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INTRODUCTION

In the tradition of serial processing models that link the stimuli, the organism and its responses
(S → O → R) (Hull, 1943), cognitive control has long been defined from stimulus-centric
views implicit in simple “target detection” tasks (e.g., flanker and Stroop-type tasks) (Posner
and Petersen, 1990). According to these views, cognitive control is invoked for processing
(i.e., perceiving, attending, memorizing) and, ultimately responding to, a task-relevant set
of stimulus features. These task-relevant features occur in close spatiotemporal proximity to
competing non-targets and distracters that need not be fully processed or responded to. As a
consequence, cognitive demands are normally defined as a function of such sets of relevant and
irrelevant stimulus features. These features compete for limited central resources at the cost of less
efficient goal-directed behavior. However, in such stimulus-centric views, the actions themselves
are largely disregarded. For example, a button press is simply considered the final output of
stimulus-feature competition with no or little influence on earlier information processes. Such
stimulus-centric views permeate interpretation of other executive function tasks like theWisconsin
card sorting test (WCST), and task-switching paradigms, inasmuch as these more complex tasks
share common features with simpler target detection paradigms. Indeed, in all these tasks, targeted
stimulus features appear within the spatiotemporal context of other nontarget features that may
afford alternative and potentially conflicting courses of action. Here we embrace current enactivist
views of cognition to propose an alternative framework to probe cognitive control. To do so, we
contend that (1) cognitive control is essentially context-sensitive, and hence (2) cognitive demands
should be defined and quantified in terms of contextual information or uncertainty. We suggest
shifting the focus of context to specifically capture the uncertainty about upcoming actions, which
may be represented in the brain through hierarchies of sensorimotor loops that evolve dynamically
over time (Figures 1A,B; cf., Miller, 2000; Fuster, 2001; Kilner et al., 2015; Friston et al., 2017).

BEYOND STIMULUS-CENTRIC VIEWS OF COGNITIVE CONTROL

Enactivist views of cognition bring the focus onto perception-action cycles (or sensoriomotor
loops) that link the external and internal worlds, and explain how organisms adapt to their
environment in a context-specific manner (see the new action-oriented version of the Bayesian
brain hypothesis, Friston et al., 2017). From such views, cognitive control of behavior involves
the preparation and execution of stimulus-response (S-R) mappings (perception-action rules),
that link sensory evidence to actions in a dynamic and context-sensitive way (cf., Figure 10.2 in
Kilner et al., 2015). As stressed earlier, this involves not only the sensory stimuli but also, critically,
their probabilistic association with available actions and potential outcomes. While the associations
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between a stimulus set and potential actions can be created
in multifaceted ways in cognitive tasks—either through
habit, learning, or made explicit with task instructions—once
established, these task sets need to be held in active memory
and updated on a trial by trial basis for efficient goal-directed
behavior (Figure 1A, cf., Miller, 2000; Miller and Cohen, 2001).
Here we posit that all these elements of a task set ought to be
incorporated into more comprehensive formal models of higher
cognition (Boureau et al., 2015). To do so, we can use probability
theory tools, such as Bayesian statistics and Information theory
metrics (e.g., stimulus and response entropies, information
transmission, etc.), to quantify contextual information as
numerical regressors for modeling task-averaged behavioral and
brain responses and their trial-by-trial dynamics (Koechlin and
Summerfield, 2007; Friston et al., 2017).

Modern enactivist views portray cognition in terms of
dynamic contextual contingencies of an agent’s brain with
internal states, whose function is to act on an environment
containing many external states that remain hidden behind
sensory states. Internal states refer to any neural activities,
connection strengths, etc., characterizing the brain at one point
in time. External states cause sensory states which in turn
change internal states. Conversely, internal states cause changes
in agential states (e.g., muscles), which in turn change external
states. According to this view, sensory and agential states
link the world to the brain through perception-action cycles
(i.e., sensorimotor loops) that evolve dynamically with time
(cf., Figure 10.2 in Kilner et al., 2015). Under the assumption
that such contextual dependencies obey probability laws, they can
be formally quantified with Bayesian statistics and Information
theory.

TIME DYNAMICS OF
PERCEPTION-ACTION CYCLES

From enactivist views of cognition, information processing
can be described in terms of cyclic, time dependent statistical
regularities between task stimuli (s) and associated actions and/or
responses (r) that evolve dynamically over time (Figures 1A,B).
This schematic highlights the key role of the contextual
contingencies when characterizing information processing in
the brain (Kilner et al., 2015; Friston et al., 2017). Contextual
information in cognitive tasks (lines and arrows in Figures 1A,B)
can be quantified in terms of statistical regularities among
sensory inputs, motor outputs (actions), and any intermediate
(hidden) processes characterizing external and internal states of
the acting agent. When used as predictors of behavioral and
brain responses, numerical estimates of contextual information
are more amenable to modeling and falsification than traditional
taxonomies based on stimulus categories (i.e., relevant target vs.
irrelevant distractor), or instructed task conditions (i.e., switch
vs. repeat cues) (Barcelo and Cooper, 2018). Here we want
to emphasize the temporal dynamics and statistical regularities
(denoted by the grid of lines and arrows in Figures 1A,B)
between stimuli and their associated actions and outcomes, as
key elements to estimate information processes in a cognitive

task, over and above the specific physical content and modality
of sensory afferents and agential effectors (denoted as stimulus
and response illustrations in Figures 1A,B).

One recent study attests to the importance of using
numerical estimates of contextual information instead of
nominal stimulus taxonomies to clarify the complex neural
dynamics underlying cognitive control (Barcelo and Cooper,
2018). This study used exactly the same sequence of visual
stimuli under slightly different response demands (Figure 1B).
Temporarily unpredictable gray gratings that were not to be
responded to (nontarget “nogo” stimuli) set the temporal context
for responding to the ensuing and temporarily predictable
red colored gratings (target “go” stimuli) in all three tasks.
Importantly, whereas in tasks 1 and 2 the explicit S-R mapping
between colored gratings and motor actions was held constant
throughout (thus favoring “context learning”), in task 3 the
S-Rmapping was to be either intermittently switched (prompting
for “context updating”), or kept constant during the following
trial run, depending on the orientation of the gray gratings,
respectively (Barcelo and Cooper, 2018).

This study identified functionally distinct neural signatures for
two different sources of contextual uncertainty, namely, temporal
and task uncertainly. The temporal uncertainty conveyed by
the temporarily unexpected nontarget stimuli had a graded
impact on both behavioral costs and associated brain responses
(Figures 1D,E), despite similar sensory inputs used in all task
conditions, and regardless of the instructed nominal meaning of
those nontarget stimuli. Thus, resolution of temporal uncertainty
about when to implement an action plan was one key source of
behavioral and neural variability that did not readily transpire
from stimulus definitions alone. Instead, temporal uncertainty
was more accurately estimated as a function of stimulus entropy
(Figure 1C). Likewise, resolution of task uncertainty about what
was to be done with target stimuli (e.g., either to sort them
by color only in tasks 1 and 2, or to alternate between color
and form rules in task 3) gradually modulated behavioral and
brain responses. Task uncertainty was numerically estimated as
a function of the sensorimotor entropy in specific task conditions
(Barcelo and Cooper, 2018). The schematic in Figures 1C shows
how these two sources of contextual information (temporal
and task uncertainty) can be numerically quantified and
linked with cognitive demands. This study exemplifies how
quantification of contextual information in terms of time-
dependent statistical regularities among the sensory, motor and
sensorimotor elements of a cognitive task, is critical for a
meaningful characterization of cognitive brain responses over
and above traditional nominal stimulus taxonomies alone (cf.,
also Koechlin and Summerfield, 2007; Friston et al., 2017).

CONTEXT UPDATING VERSUS CONTEXT
LEARNING

Numerical estimations of contextual information may help
elucidate long-standing issues in cognitive neuroscience that
have historically been interpreted within nominal stimulus
taxonomies. A salient example is the so-called “P300” (or P3)
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FIGURE 1 | Formal modeling of contextual information. (A) Hierarchies of cognitive control. Information theory can be used to quantify the contextual dependencies

characterizing cognitive control in simple target detection tasks, as well as in more complex tasks involving hypothetical high-order latent variables (here, Color and

Form rules). Mean probability of task events (i.e., P = 0.2 for gray non-targets, P = 0.8 for colored targets) cannot fully convey the complex contextual contingencies

driving behavioral and brain responses in studies on cognition. Information theory metrics such as stimulus entropy, and information transmission between sets of task

stimuli (S) and responses (R)–both at lower [I(si , rj )] and higher [Q(rj |si )] ordered levels in the neural hierarchy of control (Koechlin and Summerfield, 2007), offer better

ways to parametrize the numerous sources of contextual information that modulate behavioral and brain responses in studies of cognition (adapted by permission

from, Miller, 2000). (B) Time dynamics of sensorimotor loops. Examples of three cognitive tasks where the stimulus context was kept constant while manipulating

motor and sensorimotor demands (Barcelo and Cooper, 2018). Task 1 (“oddball task”) involved detection of visual targets using one-forced choice responses (“press

a button to red gratings”); Task 2 (“go/nogo task”) required two-forced choice responses (“press button 1 for red gratings and button 2 for blue gratings”); In Task 3

(“switch task”) infrequent vertical and horizontal gray gratings instructed participants to switch and repeat the active task rule (i.e., “Color” vs. “spatial Frequency”),

respectively. (C) Quantifying contextual information. Transmitted sensorimotor (S-R) information was modeled at two levels in the hypothetical neural hierarchy shown

in (A), and plotted as a function of mean stimulus entropy (Miller, 1956). This simple model predicted maximal task differences in contextual information among the

temporarily surprising non-target stimuli, and no differences in task-averaged transmitted information for the temporarily predictable target stimuli (adapted by

permission from,Barcelo and Cooper, 2018). (D) Context updating: Scalp-recorded “context P3” responses to the surprising non-target “nogo” stimuli (300–450ms

poststimulus) captured the graded differences in cognitive demands across all three tasks, as predicted by the model in (C). The largest “context P3” intensities were

observed in the task with the largest sensorimotor entropy, a condition conveying maximal contextual uncertainty about upcoming actions (adapted by permission

from,Barcelo and Cooper, 2018 ). Similar context-sensitive brain responses have also been reported when using auditory and somatosensory stimulation (Donchin,

1981). (E) Context learning: The intensity of “target P3” responses to temporarily predictable target “go” stimuli was slightly larger in the task conveying less

sensorimotor entropy, whose contextual information could be quickly learned (adapted by permission from Wiley:Barcelo and Cooper, 2018). These findings pointed

to a common fronto-parietal cortical network for cognitive control showing different functional dynamics during two temporarily distinct context updating and context

learning stages of processing.

component of the human brain potential, one of the most
widely employed neural indexes of cognition. After long-lived
controversies about its function, the parietal aspect of P3 has
been linked to the updating of contextual information in response
to surprising target stimuli (Donchin, 1981), as well as to the

gradual accumulation of sensory evidence (Twomey et al., 2015).
However, these stimulus-centric views of P3 function fail to offer
an overarching account of its complex functional diversity and
varying fronto-parietal scalp distribution in response to both
target and nontarget stimuli in many task domains. To address
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this, Barcelo and Cooper (2018) relied on numerical estimates
of contextual information to identify two broad families of
functionally distinct P3-like signals whose intensities and fronto-
parietal scalp distributions varied parametrically as a function of
the amount of sensory and sensorimotor entropy conveyed by the
eliciting stimulus (Figures 1D,E). Importantly, these P3 signals
tracked the interaction between temporal and task uncertainty at
the onset of nontarget “nogo” stimuli that anticipated upcoming
target “go” stimuli disclosing the remaining information
necessary to decide upon one of two possible actions. The
rich parametric modulations of P3-like potentials spoke of
correspondingly complex functional dynamics of a common
frontoparietal network for cognitive control that was putatively
engaged during both context-updating and context-learning
operations to non-target “nogo” gray stimuli and target “go”
colored stimuli, respectively, in line with numerical estimates of
contextual information (Figures 1C–E), albeit with very different
functional roles in each case (i.e., context updating preceded
in time and seemed a prerequisite for context learning). These
findings were compatible with claims about two complementary
modes of cognitive control, which have been variously named as
proactive and reactive, exploration and exploitation, or context
updating and context learning (Braver, 2012; Boureau et al., 2015;
Friston et al., 2017; Barcelo and Cooper, 2018).

CONCLUSION

Cognitive demands can be numerically quantified as contextual
information using Information theory and Bayesian statistics.

Contextual information modulates both behavioral and brain
responses in cognitive control tasks. Thus, it has been
recently shown that the temporal context yields exploratory
(proactive) and exploitative (reactive) control modes (Barcelo
and Cooper, 2018). Moreover, context updating precedes and
is a prerequisite for context learning in two-modes models of
cognitive control (Friston et al., 2017). In sum, here we submit
that quantifying contextual information can foster progress
on human cognition and psychiatric research (Silverstein
et al., 2017), it blends well with modern views of cognitive
control as associative learning (Abrahamse et al., 2016), and
with the human connectome (Sporns, 2011), and provides
researchers with a common metric to compare cognitive
demands across many different task domains (Miller, 1956;
Duncan, 2010).
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