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Background: There is a growing research focus on temporal cognition, due to
its importance in memory and planning, and links with psychological wellbeing.
Researchers are increasingly using diary studies, experience sampling and social media
data to study temporal thought. However, it remains unclear whether such reports can
be accurately interpreted for temporal orientation. In this study, temporal orientation
judgements about text reports of thoughts were compared across human coding,
automatic text mining, and participant self-report.

Methods: 214 participants responded to randomly timed text message prompts,
categorically reporting the temporal direction of their thoughts and describing the
content of their thoughts, producing a corpus of 2505 brief (1–358, M = 43 characters)
descriptions. Two researchers independently, blindly coded temporal orientation of the
descriptions. Four approaches to automated coding used tense to establish temporal
category for each description. Concordance between temporal orientation assessments
by self-report, human coding, and automatic text mining was evaluated.

Results: Human coding more closely matched self-reported coding than automated
methods. Accuracy for human (79.93% correct) and automated (57.44% correct)
coding was diminished when multiple guesses at ambiguous temporal categories (ties)
were allowed in coding (reduction to 74.95% correct for human, 49.05% automated).

Conclusion: Ambiguous tense poses a challenge for both human and automated
coding protocols that attempt to infer temporal orientation from text describing
momentary thought. While methods can be applied to minimize bias, this study
demonstrates that researchers need to be wary about attributing temporal orientation
to text-reported thought processes, and emphasize the importance of eliciting
self-reported judgements.

Keywords: temporal cognition, Stanford Natural Language Parser, self-report, temporal orientation, tense
extraction

INTRODUCTION

Research into how we cognitively create and experience events from the past and future has become
ever more popular in the last decade (e.g., Gardner et al., 2012; Schacter et al., 2012; Stawarczyk and
D’Argembeau, 2015; Karapanagiotidis et al., 2017). This work highlights the central role of temporal
recall and projection in building and maintaining our self-concept over time, our capacity to
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appropriately defer short-term gratification for longer-term
planning, and manage the complexities of everyday functioning
in society (Boyer, 2008; Miloyan et al., 2016; Schacter et al., 2017).
While there have been calls for use of more diverse research
approaches in the field, to assess thought, behavior and potential
interventions in real-world contexts (Oettingen, 2012; Busby
Grant and Walsh, 2016; O’Neill et al., 2016), methodological
limitations have often restricted when, where and how research
into temporal cognition can be conducted.

The majority of studies to date examine temporal thought
and associated behavior in controlled lab-based settings. These
studies provide insight into the neurological processes underlying
past and future thought (e.g., Karapanagiotidis et al., 2017;
Thakral et al., 2017), distinctions and relationships between
cognitive factors (e.g., Abram et al., 2014; Cole et al., 2016),
and the effect of future thought on behavior (e.g., Snider et al.,
2016; O’Donnell et al., 2017). While lab-based methodologies
provide gold-standard demonstrations of causal effects, they can
lack external validity, particularly when they are attempting to
demonstrate the efficacy of an intervention on behavior (e.g.,
Daniel et al., 2015). In contrast, experience sampling allows
assessment of thoughts and behaviors in real-world context by
prompting participants to report experiences at random intervals
during their day. This approach has been demonstrated to
provide a scalable, real-world method of assessing temporal
thought (Killingsworth and Gilbert, 2010; Song and Wang, 2012;
Busby Grant and Walsh, 2016). Diary studies similarly allow
participants to report thoughts as experienced in real-world
context (Berntsen and Jacobsen, 2008; Finnbogadóttir and
Berntsen, 2013), by capturing either spontaneous thoughts, or
those responding to cues provided by the researcher (e.g.,
Gardner et al., 2012). However, these approaches of necessity
involve interruption to daily behavior, and can be affected
by differential reporting and (in the case of diary studies)
retrospective bias.

A different methodology rapidly gaining traction in fields
similarly seeking to assess and evaluate human experience is the
use of “big data,” in part from social media (Abbasi et al., 2014;
Moller et al., 2017; Oscar et al., 2017). This use of existing datasets
(e.g., Twitter, Facebook, query logs in Google and Wikipedia,
purchasing behavior) rather than active recruitment and data
collection has substantial advantages. As well as the sheer size
of the data set that can be retrieved, the data has real-world
validity because participants are spontaneously recording their
own thoughts independent of research context. While there
are a number of other challenges around interpretation of this
data (e.g., generalisability, differential recording), this approach
represents a valuable potential addition to the methodological
arsenal which is currently underutilized by psychologists (Oscar
et al., 2017).

One of the key challenges for researchers seeking to assess
temporal thought using large data sets, such as those created
by social media, is the extraction of meaning from relatively
small text entries. It is difficult to reliably determine temporal
orientation (whether someone is thinking about the past, present
or future) from a text statement, particularly in English. Take
the statements: “In 2019, I will have remembered this example,”

and “I am thinking about making dinner at my parents’ house”;
in each of these cases, without the speaker’s own insight to
give context, it is not straightforward to identify the temporal
orientation. For accurate analysis and interpretation, researchers
need to be confident in reliably inferring factors like temporal
orientation from a statement, and to take advantage of the
large data sets, the analysis needs to take place quickly and
accurately, which typically means automated tools rather than
manual coding (Cole-Lewis et al., 2015). The focal analysis of
Twitter data for human behavior to date has been in sentiment
analysis, that is detection of whether a given tweet is positive,
negative or neutral relative to a concept, event or product (Oscar
et al., 2017; Rosenthal et al., 2017). Numerous machine sentiment
classification tools exist, although they differ substantially in
their accuracy (Abbasi et al., 2014). To the authors’ knowledge,
only Jatowt et al. (2015) and Park et al. (2017) have specifically
investigated the temporal orientation of short social media
posts (Tweets and facebook statuses, respectively). Jatowt et al.
(2015) used the time and date entry identification capacity of
the Stanford Natural Language Parser (SNLP) to automatically
extract explicit mentions of time (e.g., “tomorrow,” “next month,”
“December”). While a highly useful start point that gives insight
into the distance in time between the mention (e.g., “last week”)
and topic (e.g., “holiday”), this approach is only applicable when
explicit mentions of time are present – this is often not the case in
natural language, where tense and informational context are the
sole cues to orientation. Park et al. (2017) extended this by also
including frequency of words in a temporally oriented linguistic
enquiry dictionary, but analysis remained constrained to post hoc
(researcher vs. automated) coding.

The current study is designed to inform researchers seeking
to code temporal orientation from existing text data sets, in
order to leverage the possibilities of large scale social media
corpora for temporal cognition research. This will be achieved
by exploring the accuracy of human and automated post hoc
temporal orientation extraction from real-world short English
Language text strings, of the kind found in experience sampling
research and on social media microblogging platforms such
as Twitter. Careful manipulation of the coding protocol (e.g.,
allowing single or multiple concurrent possible orientations)
and comparison of post hoc coding to the participant’s own
self-report, rather than potentially innaccurate researcher coding,
will provide a useful foundation to set expectations of accuracy in
future research.

METHODS

Detailed methods for data collection can be found in Busby Grant
and Walsh (2016). Briefly, 214 undergraduate students, aged 17–
55 (M = 21, SD = 7) participated in return for course credit.
The sample was 70% female. All participants provided written,
informed consent. The ethical aspects of this study were approved
by University of Canberra’s Human Research Ethics Committee
(protocol 12–134). Participants received 20 text message prompts
across 2 days, randomly timed for between 8 am and 8 pm (with
some variation of this window on participant request). The high
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quality random schedules for each participant were generated
a-priori using the program “Psrta”. The text messages prompted
participants to report the temporal category of their thoughts
at the moment the prompt arrived (“What were you thinking
about in the seconds before you received the SMS alert?” with
options of past/future/present/other), and provide open-ended
information about the content of their thoughts (“Please give
more information about what you were thinking about in the
seconds before you received the SMS alert”).

Participants responded to an average of 14 of the 20 prompts
(min = 1, max = 20, SD = 6). From an initial corpus of 2884
responses, 379 had either tied (multiple self-selected orientations,
despite instructions to produce a statement including only one)
or missing self-reported orientation, so were excluded. This
resulted in a final corpus of 2505 brief (between 1 and 358
characters, M = 43) unique descriptions of momentary temporal
thought, from 192 individuals aged 17–52 (M = 21.85, SD = 6.52),
70% female.

The temporal orientation of unique descriptions of
momentary temporal thought was extracted in seven ways,
the first being self-report (Table 1). This was followed by post hoc
human coding by two independent researchers, and automated
methods of increasing complexity using the Stanford Natural
Language Parser; (SNLP). SNLP coding was undertaken in R
version 3.2.0 using the coreNLP package (v 3.3.3) (Manning
et al., 2014). Further detail regarding SNLP implementation
can be found in Table 1, with full R code available in the
Supplementary Materials. Both researcher and SNLP coding
was blind to the self-report orientation. For self-report, only

one temporal orientation was allowed per description. However,
ambiguity in post hoc coding can arise from multiple candidate
orientations for a single statement. Hence, we also allowed “ties,”
circumstances where the either a human or automated coder
could specify multiple orientations in an attempt to capture
the correct one. These circumstances were coded as “mixed.”
Researcher and/or automated coding was considered “correct”
when their orientation matched self-report. This is reported as
a percentage across the full corpus of 2505 responses. With four
possible orientations chance performance was 25%.

RESULTS

Results are summarized in Figure 1. Text messages were
coded based on their temporal directions into the categories as
described above: past, present, future, and other. Self-reported
orientations indicated the majority (58.78%) of thoughts were
oriented to the present. Approximately equal numbers were
future- or past- oriented (19.56 and 19.03% respectively), with
very few (2.64%) self-categorized as “other” (self-reports in the
“other” category were general status reports, such as “sleeping”
and “drunk”).

All methods except for suTime (method 7, see Table 1)
performed above chance ( > 25% correct). Overall, researcher
coding more closely matched self-reported coding than
automated methods. When multiple temporal categories per
response (ties) were allowed, both researcher and automated
methods diverged notably from self-report. Where ties were not

TABLE 1 | Temporal extraction methods, in the context of the example phrase “In 2019, I will have remembered this example.”

Method Ties Description Coding of
example phrase

Why this orientation?

(1) Self-rated No. This formed a basis for evaluating the remaining methods. Future

(2) Researcher A No Post hoc human coding based on sentence construction
and intuition. Here, the researcher must go with their “best
guess” when there are multiple candidate orientations.

Future Sentence context as a whole has cues
of future, “will have” and referring to
2019, in the future at time of writing.

(3) Researcher B Yes Similar to researcher A, however, in cases where there are
multiple candidate orientations, this researcher can select
multiple orientations.

Future Though it is a cue for past orientation, a
human reader can see ‘remember’ is
used in a future context here.

(4) SNL, naïve Yes Automated tense extraction via the Stanford Natural
Language Parser using only Penn Treebank POS-tagged
word stem cues, with ties allowed. “Future” was marked by
modal tense (MD); ‘present’ marked by nouns (NN) present
tense verbs (VBG, VBP, VBZ), or interjections (UH); “past”
by past tense and participle verbs (VBD, VBN); and “other”
by lack of these markers

Mixture, future and
past

In/IN 2019/CD,/, I/PRP will/MD
have/VB remembered/VBN this/DT
example/NN both modal tense and
past participles present.

(5) SNL, anchor terms Yes Uses a combination of the cues used in the naïve method,
with additional anchor terms (explicit references to
“remembering” and “future”).

Mixture, future and
past

with explicit tag of “remember”
indicating past tense.

(6) SNL, no ties No Builds on the SNL anchor term method but breaks ties by
referring to the earliest cue in the sentence.

Future Future (modal tense MD occurs first).

(7) suTIME No As described in Chang and Manning (2012) and applied in
similar text mining circumstances by Thorstad and Wolff
(2018) and Jatowt et al. (2015), The suTIME tagger of the
Stanford Natural Language Parser can be used to extract
tense by extracting explicit temporal language (e.g.,
“Tomorrow,” “Yesterday,” “Today”), or comparing dates from
text against when text was created.

Future <TIMEX3 tid = “t1” type = “DATE”
value = “2019”> 2019</TIMEX3>.

Frontiers in Psychology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 2037

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-02037 October 24, 2018 Time: 14:53 # 4

Walsh and Busby Grant Detecting Temporal Cognition in Text

FIGURE 1 | Comparative performance of temporal orientation coding methods. Panel (A) shows the distribution of self-reported temporal orientation. For panels (B)
through (G), black outline denotes distribution of self-reported responses. Blue indicates correspondence between self-report and post hoc coding, red indicates
divergence. Counts are not allowed in panels A and F. Where ties are allowed (panels C–E,G) counts may exceed 2505 (as multiple orientations are possible).

allowed, Researcher A (method 2) performed best, with 79.93%
correct. Next best was the SNL using both POS-tagged word
stems and explicit anchors (method 5), with 57.44% correct. This
method notably over-estimated present orientation, particularly

at the expense of future orientation. Where ties were allowed,
Researcher B (method 3) also outperformed automated methods,
with 74.93% correct, and < 1% coded as ties. There was a slight
improvement from the naïve to anchored SNL model (48.77
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to 49.03%), though both models notably over-estimated both
“other” and “present” orientations, at the expense of “future.”

DISCUSSION

This study highlights the importance of self-report judgements in
evaluating accuracy of temporal orientation classification coding
systems. The findings demonstrate that, using self-reported
orientation as a gold standard, researchers were more accurate
than automated systems based on natural language parsers in
determining temporal orientation of short text strings. However,
the best-performing researcher coding still resulted in around a
20% error rate in temporal orientation classification.

Almost every method (in particular automated methods)
overestimated present orientation, and underestimated future
orientation. This may be because, in English, present tense can
be used to indicate non-present events, and future tense shares
similar sentence constructions (Langacker, 2001). For example,
“I am thinking about having dinner” could refer to a thought
or process coincident with the time of writing (the act of eating
dinner) or a future event (a dinner yet to be had). Notably, a
recent study similarly extracting temporal orientation from social
media text also found a very high degree of present orientation
(65% of statements present-oriented in Park et al., 2017).
Together with current results, this indicates that present-focus
is genuinely the most common temporal thought orientation, so
the overestimation seen here may simply be proportional to the
number of present vs. future thoughts.

Unexpectedly, attempts to account for bias due to multiple
conflicting temporal orientation cues by allowing ties in both
human and automated coding led to poorer performance. Too
few tied responses were recorded ( < 1%) to determine why
human coding performance declined in this method. Broadly,
it is likely this relates to a similar phenomenon found in the
visual psychophysics and cognitive discrimination literature,
which has long recognized that a forced-choice paradigm is
peculiarly stable and accurate, possibly by reducing anchoring
effects that scale to the number of potential alternative choices
(Blackwell, 1952). For automated coding, “ties” were broken by
temporal precedence (first cue in the text response was taken
as the correct cue). The discrepancy here is therefore most
likely due to the “true” temporal cue appearing later in the
sentence. Further expansion of the current approach to use the
SNL’s parts-of-speech functionality, as in Park et al. (2017), may
ameliorate this.

There are a number of implications for researchers seeking
to use large data sets to infer and interpret temporal cognition
in situ. In these cases, self-report of key features such as
temporal orientation is generally not available, and researcher
coding, while being the most accurate available, is costly and
time-consuming and by no means error free. Automated coding
of temporal orientation would clearly be the most efficient means
of categorizing large text data sets, but the current research
highlights the need for further work on appropriate algorithms,
using self-report (rather than error-prone researcher coding) as
comparison.

This study provides insights into accuracy of temporal
coding of text by using a triad of self-report, machine and
researcher assessments. It used a substantial corpus of data
that closely mirrors the type of data available in big data
sets such as social media. However, the sample had limited
generalisability (primarily female, undergraduate students) and
there is considerable scope for extension to apply substantially
more complex algorithms than the SNL tools applied here.
There is the possibility of using both automated and researcher
coding in concert, given strong historical evidence that a
combination of human and automated information processing
(human-in-the-loop augmented intelligence) can outperform
either alone (Zheng et al., 2017). Further, this paradigm allows a
single orientation per description, which may not reflect real-life
complexity where multiple orientations are encapsulated within
a single chain of thought.

Because the focus of this paper was triangulation of self-report
against post hoc coding methods, one of the limitations
is comparatively unsophisticated automated coding methods.
Future research could reduce the gap between human and
automated methods through approaches such as machine
learning, or tweaking rules to better reflect English structure
(e.g., using grammatical, rather than temporal precedence, to
break ties, as was done in Park et al. (2017). Such endeavors are
underway and ongoing, particularly in the sphere of orientation
extraction from social media text (e.g., Park et al., 2017).
However, as our results have indicated, reducing the gap between
human and automated post hoc coding is an important but
limited endeavor, as there is also a gap between contemporaneous
self-report and post hoc researcher coding.

This study explored the accuracy of human and automated
post hoc temporal orientation extraction, in the context
of real-world experiences that sampled English language
data. Despite recent advances in natural language parsing,
researchers need to be wary about any post hoc attribution
of temporal orientation to text-reported thought processes,
whether human or automated. Our findings demonstrate that
future evaluation of the efficacy of automated and machine
learning algorithms should use participant’s own, rather than
researcher judgement, and emphazise the importance of eliciting
self-reported judgements of temporal thought wherever possible.
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