean = 110.08, SD = 8.13, range = [85, 126]) and
arithmetic (mean = 108.92, SD = 11.41, range = [86, 134]) subtests
of the TDE (Teste de Desempenho Escolar; Stein, 1994) and had
a normal intelligence (mean = 110.61, SD = 10.55, range = [86,
134]), as measured by Raven’s Colored Progressive Matrices
(Angelini et al., 1999).

Tasks
Non-symbolic Estimation Task
In this task children were asked to estimate and report verbally
the numerosity of a set of dots visually presented on a
computer screen. Dots were displayed in black within a white
circle, which was presented against a black background. The
following numerosities were presented: 10, 16, 24, 32, 48, 56,
or 64 dots. Each numerosity was presented five times (in a
different configuration), resulting in a total of 35 trials. The
same numerosity never appeared in consecutive trials. Each trial
started with a fixation point (i.e., a white cross at the center of the
screen) presented for 500 ms, followed by the onset of the set of
dots which remained on the screen until spacebar was pressed
or for up to 1000 ms. During the presentation of the dots, as
soon as the child responded, the examiner, who was seated next
to the child, pressed the spacebar on the keyboard and typed the
child’s answer. The next trial started after an intertrial interval of
700 ms, which consisted of a black screen. Dots were displayed
on the screen for up to 1000 ms only to prevent counting. To
prevent the use of non-numerical features, total dot area was

held constant across the trials and thus it could not be used as
a clue to estimate the different numerosities. The average dot-
size of the dots was selected so that the total area remained
constant, but the dot-size of each dot could vary with a normal
distribution with the mean selected to provide constant area
across the trials. Therefore, while the average dot-size covaried
negatively with numerosity, the dot-size of the single dots could
not be used as a cue to evaluate the numerosity of the set. To
avoid memorization effects due to the repetition of a specific
numerosity, on each trial, the stimuli were randomly chosen from
a set of 10 precomputed images with the given numerosity. To
exclude extreme responses, the normalized mean estimated value
was calculated for each child and each of the seven presented
numerosities, then responses ±3 SD from the mean estimated
value were considered outliers and excluded from the analysis
(3.5% of the trials). Children’s number acuity was measured in
term of individual mean coefficient of variation (i.e., separately
for each numerosity, the ratio of standard deviation and mean
chosen value).

Non-symbolic Approximate Calculation Task
This task has been adapted from Knops et al. (2013) study.
Children were asked to solve approximate addition and
subtraction problems with operands and proposed results
presented in a non-symbolic notation (i.e., sets of dots). Problems
are reported in Table 1. Eight addition and eight subtraction
problems were generated. Both arithmetic operations had the
same range of possible outcomes: 10, 16, 26, 40. To prevent
the subjects from memorizing the problems, the operands were
randomly “jittered” by adding a random value r, with r ∈ J
and J = [−1, 0, 1]. For each correct outcome, seven response
alternatives were generated as round (c× 2.5i/3), where c is the
correct result and i = [−3,−2,−1, 0, 1, 2, 3]. To avoid a strategy
of always selecting the response alternative falling in the middle of
the proposed range, only five of the seven generated alternatives
were presented in a trial (see Table 1). In one half of the trials,
the presented responses were the upper five (henceforth, high
range), and thus the correct outcome was the second smallest
numerosity. In the other half, the presented responses were the
lower five (henceforth, low range), and thus the correct outcome
was the fourth smallest numerosity. Each trial was repeated
twice and thus the total number of trials was 64: 2 operations
(addition and subtraction) × 8 problems × 2 ranges (high
and low) × 2 repetitions. To prevent the use of non-numerical
features, total dot area and dot-size were manipulated as in the
non-symbolic estimation task. To avoid memorization effects due
to the repetition of a specific numerosity, on each trial, the stimuli
were randomly chosen from a set of 10 precomputed images with
the given numerosity. Trials without response and trials where
the selected response was ±3 SD from the normalized mean
chosen values (calculated combining addition and subtraction)
were considered outliers and excluded from the analysis (3.1% of
the trials). To analyze the OM effect, for each child and for each
operation (addition vs. subtraction), mean chosen value, standard
deviation, and coefficient of variation (i.e., the ratio of standard
deviation and mean chosen value) were calculated for each of the
four correct outcomes.
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TABLE 1 | Operands, correct outcome (C) and deviant (D) outcomes presented in the non-symbolic arithmetic problems.

Operands Correct results and deviant proposed outcomes

1/2.5 1/1.8 1/1.4 1 1.4 1.8 2.5

Addition

5 5 4 5 7 10 14 18 25

6 4 4 5 7 10 14 18 25

8 8 6 9 12 16 22 29 40

10 6 6 9 12 16 22 29 40

13 13 10 14 19 26 35 48 65

18 8 10 14 19 26 35 48 65

20 20 16 22 29 40 54 74 100

26 14 16 22 29 40 54 74 100

Subtraction

16 6 4 5 7 10 14 18 25

20 10 4 5 7 10 14 18 25

24 8 6 9 12 16 22 29 40

32 16 6 9 12 16 22 29 40

40 14 10 14 19 26 35 48 65

52 26 10 14 19 26 35 48 65

62 22 16 22 29 40 54 74 100

80 40 16 22 29 40 54 74 100

Range

Low D D D C D

High D C D D D

The last two rows report the set of outcomes presented in the two ranges.

To provide a child-friendly paradigm, problems were
embedded in a story of a monkey having a box of balls (Figure 1).
Each trial started with the drawing of the monkey’s face presented
for 500 ms. After the offset of the monkey’s face, an empty
brown box (against a black background) appeared at the bottom
of the screen and a first set of red dots moved into the box.
The first set of dots appeared at the top of the screen and
moved toward the box until the dots disappeared inside it. For
addition problems, a second set of red dots appeared at the
top of the screen and disappeared inside the box in the same
way. For subtraction problems, a set of red dots moved out of
the box and disappeared at the top of the screen. Both for the
first and the second sets, the duration of the dots movement
(from the appearance to the disappearance) was 1000 ms. After
the second set of dots disappeared, the box was replaced by
the top-view of five boxes that contained five different sets of
dots (i.e., five responses alternatives). Two boxes appeared on
the left of the screen, two on the right, and one on the top.
Children were asked to click with the left-key of the mouse on
the box containing the set of dots which numerosity was the
closest to the correct outcome of the operation. The beginning
of the response active period was indicated by the appearance
of the mouse pointer on top of a green star in the center of the
screen. A training period consisting of two trials preceded the
testing phase. In the training period, there was no time limit
for the response and feedback was provided by a frame around
the chosen box. The appearance of a green frame indicated a
correct response, whereas a red frame indicated an incorrect
response. If the response was incorrect, the child was asked to

choose another box, and this procedure was repeated until the
correct box was chosen. Before testing phase, the children were
asked if they had understood the task, and if not, the training
was repeated until they confirmed that they understood the task.
In the testing phase, children had a maximum of 10,000 ms to
select the box and the chosen box was indicated by a neutral
blue frame (i.e., no feedback provided). Addition and subtraction
problems were presented in different blocks counterbalanced
across participants.

Data Analysis
All analyses were performed using R-project software (R
Core Team, 2015) and RStudio software (RStudio Team,
2015). In the following analyses, ANOVAs were Greenhouse-
Geisser corrected (Greenhouse and Geisser, 1959) when the
assumption of sphericity was violated; uncorrected degrees
of freedom and epsilon values (εGG) are reported. In the
post hoc analyses all p-values have been corrected with Holm’s
method (Holm, 1979). For the OM effect, effect sizes are
reported following the recommendation of Lakens (2013).
Additional analyses of children’s performance (absolute error)
and of the operational bias (ratio) are reported in the
Appendix A.

RESULTS

The results of all the ANOVAs performed on the tasks are
reported in the Appendix B (Supplementary Table S2).
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FIGURE 1 | Trial sequence of the non-symbolic approximate calculation task. The example shows the screenshots from a non-symbolic addition trial. During the
response period, the five response alternatives were presented in a circle-like shape around the center of the screen (i.e., green star) with two boxes on the left of the
screen, two on the right, and one on the top.

Non-symbolic Estimation Task
The first analysis aims to evaluate the performance of children
in the non-symbolic number estimation task. Mean chosen
numerosity and CV were analyzed with a repeated measure
ANOVA with displayed numerosity (i.e., 10, 16, 24, 32, 48, 56, and
64 dots) as within-subject factor and age (i.e., 8 to 12 years old) as
between-subject factor. Mean chosen numerosities significantly
increased with displayed numerosity [F(6,942) = 313.45,
p < 0.001, εGG = 0.27, generalized η2 = 0.47]. However, as
shown in Figure 2, and in line with adults’ behavior (Knops et al.,
2014), children underestimated the larger displayed numerosities.
To verify whether this pattern was statistically significant a
repeated measure correlation (Bakdash and Marusich, 2017) was
performed between numerical difference (chosen numerosity
minus displayed numerosity) and displayed numerosity. There
was a strong negative correlation between numerical difference
and displayed numerosity [rrm(971) = −0.57, 95% CI = [−0.61,
−0.53], p < 0.001], that is the discrepancy between displayed
and chosen values increased with numerosity (Figure 2). In the
ANOVA, neither the main effect of age nor the interaction was
significant.

On the basis of the assumption that mental numerosity
representation is subjected to the Weber–Fechner law, the CV
should not covary with displayed numerosity (i.e., the CV should
be constant across numerosities). As shown in Figure 2, the CV
is lowest for the displayed numerosity 10 and increases with
displayed numerosity [F(6,942) = 11.04, p < 0.001, εGG = 0.92,
η2

G = 0.05]. To further explore the relationship between CV
and displayed numerosity, we performed a repeated measure

correlation (Bakdash and Marusich, 2017) between these two
variables. A weak positive correlation emerged [rrm(971) = 0.16,
95% CI = [0.10, 0.22], p < 0.001], showing that the CV slightly
increases with displayed numerosity. The ANOVA also revealed
that the CV decreased with age [F(4,157) = 5.26, p < 0.001,
η2

G = 0.04; see Figure 2] but no interaction was observed [F(24,
942) < 1]. This indicates that the overall accuracy increased
with age.

To account for putative effects of inflated variance due to small
number of trials in each displayed numerosity, we repeated these
analyses using the z-transformed scores. For both mean chosen
numerosity and CV, we calculated the standardized z-scores over
all displayed numerosity for each child. The mean z-scores were
entered into a repeated measure ANOVA with age as between-
subject factor. Similar results emerged. In fact, age significantly
influenced CV [F(4,157) = 5.37, p < 0.001] but not mean chosen
numerosity [F(4,157) < 1].

Distribution of Responses in
Approximate Addition and Subtraction
In each trial, the set of five proposed alternatives was sampled
from either the lower range of responses (alternatives from
1 to 5, see Table 1) or the higher range (alternatives from
3 to 7, see Table 1). Therefore, the correct outcome was
either the second (high range) and the fourth (low range)
smaller proposed alternative. If children were able to solve
the calculation, the response pattern should show a non-flat
distribution centered on the correct outcome (i.e., second or
fourth smaller alternative for high and low range, respectively).
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FIGURE 2 | (A) The top part shows the mean chosen numerosities (squares; the black line represents the regression model) and standard deviation (circles) plotted
against the displayed numerosity. The gray dashed line represents perfect performance. The lower part reports the mean CV (coefficients of variation) plotted against
the displayed numerosity. (B) The mean CV plotted against the age groups. (C) The difference between chosen numerosity and displayed numerosity plotted against
the displayed numerosity. The gray line represents a regression model between the variables.

Mean (arcsine-transformed) percentage of choice was analyzed
with a repeated-measure ANOVA with response category (i.e.,
1 to 5), range (i.e., low vs. high), and operation (i.e., addition
vs. subtraction) as within-subject factors and age (i.e., 8 to
12 years old) as between-subject factor. Results are reported
in Supplementary Table S2 (see Appendix B). In particular,
both the operation × range × response category interaction
[F(4,628) = 141.89, p < 0.001, εGG = 0.95, generalized
η2 = 0.16] and the age × range × response category interaction
[F(16,628) = 1.71, p = 0.048, εGG = 0.89, generalized η2 = 0.01]
were significant. Moreover, the four-way interaction showed
a tendency toward significance [F(16,628) = 1.54, p = 0.085,
εGG = 0.95, generalized η2 < 0.01]. The tendency of the four-
way interaction and Figure 3 suggest that the performance was
different in the two operations. Therefore, to further explore
this pattern, two additional ANOVAs were performed on mean
percentage of choice with response category and range as within-
subject factors and age as between-subject factor, separately for
addition and subtraction.

For addition, the main effect of response category was
significant [F(4,628) = 22.06, p < 0.001, εGG = 0.89,
generalized η2 = 0.06]. Moreover, the age × response category
[F(16,628) = 2.19, p = 0.007, εGG = 0.89, generalized η2 = 0.03],
the range × response category interaction [F(4,628) = 223.06,
p < 0.001, εGG = 0.87, generalized η2 = 0.43] and the three-way
interaction [F(16,628) = 2.07, p = 0.012, εGG = 0.87, generalized
η2 = 0.03] were significant (Figure 3).

For subtraction, only the main effect of response category
[F(4,628) = 19.18, p < 0.001, εGG = 0.89, generalized η2 = 0.07]
and the age × response category interaction [F(16,628) = 2.02,

p = 0.014, εGG = 0.89, generalized η2 = 0.03] were significant,
whereas neither the range × response category interaction
[F(4,628) = 2.07, p = 0.087] nor the three-way interaction
[F(16,628) < 1] reached significance (Figure 3). The response
distribution for subtraction was flatter, showing that children
found more difficult to perform approximate subtraction.

Children’s Performance in Approximate
Calculation
In order to evaluate children’s performance in approximate
addition and subtraction, mean chosen response and standard
deviation were analyzed with a repeated-measure ANOVA with
correct outcome (i.e., 10, 16, 26, and 40) and operation (i.e.,
addition vs. subtraction) as within-subject factors and age (i.e.,
8–12 years old) as between-subject factor. For mean chosen
response, the main effect of correct outcome was significant
[F(3,471) = 1685.80, p < 0.001, εGG = 0.60, η2

G = 0.76].
Mean chosen responses increased with correct outcome (mean
responses: 12.0, 17.3, 24.1, and 32.9 for the outcomes 10, 16,
26, and 40, respectively). Mean chosen responses were greater
for addition (mean = 23.2) than for subtraction (mean = 19.9)
[F(1,157) = 93.49, p < 0.001, η2

G = 0.12]. Moreover, all the two-
way interactions were significant: correct outcome × operation
[F(3,471) = 131.81, p < 0.001, εGG = 0.72, η2

G = 0.12], correct
outcome × age [F(12,471) = 2.03, p = 0.049, εGG = 0.60,
η2

G = 0.01], operation × age [F(4,157) = 6.24, p < 0.001,
η2

G = 0.04]. Interestingly, the three-way interaction was also
significant [F(12,471) = 2.78, p = 0.004, εGG = 0.72, η2

G = 0.01].
As shown in Figure 4, mean chosen values were overestimated for
addition compared to subtraction, and this difference was greater
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FIGURE 3 | Mean (arcsine-transformed) percentage of choice across the response category (x-axis) as a function of range (high: black circles, low: gray squares)
and age (from 8 to 12, rows), for addition (A) and subtraction (B). For high range the correct outcome is the response category 2, for low range the correct outcome
is the response category 4.

for larger numerosities and increased with age. This pattern
reflects the OM effect and will be further investigated in the
following section.

Standard deviation significantly increased with correct
outcome [F(3,471) = 275.66, p < 0.001, εGG = 0.82, η2

G = 0.35].
However, this increase followed a different pattern in the two
operations, as shown by the correct outcome by operation
interaction [F(3,471) = 18.17, p < 0.001, εGG = 0.88, η2

G = 0.02],
see Figure 4. No other main effects or interactions were
significant.

To investigate whether children’s mental numerosity
representation follows Weber–Fechner law, a third ANOVA
was performed on CV with correct outcome and operation as
within-subject factors and age as between-subject factor. The
main effect of correct outcome was significant [F(3,471) = 5.88,
p < 0.001, εGG = 0.90, η2

G = 0.01] [outcomes 10: mean CV
(SD) = 0.32 (0.09); outcome 16: 0.31 (0.09); outcome 26: 0.33
(0.09); outcome 40: 0.30 (0.07)]. Moreover, the CV was also
significantly smaller for addition (mean = 0.30, SD = 0.08) than
for subtraction (mean = 0.33, SD = 0.08) [F(1,157) = 30.28,
p < 0.001, η2

G = 0.03]. Finally, the interaction between correct
outcome and operation was significant [F(3,471) = 7.46,
p < 0.001, εGG = 0.96, η2

G = 0.01], see Figure 4. To further

investigate this interaction, we performed a repeated measure
correlation between correct outcome and CV, separately for
each operation. For addition, no correlation emerged between
CV and correct outcome [rrm(485) = 0.005, 95% CI = [−0.08,
0.09], p = 0.91]. For subtraction, a weak negative correlation
emerged [rrm(485) =−0.17, 95% CI = [−0.25,−0.08], p < 0.001],
showing that mean CV slightly decreased with correct outcome,
and thus the variability of the chosen response did not increase
proportionally with the mean of the chosen response. These
results are not perfectly consistent with the assumption that
the underlying mental numerosity representation follows the
Weber–Fechner law. However, since the CV did not covary with
correct outcome in addition and only weakly correlated with it in
subtraction (explained variance: 2.89%), the overall performance
did not substantially deviate from this assumption.

Operational Momentum Effect
To investigate the developmental trajectory of the OM effect,
the mean response bias was analyzed with a repeated-measure
ANOVA with operation as within-subject factor and age as
between-subject factor. Response bias was calculated as the mean
difference between the logarithm of the chosen response and the
logarithm of the correct outcome. Response bias was significantly
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FIGURE 4 | (A) Mean chosen response (CR) as a function of correct outcome (x-axis), operation (addition in black, subtraction in gray), and age (columns). The
black dotted lines represent perfect performance. (B) Mean standard deviation (SD) as a function of correct outcome (x-axis) and operation (addition in black,
subtraction in gray), collapsed across all ages. (C) Mean coefficients of variation (CV) as a function of correct outcome (x-axis) and operation (addition in black,
subtraction in gray, the lines represent the regression models), collapsed across all ages. In all plots, error bars represent the standard error of the mean.

different between addition (−0.0004, SD = 0.05) and subtraction
(−0.06, SD = 0.08) [F(1,157) = 60.2, p < 0.001, η2

G = 0.17]. The
age by operation interaction was also significant [F(4,157) = 4.45,
p = 0.002, η2

G = 0.06]. As shown in Figure 5, the OM effect
monotonically increased with age1, from no effect for younger
children to a strong effect for older children (see Table 2 for
post hoc comparison and effect sizes). To further explore the
addition and subtraction response biases separately, a second set
of one-sample t-tests have been performed to evaluate whether
they significantly differed from zero (biases significantly different
from zero are shown in bold in Table 2). As shown in the table,
only subtraction biases for the age groups from 9 to 12 were
significantly different from zero [all ts <−4.97, all ps < 0.01].

In Appendix A, we report an additional set of analyses that by
and large confirms these findings.

DISCUSSION

This study aimed to investigate the developmental trajectory of
the OM effect in children aged from 8 to 12 years old and to
assess whether the current accounts are able to predict these
age-related changes. Concerning the non-symbolic estimation

1Since the sample size is unequal in the different age groups, we also performed two
Spearman’s correlation analyses between mean response bias and age (in months),
separately for addition and subtraction. For addition, there was significant positive
correlation [r = 0.31, p < 0.001]. For subtraction, there was significant negative
correlation [r =−0.24, p = 0.002].

FIGURE 5 | Mean response bias (i.e., difference between the logarithm of the
chosen response and the logarithm of the correct outcome) as a function of
age and operation (addition in black, subtraction in gray dashed). Error bars
represent the standard error of the mean. The horizontal dotted line
represents no bias.

task, consistent with previous research (Izard and Dehaene,
2008; Knops et al., 2014; but for overestimation see Mejias
and Schiltz, 2013), children underestimated the cardinality
of displayed numerosities and this underestimation increased
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TABLE 2 | T-tests comparing the response bias between addition and subtraction in the different age groups.

Age group N Addition Subtraction t df p-value Cohen’s dz Hedges’ gav

Mean SD Mean SD

8 24 −0.020 0.057 −0.028 0.094 0.4 23 >0.1 0.08 0.10

9 54 −0.012 0.041 −0.055 0.075 3.61 53 0.005 0.49 0.71

10 50 0.005 0.048 −0.065 0.093 4.55 49 <0.001 0.64 0.94

11 20 0.019 0.058 −0.065 0.052 4.52 19 0.002 1.01 1.46

12 14 0.029 0.045 −0.103 0.073 5.04 13 0.002 1.35 2.04

All p-values have been corrected with Holm’s method. For the calculation of the effect sizes (Cohen’s dz and Hedges’ gav) refers to Lakens (2013). Mean response biases
significantly different from zero (i.e., one-sample t-tests, separately computed for each operation and age group) are in bold, all ps < 0.01.

with numerosity. Although the CV significantly increased with
numerosity, the correlation between the two variable was weak
(rrm = 0.16). Moreover, both mean estimated values and standard
deviation increased with displayed numerosity. This suggests that
children’s performance was by and large well captured by Weber–
Fechner law, even if the CV was not perfectly linear across the
entire numerical range. In line with previous findings that suggest
that the Weber fraction decreases with age (Piazza et al., 2010;
Halberda et al., 2012), the coefficient of variation also significantly
decreased with age. Deviations may be due to non-numerical
features of the stimulus set, for example. Further studies are
needed to fully explain these inconsistencies.

In the approximate addition task, the distribution of responses
clearly peaked around the correct outcome showing that children
were able to solve these problems. The response distribution
for subtraction problems, however, showed a different pattern.
The distribution was flat for younger children (8 years old, see
Figure 3) and in general the two ranges (low vs. high, see Table 1)
were almost overlapped. Therefore, children found subtraction
problems more difficult to solve compared to addition problems,
in line with adults (Knops et al., 2009b). However, for subtraction
problems, the significant main effect of response category and
Figure 3 suggest that children (at least in the age groups from
9 to 12) did not respond at random but rather selected more
often values in the center of the response category range (i.e.,
2, 3, 4) compared to the extremes (i.e., 1 and 5). This suggests
that children might have used a different strategy to perform
subtraction compared to addition. Despite the lower performance
on subtractions problems, a clear OM effect emerged in our
sample. Importantly, for addition the increase of the OM
effect was accompanied by an increase in overall accuracy (see
Figure 3). That is, while younger children made more and non-
systematic errors, older children made less but systematic errors.
Interestingly, the OM effect monotonically increases with age.
While no effect was present in younger children (8 years-olds),
the OM effect (i.e., the relative difference between the estimated
responses in addition and subtraction) increased with age. In
what follows, we first summarize the findings related to the
evolution of the OM effect during childhood, and then we will
discuss the implications of these findings for the current accounts
of the OM effect (i.e., compression account and attentional shift
account).

McCrink and Wynn (2009) found that 9 months old infants
exhibit an OM effect similar to that found in adults. Although

the similarity between the OM effect found in infants (McCrink
and Wynn, 2009) and adults (McCrink et al., 2007; Knops
et al., 2009b) would suggest that the OM effect results from
inherited mechanisms (since infants are not yet affected by
cultural practices) and remains constant during development, a
more complex pattern emerges if we consider a previous study
(Knops et al., 2013) and the findings reported in the current
paper. In fact, contrary to the expected continuity of the OM
effect during development, Knops et al. (2013) found an inverse
OM effect in 6/7 years old children: subtraction was significantly
overestimated compared to addition. Finally, our results showed
a monotonic increase of the OM effect with age. This complex
developmental pattern indicates that the evolution of the OM
effect is not linear. In fact, a standard OM effect emerges in infants
(McCrink and Wynn, 2009), an inverse OM effect was found in
6/7 years old children (Knops et al., 2013), and our results show
no OM in 8 years old children and a monotonically increasing
OM effect from 9 to 12 years old.

How well do the current accounts predict the developmental-
related changes of the OM effect? The compression account
(McCrink et al., 2007) predicts that, due the logarithmic-to-
linear shift of the MNL during childhood (Siegler and Opfer,
2003; Siegler and Booth, 2004; Booth and Siegler, 2006, 2008;
Laski and Siegler, 2007; Opfer and Siegler, 2007; but for a
different perspective see Barth and Paladino, 2011), the OM effect
decreases with age. Our result clearly points in the opposite
direction showing an increase of the OM effect.

In line with the recycling theory (Dehaene and Cohen,
2007; see also the redeployment theory, Anderson, 2007),
which proposes that arithmetic calculation is grounded on the
recycling of neural circuits that originally evolved for processing
visuospatial information, the attentional shift account assumes
that the OM effect is driven by the functional relationship
between visuospatial attention and mental arithmetic. Strong
evidence for the idea that visuospatial attention is co-opted
during mental calculation is provided by the fact that the neural
activity associated with left/right saccades (i.e., visuospatial
orientation) and mental calculation overlap in the posterior
superior parietal lobule (Knops et al., 2009a). Using fMRI
data, these authors showed that a multivariate classifier
algorithm trained to classify the neural activity elicited by
leftward and rightward saccades was able to generalize to
approximate arithmetic. Without further training, this algorithm
was able to distinguish between addition and subtraction
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by classifying approximate additions as rightward saccades.
The activation of the same neural areas during rightward
saccades and approximate addition speaks in favor of the
recruitment of attentional shift mechanisms during mental
calculation. This hypothesis stipulates a functional coupling
between eye movements and arithmetic. A recent study provided
confirmatory evidence for this notion (Klein et al., 2014).
Participants’ eye movements after the first saccade were observed
to move to the right during addition problems and to the left
in subtraction problems when asked to indicate the location of
the result on a labeled line (Klein et al., 2014). Moreover, the
redeployment of visuospatial attention during mental calculation
seems to be enhanced during formal schooling (Rosenberg-
Lee et al., 2011). Finally, on the behavioral level, too, even if
spatial-numerical association already emerges in preschoolers,
the evidence is mixed. For example, White et al. (2012) found
that the SNARC effect emerged during the 2nd year of schooling
in British students, that is at around 7 years of age, while 6-
year-olds did not show a significant SNARC effect (see also
Gibson and Maurer, 2016). Moreover, Yang et al. (2014) found
a SNARC effect in kindergarteners (age range: 4.8–6.4 years),
2nd, 3rd, 5th, and 6th graders, while 1st and 4th graders did
not show a significant effect (see also Patro and Haman, 2012).
Hoffmann et al. (2013) also found mixed evidence for the
emergence of the SNARC effect. While all children in the second-
term (mean age: 5.8 years old) showed a SNARC effect, in
the first-term group (5.5 years old) the effect emerged when
a magnitude comparison task preceded a digit color judgment
task but not when the task order was inverted. Moreover, in the
magnitude comparison task the size of the SNARC effect was
related to proficiency with Arabic numbers. This developmental
pattern suggests that the spatial-numerical association is still
immature in young children. We propose that formal schooling
could bolster spatial-numerical associations and hence reinforce
movement direction during addition (toward larger numbers)
and subtraction (toward smaller numbers). Attentional shifts
may implement the core cognitive function to carry out the
shifts along the spatial mental number representation and may
be affected in at least two ways by the emerging spatial-numerical
associations. Either the amount of displacement in the direction
of the operation on the MNL increases (i.e., generate a larger
and/or more systematic bias) or the variance of displacement is
reduced while the overall amplitude remains constant. Therefore,
the attentional shift account predicts an increasing OM effect
during childhood. Consistent with this prediction, we found a
monotonous increase of the OM effect with age.

Although the attentional shift account is consistent with our
results, a more complex picture emerges if the results from
previous studies are taken into account. In fact, the inverse
OM effect found in 6/7 years old children (Knops et al., 2013)
is neither explained nor predicted by this account. However,
Knops et al. (2013) showed that the direction of the OM effect
was related to reorienting attention in a Posner paradigm. The
reorientation effect was calculated as the difference in reaction
times between valid (i.e., the target stimulus appeared on the
left or right of a bidirectional arrow previously presented in
the center of the screen) and invalid trials (i.e., the target

stimulus appeared opposite the pointing direction of a single-
headed arrow). In their study, children who exhibited a
smaller reorientation effect (i.e., more proficient to reorient
attention after an invalid cue) also had a more regular OM
effect (i.e., addition overestimated compare to subtraction). As
those authors suggested, it can be hypothesized that the OM
effect relies on a fully developed attentional system and on a
robust functional association between visuospatial attention and
mental calculation. Alternatively, it may suggest that inhibitory
control of saccadic eye movements plays a crucial role for
the association between attention and arithmetic. We can
only speculate as to why an inverse OM effect emerges in
6/7 years old children and the youngest age group of our
sample does not show any effect. The more immature attentional
system (Rueda et al., 2004; Konrad et al., 2005) and the
weaker functional connection between visuospatial processing
and mental calculation (Rosenberg-Lee et al., 2011) might be at
the origin of the inverse OM effect and its absence in younger
children. Namely, the implementation of approximate addition
and subtraction would not be yet supported by operation-
specific, systematic attentional shifts on the MNL that produce
misestimation in the direction of the operation.

The presence of a standard OM effect in infants (McCrink
and Wynn, 2009) challenges the idea that the OM effect
monotonically increases during childhood due to the
consolidation of the engagement of visuospatial processing
during mental calculation. However, this contradiction strongly
relies on the idea that the development of cognitive performance
always reflects linear developmental trajectories. However, as put
forward by Siegler (1996), behavior may reflect the prevalence of
heuristics and biases that wax and wane over time. That is, while
infants may respond according to a given heuristic, the very
same heuristic may be less influential during later periods in life.
In children, performance in approximate calculation tasks may
be performed with the support of the visuospatial system (i.e.,
the shift of the attentional focus on the MNL), while in infants
the heuristic decision may result from simpler processes rather
than from more sophisticated attentional mechanisms. Namely,
in children (or adults) and infants the heuristic decision might
result from different mechanisms. However, more evidence
on the development of the OM effect is needed to unravel the
cognitive mechanisms that drive the OM at different ages.

This study has some limitations. First, children’s performance
in subtraction was low compared to addition. The higher
difficulty to estimate the result of approximate subtraction
could be due to the use of different strategies to perform
the two operations. To better understand how children
perform approximate calculation, future research should further
investigate this difference in performance. Second, despite the
fairly large sample, 6/7 years old children were not included, that
is the age group that showed the inverse OM effect. Future studies
should include a larger age range in order to confirm the inverse
OM effect and to further investigate the development of this
effect. Third, we did not include any task to measure visuospatial
attention. Future studies should investigate whether there is a
correlation between the developmental trajectories of visuospatial
attention and of the OM effect. Finally, the effect of education
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is also accompanied by the maturation of neural network that
supports mental calculation. In the analysis we focused on age,
future research, however, should also disentangle the influence of
age (neural maturation) and grade (education) on the OM effect.
These two independent factors could make distinct contribution
at various stages of development.

To sum up, we provided a novel finding on the developmental
trajectory of the OM effect in children from 8 to 12 years old. The
OM effect monotonically increases with age. This developmental
pattern is inconsistent with the compression account. On the
other hand, the attentional shift account provides a possible
explanation of these results based on the functional relationship
between visuospatial attention and mental calculation and on
the effect of the acquisition of arithmetical skills during formal
schooling. The attentional shift account leads to new predictions
about a correlation between visuospatial processing and mental
calculation which can be addressed in future studies. Our results
provide an important empirical constraint to further explore the
origin of the OM effect.
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