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In the social and behavioral sciences, it is recommended that effect sizes and their

sampling variances be reported. Formulas for common effect sizes such as standardized

and raw mean differences, correlation coefficients, and odds ratios are well known and

have been well studied. However, the statistical properties of multivariate effect sizes

have received less attention in the literature. This study shows how structural equation

modeling (SEM) can be used to compute multivariate effect sizes and their sampling

covariance matrices. We focus on the standardized mean difference (multiple-treatment

and multiple-endpoint studies) with or without the assumption of the homogeneity of

variances (or covariancematrices) in this study. Empirical examples were used to illustrate

the procedures in R. Two computer simulation studies were used to evaluate the empirical

performance of the SEM approach. The findings suggest that in multiple-treatment and

multiple-endpoint studies, when the assumption of the homogeneity of variances (or

covariance matrices) is questionable, it is preferable not to impose this assumption when

estimating the effect sizes. Implications and further directions are discussed.

Keywords: effect size, multivariate effect size, sampling covariance matrix, meta-analysis, structural equation

model

In the social and behavioral sciences, it is recommended that effect sizes and their sampling
variances be reported (e.g., Cohen, 1994; Wilkinson and Task Force on Statistical Inference, 1999;
Cumming, 2014). When there are a sufficient number of studies, the meta-analysis is the standard
method used to synthesize the research findings. The results of the meta-analysis may inform us
what the average effect is and how the effect sizes vary across the studies.

There are two key ingredients for a meta-analysis. The first one is the effect size that quantifies
the strength of the effect in the studies. Effect sizes can be either unstandardized or standardized
(e.g., Kelley and Preacher, 2012). Unstandardized effect sizes are used when the effect sizes are
comparable across studies, e.g., blood pressure or physical measures (Bond et al., 2003). When the
scales of the measures are unclear or non-comparable across studies, standardized effect sizes are
preferred (e.g., Hunter and Hamilton, 2002).

Besides the effect sizes, we also need the standard error (SE) of the effect sizes to quantify the
precision of the estimated effect sizes. Formulas for common effect sizes such as the standardized
and raw mean differences, correlation coefficients, and odds ratios are well known and have been
well studied (Borenstein et al., 2009; Card, 2012; Cheung, 2015a; Schmidt and Hunter, 2015).
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Cheung Computing Multivariate Effect Sizes

In applied research, however, more than one effect size
may be involved. For example, there may be more than one
treatment group compared to a control group. The use of
multiple treatment groups allows researchers to address the
phenomenon under different levels of manipulation. By using the
same control group in the comparisons, researchers minimize
the cost of collecting multiple control groups (Kim and Becker,
2010). Another example is when there is more than one outcome
variable in the control and treatment groups. The use of multiple
outcomes permits researchers to study different related outcomes
under the same manipulations (Thompson and Becker, 2014).
Studies that measure these two types of effect sizes are known as
multiple-treatment and multiple-endpoint studies.

Since the effect sizes are not independent, researchers have to
calculate the sampling covariances among the effect sizes. Gleser
and Olkin (1994, 2009) have provided the most comprehensive
treatment of this subject to date. They derived formulas to
compute the effect sizes and their sampling variances and
covariances. Once the effect sizes and their sampling covariance
matrices are available, a multivariate meta-analysis (Nam et al.,
2003; Jackson et al., 2011; Cheung, 2013) can be performed on all
effect sizes.

Although Gleser and Olkin (1994, 2009) have provided
standard formulas to compute the effect sizes and their sampling
covariance matrices for multiple-treatment and multiple-
endpoint studies, there are a few limitations in their approach.
First, it is not easy for users, especially those without a strong
statistical background, to comprehend the logic in calculating
the variances and covariances. Second, these formulas rely on
the assumption of the homogeneity of variances or covariance
matrices. Although it is possible to drop these assumptions,
the derivations are not apparent for most users. Most users
would just adopt these assumptions without considering the
alternatives. Third, it is difficult to extend their formulas to more
complicated cases. One such example is the combination of
multiple-treatment with multiple-endpoint studies in the same
publication. Many researchers simplify the effect sizes to either
the multiple-treatment study or the multiple-endpoint study,
which is not ideal because of the loss of information.

Structural equation modeling (SEM) is a favorite tool to use in
analyzing multivariate data. It has been used to calculate SEs and
confidence intervals for various effect sizes and indices (Raykov,
2001; Cheung andChan, 2004; Preacher, 2006). Recently, Cheung
(2015a, Chapter 3) showed how common effect sizes, including
those in multiple-treatment and multiple-endpoint studies, and
their sampling variances and covariances, can be computed using
the SEM framework.

The SEM approach provides a graphical model of means,
standard deviations, and correlations. The effect sizes are
defined as functions of these parameters. Readers can get a
better understanding of what these effect sizes mean. Second,
assumptions of the homogeneity of variances, covariances, or
correlations can be imposed or relaxed by the use of equality
constraints on the parameters. By using the delta method
built into the SEM packages, appropriate sampling covariance
matrices can be automatically derived. Third, it is feasible to
extend the SEM approach to more complicated situations. For

example, the SEM approach can be used to calculate the effect
sizes and their sampling covariance matrix for a combination
of multiple-treatment and multiple-endpoint studies1 The key
advantage of this is that researchers only need to focus on
the conceptual “definition” of the effect sizes; the sampling
covariance matrix of the effect sizes is numerically calculated by
the SEM packages.

The rest of this article is structured as follows. The next section
contains a brief introduction on how to compute the effect
sizes and their sampling covariance matrices for the multiple-
treatment and multiple-endpoint designs in SEM. Two empirical
examples are used to illustrate how to conduct the analyses
using the metaSEM package (Cheung, 2015b) implemented in
the R statistical platform (R Development Core Team, 2018).
Two computer simulations are then presented to evaluate the
empirical performance of the SEM approach under several
conditions. Based on the findings of the simulation, this paper
concludes that it is preferable not to impose the assumption of the
homogeneity of variances (or covariances) when calculating the
effect sizes for multiple treatment and multiple-endpoint studies
when this assumption is questionable. Finally, further directions
for further research are discussed.

A SEM APPROACH TO ESTIMATING
EFFECT SIZE

Cheung (2015a, Chapter 3) presents a SEM approach to
estimating various effect sizes, including those in multiple-
treatment and multiple-endpoint studies. There are three steps
in the analysis. In the first step, a structural equation model
with means, standard deviations, and correlations is proposed to

FIGURE 1 | The structural equation model for the multiple-treatment studies.

1https://stats.stackexchange.com/questions/108248/calculating-effect-sizes-and-

standard-errors-for-the-difference-between-two-stan/130512.
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fit the data. When the data are from independent groups (e.g.,
control vs. intervention groups in calculating the standardized
or raw mean differences) a multiple-group structural equation
model is used. Second, appropriate equality constraints on
the homogeneity of covariance (or correlation) matrices are
imposed. If there are reasons to believe that the assumption
of the homogeneity of covariance (or correlation) matrices is
not appropriate, researchers may test the hypothesis statistically.
They may then choose to drop these assumptions when
calculating the effect sizes.

Finally, the effect sizes are defined as functions of the
means and standard deviations (SDs). The effect sizes with their
sampling covariance matrices are estimated by the SEM packages
using maximum likelihood (ML) estimation. This approach
releases users from the need to manually derive the sampling
covariance matrix, a process that is prone to human error. Let us
consider examples of multiple-treatment and multiple-endpoint
studies.

Multiple-Treatment Studies
Suppose that we measure the mathematics score in a control
group and two treatment groups (y(C),y(T1), and y(T2)). Figure 1
shows a structural equation model with one control and
two treatment groups. For ease of discussion, we use the
population parameters in the figures. It is understood that sample
estimates are employed in the analyses. The rectangles and the
triangles represent the observed variables and columns of ones,
respectively. The arrows from the triangles to the observed
variables represent the means of the variables in the control

µ(C), treatment 1 µ(T1), and treatment 2 µ(T2), respectively. The
variances of the variables in the control and treatments 1 and 2
are represented by σ 2

(C)
, σ 2

(T1)
, and σ 2

(T2)
, respectively.

When no constraint is imposed, the above means and
variances are the same as those of the sample statistics. Under
the assumption of the homogeneity of variances, we may impose
the constraint H0 : σ 2

Common = σ 2
(C)

= σ 2
(T1)

= σ 2
(T2)

. This

null hypothesis is tested by comparing the likelihood ratio (LR)
statistics of the models with and without the constraint. If the
null hypothesis is correct, the difference between the LR statistics
follows a chi-square distribution with 2 degrees of freedom (df s).
We may now define the standardized mean differences (SMDs)
between the treatment groups and the control by using the
common SD σCommon as the denominator:

SMDMTS1 =
µ(T1) − µ(C)

σCommon
and SMDMTS2 =

µ(T2) − µ(C)

σCommon
.

(1)
One unit of SMD indicates that the mean of the treatment
group is one common SD above that of the control group.
Since SMDMTS1 and SMDMTS2 share the same parameters µ(C)

and σCommon, they are correlated. Instead of using the analytic
solutions provided by Gleser and Olkin (1994, 2009), we may
estimate the sampling variances and the covariance by the
numerical approach in SEM.

When the assumption of the homogeneity of variances is
questionable, it may not be appropriate to use σCommon in the
denominator. This is because σCommon is not estimating any of
the population SDs. A better alternative is to use the control
group σ(C) as the standardizer in calculating the effect sizes

FIGURE 2 | The structural equation model for the multiple-endpoint studies.
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(Glass et al., 1981). The standardized mean differences of the
treatment groups against the control group are now described as:

SMDMTS1 =
µ(T1) − µ(C)

σ(C)
and SMDMTS2 =

µ(T2) − µ(C)

σ(C)
,

(2)
which does not rely on the assumption of the homogeneity of
variances. Now, one unit of SMD indicates that the mean of the
treatment group is one SD of the control group above that of the
control group.

Multiple-Endpoint Studies
Now suppose that there are two effect sizes on the mathematics
and language scores y1 and y2. Figure 2 shows the model with
two independent groups (the control and treatment groups). We
use η1 and η2, with their variances fixed at one, to represent the
standardized scores of y1 and y2. σ1 and σ2 now represent the
SDs of y1 and y2. The same model representation is often used to
standardize the variables in SEM (e.g., Cheung and Chan, 2004,
2005; Cheung, 2015a).

We may assume that the correlations are homogeneous by
imposing the constraint H0 : ρCommon = ρ(C) = ρ(T). An LR test

can be used to test this null hypothesis by comparing the models
with and without this constraint. Under the null hypothesis,
the test statistic has a chi-square distribution with 1 df. If we
further assume that the covariance matrices are homogeneous,
we may impose the constraints of H0 : ρCommon = ρ(C) = ρ(T),
H0 : σ1Common = σ1(C) = σ1(T), and H0 : σ2Common = σ2(C) =

σ2(T). Under the null hypothesis, the test statistic on comparing
the models with and without the constraints follows a chi-square
distribution with 3 df s.Wemay drop all of the constraints if these
assumptions are questionable.

Regardless of whether we have imposed the above constraints,
the effect sizes for the multiple-endpoint study are defined as:

SMDMES1 =
µ1(T) − µ1(C)

σ1
and SMDMES2 =

µ2(T) − µ2(C)

σ2
,

(3)
where σ1 and σ2 are the standard deviations for y1 and
y2. We do not put the subscript in the formulas because
what σ1 and σ2 actually are depends on whether constraints
have been imposed on them. If we impose the equality
constraints on the SDs, σ1Common and σ2Common are used as
the standardizers in Equation (3). If we do not assume that

FIGURE 3 | Relative bias of the average of the parameter estimates for the multiple treatment studies with the assumption of homogeneity of variances.
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the covariance matrices are homogeneous, the SDs in the
control groups (σ1(C) and σ2(C)) are used as the standardizers.
Once we have defined the appropriate effect sizes, the
sampling covariance matrix between SMDMES1 and SMDMES2

can be obtained from the SEM packages with numerical
methods.

Illustrations With R
Gleser and Olkin (1994) presented some sample data on
the multiple-treatment and multiple-endpoint studies. These
datasets are stored in the metaSEM package (Cheung, 2015b).
The metaSEM package also provides smdMTS() and smdMES()
to calculate the effect sizes for a multiple-treatment study and
a multiple-endpoint study with or without the assumptions of
homogeneity. Supplementary Materials 5 shows the sample R
code. Readers may refer to the package manual for details.

Table 22.2 in Gleser and Olkin (1994) displays simulated
data from six studies on five modes of exercise with a control
group of no regular exercise. The dependent variable is systolic
blood pressure. Therefore, a negative effect size between the
treatment and control groups suggests that those in the treatment
groups are in better health than those in the control group.

As an illustration, we show the calculations from the first
study, which includes three treatment groups and one control
group. When we assume that the variances are homogeneous,
the SMDMTS of the three treatment groups compared to the
control group are −1.17, −1.90, and −2.00, respectively. The

sampling covariance matrix is





0.09
0.05 0.10
0.05 0.06 0.10



. If we do not

assume that the variances are homogeneous and use the SD
of the control group as the standardizer, the SMDMTS are
−0.79, −1.29, and −1.36, respectively. The sampling covariance

matrix is





0.06
0.06 0.09
0.06 0.07 0.08



. In this example, the effect sizes

that were calculated with the assumption that the variances are
homogeneous and are about 50% larger than those that were
calculated without this assumption.When testing the assumption
that the variances are homogeneous, the statistic is χ

2
(3)

=

21.30, p < 0.001, which suggests that this assumption is not
tenable. It is questionable whether the use of effect sizes with the
assumption of the homogeneity of variances is appropriate in this
example.

FIGURE 4 | Relative bias of the average of parameter estimates for the multiple treatment studies without the assumption of homogeneity of variances.
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Table 22.4 in Gleser and Olkin (1994) shows seven published
studies on the SAT-Math and SAT-Verbal scores of groups
that had been coached on the tests compared to the scores of
uncoached control groups. A positive effect size means that the
coached groups performed better than the uncoached groups. As
an illustration, we select the first study for demonstration. The
SMDMES on Math and Verbal are 1.19 and 0.61 with VMES =
(

0.09
0.05 0.08

)

. If we do not assume that the covariance matrices

are homogeneous, the SMDMES on Math and Verbal are 1.30

and 0.56 with VMES =

(

0.12
0.05 0.06

)

. The test statistic on the

homogeneity of covariance matrices is χ
2
(3)

= 4.92, p = 0.18,

which is not statistically significant. It should be noted that the
sample sizes in these studies are quite small (at 34 and 21).

The above illustrations show that the effect sizes with
and without the assumption of homogeneity may be very
different depending on whether the homogeneity assumption
holds. It remains unclear how these effect size estimates
would work empirically in simulated data. The following
computer simulation clarifies the empirical performance of these
estimators.

TWO SIMULATION STUDIES

Two computer simulation studies were conducted to evaluate
the empirical performance of the SEM approach. All of
the simulations were performed with the metaSEM package
(Cheung, 2015b) in the R statistical platform (R Development

Core Team, 2018).
Before moving on to details of the simulation studies, it

is essential to clarify the meanings of “with and without
the homogeneity of variances (or covariance matrices)” in

the simulation studies. The data are generated from either
equal or unequal population variances (see the conditions

of the Population Variances). Regardless of whether or not
the population variances are equal, two sets of effect sizes
are calculated from the same set of data—one assumes the
homogeneity of variances, and the other does not.

When the data are generated from populations with equal
variances, the effect sizes both with and without the homogeneity

assumption should be correct. By assuming that the variances

are homogeneous, which is correct in the generated data, the
sampling variances of the effect sizes with the homogeneity
assumption are usually smaller than those effect sizes without

FIGURE 5 | Relative bias of the average of the sampling variances and covariance for the multiple treatment studies with the assumption of homogeneity of variances.
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the homogeneity assumption. When the data are generated
from unequal population variances, the effect sizes without the
homogeneity assumption should still be correct. However, the
effect sizes with the homogeneity assumption are likely to be
biased because the model is misspecified. The present simulation
studies evaluated the empirical performance of the computed
effect sizes with and without the homogeneity assumption.

Study 1: Multiple-Treatment Studies
For the multiple-treatment studies, multivariate normal data
were generated from the known data structures with or without
the assumption of the homogeneity of variances.

Methods

In this simulation study, there was a control group with two
treatment groups. Several factors were manipulated in the
simulation study:

Population means
The population mean of the control group was fixed at 0 for
reference. Six levels were used for the simulation study. The

population means for the two treatment groups were (0.2, 0.2),
(0.2, 0.5), (0.2, 0.8), (0.5, 0.5), (0.5, 0.8), and (0.8, 0.8).

Population variances
The population variance of the control group was fixed at 1
for reference. Three levels were selected for the simulation. The
population variances for the two treatment groups were (1, 1),
(0.75, 1.25), and (0.5, 1.5). When the population variance was
(1, 1) in the two treatment groups, the homogeneity of variances
was assumed. In the other levels, the population variances were
heterogeneous. As the population variance of the control group
was fixed at 1, the population effect size was calculated by
the difference in means between the treatment groups and the
control group divided by 1. Thus, the effect sizes were 0.2, 0.5,
and 0.8, which represent the typical values observed in the social
and behavioral sciences.

Sample sizes
The design was assumed to be balanced. Three levels of sample
sizes were selected, namely, 30, 50, and 100. These levels should
be representative of typical research settings.

FIGURE 6 | Relative bias of the average of the sampling variances and covariance for the multiple treatment studies without the assumption of homogeneity of

variances.
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Thus, there were a total of 6 × 3 × 3 = 54 conditions. One
thousand replications were repeated for each condition.

Assessment of the empirical performance
Since the population mean and variance of the control were set
at 0 and 1, respectively, the population effect sizes were defined
as the mean differences between the treatment 1 (or 2) to the
control group. The relative percentage bias of each effect size was
computed as

B(θ̂) =
¯̂
θ − θ

θ
× 100%, (4)

where θ is the population effect size and
¯̂
θ is the mean of the

estimates of the effect size θ̂ across the 1,000 replications. Proper
estimation methods should have a relative bias of less than 5%
(Hoogland and Boomsma, 1998). Since there were two effect
sizes for two treatment groups, we reported the average of their

absolute biases B(θ̂) =
(∣

∣

∣
B(θ̂)T1

∣

∣

∣
+

∣

∣

∣
B(θ̂)T2

∣

∣

∣

)

/2, where
∣

∣

∣
B(θ̂)T1

∣

∣

∣

and
∣

∣

∣
B(θ̂)T2

∣

∣

∣
are the absolute biases for treatments 1 and 2, for

ease of presentation.

When there is only one effect size, we may quantify the
accuracy of its uncertainty by the use of the relative bias of the
SE. Since there were two sampling variances and one sampling
covariance, we used the sampling variances (SE2) and covariance
as the measure of uncertainty,

B
(

Var(θ̂)
)

=
SE2(θ̂) − Var(θ̂)

Var(θ̂)
, (5)

where Var(θ̂) is the empirical variance (or covariance) of θ̂ and

SE2(θ̂) is the mean of the SE2 or sampling covariance across 1,000
replications. Since there were three biases for the two effect sizes
and their covariance, we reported the average of their absolute
biases.

B
(

Var(θ̂)
)

=

(∣

∣

∣
B

(

Var(θ̂1)
)∣

∣

∣
+

∣

∣

∣
B

(

Var(θ̂2)
)∣

∣

∣

)

+

(∣

∣

∣
B

(

Cov(θ̂1, θ̂2)
)∣

∣

∣

)

/3, (6)

where
∣

∣

∣
B

(

Var(θ̂1)
)
∣

∣

∣
,

∣

∣

∣
B

(

Var(θ̂2)
)
∣

∣

∣
and

∣

∣

∣
B

(

Cov(θ̂1, θ̂2)
)
∣

∣

∣
are

the absolute biases for the outcomes 1 and 2 and their

FIGURE 7 | Relative bias of the average of the parameter estimates for the multiple-endpoint studies with the assumption of homogeneity of covariance matrices.
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covariance. Hoogland and Boomsma (1998) suggested that a
proper estimation method should have a relative percentage bias
of 10% on the SE. That is, the estimated SE should be within
0.90–1.1 of the empirical SD of θ̂ . As we were using the sampling
variance (SE2, not SE), we used (1.12 – 1)≈20% as an indicator of
good performance in estimating the sampling covariance matrix.

In the review process, one reviewer suggested displaying
the individual parameter estimates θ̂1 and θ̂2. Due to space
constraints, we put these results of the multiple-treatment studies
in Supplementary Materials 1. Moreover, the same reviewer also
suggested checking the performance under unbalanced sample
sizes. We reran the simulation studies by introducing unbalanced
sample sizes. The levels of sample sizes for the control, treatment
1, and treatment 2 groups were (100, 30, 50), (100, 50, 30), (30,
100, 50), (30, 50, 100), (50, 100, 30), and (50, 30, 100). The other
factors were identical to the previous simulations. The results of
the multiple-treatment and multiple-endpoint studies are shown
in Supplementary Materials 2.

Results

The results were summarized in the heat maps, which provide an
easy way to visualize the performance of the statistics. The x- and

y-axes represent the population means and population variances
separated by the sample sizes. A lighter color indicates a smaller
bias than values with a darker color. When the bias is larger than
the cut-off point (5% for the mean and 20% for the sampling
variances or covariances), the color becomes gray.

Figures 3,4 show the relative bias of the effect sizes with
and without the assumption of homogeneity of variances in
calculating the effect sizes, respectively. One interesting finding
was that the estimated effect size was generally unbiased
regardless of whether or not the homogeneity of variances was
assumed in the calculations. One speculation is that the average
variances of the control group, which are always 1, and those of
the treatment groups, at (0.75, 1.25) and (0.5, 1.5), are very close
to 1. When these common SDs are used as the standardizers, the
calculated effect sizes are still unbiased. The bias shrinks when the
sample size gets bigger.

Figure 5 displays the relative bias of the sampling variances
and covariances when the variances are assumed to be
homogeneous when the effect sizes are estimated. The findings
show that the sampling variances and covariances are unbiased
only when the variances are actually homogeneous. When the
population variances are heterogeneous, the sampling variances

FIGURE 8 | Relative bias of the average of parameter estimates for the multiple-endpoint studies without the assumption of homogeneity of covariance matrices.
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and covariances are biased. The most substantial bias occurs
when the population variances have the largest differences
(sigma∧2: 0.5, 1.5). Figure 6 shows the relative bias of the
sampling variances and covariances when the variances are
not assumed to be homogeneous when estimating the effect
sizes. In general, the bias is minimal, with the largest being
only 12.6.

As a whole, the findings indicate that the effect sizes for
the multiple treatment studies are estimated to be unbiased
regardless of whether or not the homogeneity of variances
is assumed in the calculations, given that the average of the
treatment group variances are similar to that of the control group
variance. However, the sampling variances and covariances are
likely biased when the population variances are heterogeneous.

The patterns for the individual parameters in
Supplementary Material 1 are similar to those of the average
parameters. Therefore, we will not reproduce them here.
Regarding the simulation results of the unbalanced sample sizes
in Supplementary Material 2, the estimated effect sizes with
the homogeneity assumption are unbiased when the sample
sizes in the control group are large (100, 30, 50) and (100, 50,

30). However, the bias of the estimated effect sizes with the
homogeneity assumption becomes larger when the sample
size of the control group is small, and the sample sizes in the
treatment groups are unbalanced. The bias of the estimated
effect sizes without the homogeneity assumption is generally
small. Regarding the sampling variances and covariance, they
are generally biased with the assumption of homogeneity,
whereas they are generally unbiased without the assumption of
homogeneity.

Study 2: Multiple-Endpoint Studies
The design was similar to those in the multiple-treatment studies.
Two effect sizes were used in the simulation study, with one
control group and one intervention group.

Methods

The population means and variances of the control group were
fixed at 0 and 1, respectively, for reference. The population
correlation between these two outcomes was set at 0.3, which is
considered moderate in psychological research.

FIGURE 9 | Relative bias of the average of the sampling variances and covariance for the multiple-endpoint studies with the assumption of homogeneity of covariance

matrices.

Frontiers in Psychology | www.frontiersin.org 10 August 2018 | Volume 9 | Article 1387

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Cheung Computing Multivariate Effect Sizes

Population means
Six levels were used in the simulation study. The means for the
two outcome variables in the intervention group were (0.2, 0.2),
(0.2, 0.5), (0.2, 0.8), (0.5, 0.5), (0.5, 0.8), and (0.8, 0.8).

Population variances
Five levels for the intervention group were selected for the
simulation. They were (1, 1), (0.5, 0.5), (0.75, 0.75), (1.25, 1.25),
and (1.5, 1.5). When the population variance of the intervention
group is (1, 1), the homogeneity of covariance matrices between
studies is assumed; the assumption of the homogeneity of
variances does not hold in the population.

Sample sizes
The design was assumed to be balanced. Three levels of sample
sizes were selected, namely, 30, 50, and 100.

Therefore, there were a total of 6 × 5 × 3 = 90 conditions.
One thousand replications were repeated for each condition.

Assessment of the empirical performance
The assessment was the same as those used in multiple-treatment
studies. The average of the relative percentage bias of the effect

size was used to evaluate the bias of the effect size. The average
of the relative percentage bias of the sampling variances and
covariances was used to assess the bias of the sampling covariance
matrices. In the heat maps, 5 and 20% were used as the cutoff
points.

Similar to the simulation studies in the multiple-treatment
studies, we followed the advice of one reviewer by displaying
the results of the individual effect sizes. The results are shown
in Supplementary Materials 3. We also reran the simulation by
introducing unbalanced sample sizes. The levels of the sample
sizes in the control and treatment groups were (100, 30), (100,
50), (30, 100), (30, 50), (50, 100), and (50, 100). The results are
displayed in Supplementary Materials 4.

Results

Figure 7 displays the average bias of the effect sizes when we
assume the homogeneity of covariance matrices in calculating
the effect sizes. When the covariance matrices are homogeneous
(sigma∧2 = 1.00, 1.00), the effect sizes are generally unbiased
except when mu = 0.2, 0.2 and the sample size = 30. However,
the effect sizes are always biased when the covariance matrices

FIGURE 10 | Relative bias of the average of the sampling variances and covariance for the multiple-endpoint studies without the assumption of homogeneity of

covariance matrices.
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are not homogeneous. The most substantial relative bias can
be up to 19%. This is expected because the variances of
the treatment groups are very different from those of the
control groups. Figure 8 shows the average bias of the effect
sizes when we do not assume the homogeneity of covariance
matrices when calculating the effect sizes. The effect sizes are
generally unbiased except when mu = 0.2, 0.2 and the sample
size= 30.

Figure 9 displays the relative bias of the sampling variances
and covariances when the effect sizes are estimated with the
assumption of the homogeneity of covariance matrices. The bias
is all below 20%. However, it should be noted that the effect
sizes are biased. Thus, the results are still misleading. Figure 10
shows the relative bias of the sampling variances and covariances
when the effect sizes are estimated without the assumption of
the homogeneity of covariance matrices. As can be seen, they are
generally unbiased.

The patterns of the individual parameters displayed in
Supplementary Materials 3 are similar to those of the average
parameters; therefore, we do not reproduce them here. Regarding
the unbalanced data, the patterns are similar to those in multiple-
treatment studies. The bias of the estimated effect sizes with
the homogeneity assumption is much larger than that for the
balanced data. On the other hand, the impact of the unbalanced
sample sizes on the estimated effect sizes without the assumption
of homogeneity is minimal.

To summarize, the estimated effect sizes are quite sensitive
to the assumption of the homogeneity of covariance matrices.
If the data are not homogeneous in covariance matrices and we
incorrectly assume that they are, the estimated effect sizes are
likely to be biased. On the other hand, the sampling covariance
matrices are generally similar regardless of whether or not we
have imposed the assumption of the homogeneity of covariance
matrices.

CONCLUSION

This study shows that multivariate effect sizes for multiple-
treatment and multiple-endpoint studies can easily be obtained
using the SEM approach. Researchers may impose equality
constraints on the variances and covariances, and the SEM
packages will report the effect sizes and their sampling covariance
matrices.

For multiple-treatment studies, the estimated effect sizes are
unbiased regardless of whether or not we assume that the
variances are homogeneous when calculating the effect sizes
when the common SDs are close to the SDs of the control group.
We may expect that there will be substantial bias when the
common SDs are different from the SDs of the control group.
Moreover, the estimated sampling covariance matrices are biased
when the variances are heterogeneous, but we incorrectly assume
that the variances are homogeneous.

For multiple-endpoint studies, the estimated effect
sizes are biased when the covariance matrices are

different, but we mistakenly assume that the covariance
matrices are homogeneous. On the other hand, the
sample covariance matrices are similar regardless of
whether or not we have imposed the assumption of the
homogeneity of covariance matrices when estimating the effect
sizes.

The findings indicate that researchers should always check
the assumptions before calculating the effect sizes. Researchers
may also check the robustness of the findings by dropping
these assumptions. By comparing the results with and without
the assumption of the homogeneity of variances or covariance
matrices, researchers may have a better idea of whether their
substantive findings depend on these assumptions. Based on the
simulation studies, it can be seen that the results are similar
for the approaches with and without the assumption of the
homogeneity of variances (or covariance matrices) when the
data actually have the same variances (or covariance matrices).
Therefore, the loss of efficiency from dropping the assumption
of the homogeneity of variances (or covariance matrices) is
small.

It should be noted that only a few factors were studied
in the simulation studies. Further simulation studies may
address the question of whether the findings are consistent
in other conditions such as in those of unbalanced data
and data with non-normal distributions. Another possible
direction of research is to study how the assumption of the
homogeneity of variances or covariance matrices impacts the
actual parameter estimates in a meta-analysis. Such a study may
provide stronger evidence to guide researchers on the issue of
whether or not to report effect sizes with the assumption of
homogeneity.

To conclude, it seems reasonable not to assume the
homogeneity of variances (or covariance matrices) when
calculating effect sizes for multiple-treatment and multiple-
endpoint studies. The SEM approach provides a convenient
device to calculate these effect sizes.
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