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The increased popularity of computer-based testing has enabled researchers to collect

various types of process data, including test takers’ reaction time to assessment items,

also known as response times. In recent studies, the relationship between speed and

accuracy in a learning setting was explored to understand students’ fluency changes

over time in applying the mastered skills in addition to skill mastery. This can be achieved

by modeling the changes in response accuracy and response times throughout the

learning process. We propose a mixture learning model that utilizes the response times

and response accuracy. Such a model accounts for the heterogeneities in learning styles

among learners and may provide instructors with valuable information, which can be

used to design individualized instructions. A Bayesian modeling framework is developed

for parameter estimation and the proposedmodel is evaluated through a simulation study

and is fitted to a real data set collected from a computer-based learning system for spatial

rotation skills.

Keywords: response times, learning behaviors, diagnostic classification model, hidden markov model, mixture

model

1. INTRODUCTION

Educational researchers have shown long term interests in understanding the heterogeneity among
online learners. Learners can differ not only in their initial background and general learning ability,
but also in terms of how they learn. For example, learners’ affects, that is the attitudes, interests,
and values that learners exhibit, can influence their behaviors in the learning process and hence the
learning outcomes. Methods were proposed by educational data miners to detect students’ affects
based on their interactions with the online learning systems (e.g., Baker et al., 2012). By identifying
the affects of each student during the learning process, such as boredom, disengagement, confusion,
and frustration, educators can provide targeted interventions accordingly to improve learning
outcomes. Students can also vary in their preferred mode of instructions. Felder and Silverman
(1988) developed the Index of Learning Styles survey, which measured learners’ characteristics
on the Sensing/Intuiting, Visual/Verbal, Active/Reflective, and Sequential/Global dimensions. A
student’s learning style can provide indications of possible strengths and difficulties in the learning
process.

The increased popularity of computer-based testing has enabled researchers to collect various
types of process data, including test takers’ reaction time to assessment items, also known as
response times. In the field of Psychometrics, extensive research has been conducted on the joint
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modeling of response accuracy and response times (e.g., Thissen,
1983; van der Linden, 2006, 2007; Fox and Marianti, 2016).
Findings from these studies demonstrated that incorporating
the additional information from response times, in addition
to response accuracy, can improve the estimation accuracy of
item parameters and individuals’ latent traits or latent classes,
further our understanding of individuals’ test-taking behavior
and the test items’ characteristics, and help differentiate learners
using different test-taking strategies (e.g., Meyer, 2010; Wang
and Xu, 2015). Most recently, response times have been used to
measure students’ improvements in skill mastery over time. An
example is the work fromWang et al. (2018c), in which response
times, together with response accuracy, were incorporated into
a higher-order hidden Markov model framework (Wang et al.,
2018b) to provide information about learners’ mastery of the
assessed skills, as well as their fluency of applying the mastered
skills.

Wang et al. (2018c) assumed that all learners were engaged in
the learning process, that is, they devoted their attention to the
learning interventions and answered the assessment questions
as correctly as possible. However, as mentioned in the very
beginning, learners may have different learning styles. Assuming
all learners to have the same learning style may under- or
over-predict their learning outcomes. This current study aims
to address this limitation with a mixture learning model with
response times and response accuracy that can account for the
presence of heterogeneities in learning styles among learners.

Response times have shown great potentials in identifying
students’ learning styles, especially student engagement. As an
example, Henrie et al. (2015) provided a comprehensive review of
methods for measuring student engagement in technology-based
learning environments in the literature, and the time spent on
homework, web pages, readings, et cetera were commonly used
as an indicator of student engagement. Response times were also
used by educational data miners to identify disengaged learners
Beck (2004). A statistical approach to identify unobserved
subpopulations in the data is by using mixture models. Mixture
models have been widely used in psychometrics research, for
example, addressing some practical issues in testing, such as
identifying rapid-guessing or aberrant behaviors among test-
takers (e.g., Wang and Xu, 2015), detecting compromised test
items (e.g., McLeod et al., 2003), and modeling test-taking speed
in time-constrained testing scenarios (e.g., Bolt et al., 2002). A
lot of previous research considered the fit of mixture models
to response and response time data collected from educational
assessments. For example, Wise and DeMars (2006) proposed an
effort-moderated IRT model, under which whether or not the
response time of an examinee on a test item exceeds an item-
specific threshold is used to infer if the subject has demonstrated
efforts on the item, and Wang and Xu (2015) used different
underlying response and response time distributions for item
responses in different test-taking modes (e.g., solution, pre-
knowledge, or rapid-guessing). However, modeling heterogeneity
in learning behavior is more challenging than modeling that in
testing behavior, as one needs to consider different measurement
models as well as the transition models that describe the
change of latent constructs over time. The proposed model,

which will be described in details in the following section, is
more closely related to the literature about Mixture Hidden
Markov Models (HMMs). Langeheine and Van de Pol (1990)
and Van de Pol and Langeheine (1990) proposed the mixed
Markov latent class model, which, in its most general form,
is the mixture of several first order hidden Markov models. It
assumeed that different subpopulations differed in their initial
state distributions, transition probabilities, and the response
distributions under a HMM. Vermunt et al. (2008) further
extended the mixed Markov latent class model to incorporate
time-invariant or time-dependent covariates for each subject at
each time point.

The mixture learning model proposed in this study adopts
a similar framework for modeling the learners’ behaviors in a
learning process as that in the mixture HMMs. However, instead
of assuming subpopulations of learners throughout the entire
learning process, we assume that at each point in time, a learner
can be in different learning modes. Furthermore, in addition to
the item response data, learners’ response times are also used in
the measurement model, to measure both the change of learners’
latent speed over time and any change in their engagement with
the learning process.

The rest of the paper is organized as follows. A motivating
example is first presented to demonstrate the utility of response
times and response accuracy in the detection of heterogeneous
learning behaviors in a computer-based learning program. This
is followed by the presentation of the proposed mixture learning
model and a Bayesian estimation procedure. We then present
the results from fitting the proposed mixture model to the
data described in the motivating example. A simulation study
is presented to verify the accuracy of proposed estimation
algorithm under different conditions and to validate the results
from the real data analysis. We further discuss our findings and
limitations of this study and propose future research directions
in the last section.

2. A MOTIVATING EXAMPLE

This motivating example is presented to illustrate the necessity of
using both response times and response accuracy to differentiate
learners’ behaviors in a learning environment. We start with
presenting the results from an exploratory analysis on a data
set collected through a spatial rotation learning program (Wang
et al., 2018a). This learning program was developed on the basis
of a pilot learning program in Wang et al. (2018b) to train four
fine-grained mental rotation skills, namely (1) x90: 90◦ rotation
along the x-axis; (2) y90: 90◦ y-axis; (3)x180: 180◦ x-axis; and (4)
y180: 180◦ y-axis. Test questions in this new learning program
were developed based on the ones in Wang et al. (2018b), and
these four distinct yet related skills were identified as the set of
measured skills by several previous studies (e.g., Maeda et al.,
2013; Culpepper, 2015; Wang et al., 2018b). The structure of the
learning program is summarized by the flow chart in Figure 1.
Specifically, the learning program started with a testing module,
followed by two consecutive learning modules, and finally ended
with a testingmodule. Eachmodule was composed of 10 different
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FIGURE 1 | The design of the spatial rotation learning program.

questions that were selected based on various criteria, including
item characteristics and how well they assessed or improved the
four skills. The main purpose of the two testing modules was
to measure accurately the four binary spatial skills at a given
point in time, while the two learning modules aimed to improve
test-takers’ mental rotation skills. Learning interventions were
provided only in learning modules, in which participants were
provided with learning materials after completing each question.
A total of 585 undergraduate students with diverse backgrounds
participated in the experiment. Written informed consent was
obtained from the participants of this study. These students either
received a course credit or a stipend through their participation.
For students who received a stipend, their total amount of
payment was proportional to the number of correct responses
they provided in the experiment. Different incentive strategies
may also trigger different learning patterns.

We first explore the data by plotting the log response times of
all person-item combinations across four modules in Figure 2.
It is observed that the response time distributions in modules
1, 2, and 4, especially module 4, have a bimodal structure:
the first mode appeared within a short time period, while the
second appeared at a later time. The previous studies that had
similar observations in a testing environment concluded these
two modes represent rapid-guessing and solution behaviors, and
this is the evidence for amixture of two populations with different
response behaviors (e.g., Van der Linden and Guo, 2008; Wang
et al., 2016). However, in a learning environment, the behavior
of fast test-taking does not directly imply random guessing,
as there is a confounding factor that the speed, especially in
module 4, may be due to the improvement of cognitive skills
after receiving learning interventions. To see this, we further
identified the faster participants in module 4 and explored their
module 4 test scores as well as their testing time and module
1 score. The reason to choose module 1 and 4 is because these
two testing modules had similar item characteristics and can
be regarded as parallel, thus we can compare the change in
response accuracy and response times without worrying about
the form effect. Figure 3 documented the results from four
participants. From there we can see that first, Participant 567

and Participant 145 almost had the same speed in modules 1
and 4. However, the former may represent a person with random
guessing as he/she had low response accuracy in both modules,
and the latter may represent one who mastered or was fluent
in the four skills so that he/she can responded quickly while
maintaining high accuracy (achieved a full score in eachmodule).
The behavior from Participant 576 may indicate this student
had a solution behavior in module 1 but switched to random
guessing in model 4. The response speed and response accuracy
from Participant 383 both increased, and the increased speed
may be due to the improvement of the spatial skills. Lastly,
participants may switch engagement mode during the learning
process. Figure 4 further documents the examples of learning
behaviors of three participants in this experiment. Across all four
modules, participant 185 (left) responded to the questions with
high speed and low accuracy, indicating he/she was not engaged
during the whole experiment. Participant 78 (middle) seemed
to be engaged in learning during the first 2 modules, however,
his/her response accuracy sharply decreased inmodule 4 together
with the total response time reaching a plateau, indicating he/she
started to lose motivation in the last module. Participant 354
(right) presents another pattern, where he/she might not be
engaged in the first module, but then switched to be engaged in
the following modules. All these findings illustrate the necessity
to use response times and response accuracy together to detect
different learning behaviors.

3. MIXTURE LEARNING MODEL WITH
RESPONSE TIMES AND RESPONSE
ACCURACY

3.1. Model Formulation
We introduce the mixture modeling framework using the
computer-based learning environment presented in section 2 as
an example. It is assumed that N learners are trained to learn
K skills at T time points, and that they are assessed with items
developed under the Diagnostic Classification Model framework
(DCM; also known as Cognitive Diagnosis Model). At time
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FIGURE 2 | Histogram of the log response time for all person-item combination across four modules.

FIGURE 3 | Line plots of four participants’ testing time and module scores in module 1 and module 4. The dashed line and solid line represent module score and

testing time respectively. Time point 1 represents module 1 and Time point 2 represents module 4.
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FIGURE 4 | Line plots of three participants’ cumulative total scores and total response times at the end of each item.

point t, Jt questions are administered, and the skills measured
by each question are documented through a Qt-matrix, with
the j, kth element indexed by qjkt , which equals 1 when item j
requires attribute k and 0 otherwise. Let Xit = (Xi,1,t , ...,Xi,Jt ,t)

′

denote responses to the Jt questions from learner i at time
t. Xi,j,t takes a value of 1 or 0 depending on whether the
response is correct or incorrect. The reaction times, or latencies,
for these questions are denoted by Li,t = (Li,1,t , ..., Li,Jt ,t)

′.
For learner i, the latent skill profile at time t is denoted by
αi,t = [αi,1,t , . . . ,αi,K,t]

′, with αi,k,t = 1 indicating mastery
of a skill k and αi,k,t = 0 indicating non-mastery. Let Di,t

be a binary variable that denotes the learning mode of learner
i at time point t, with Di,t = 0 for an engaged mode and
Di,t = 1 for a disengaged mode. In this study, we index the
time points in the learning process at the module level, that
is, each model is regarded as a time point, and a learner is
assumed to have the same learning mode and attribute pattern
across all items that are administrated at the same time point.
We impose this assumption for the consideration of model
simplicity, and a generalization of this assumption to item-level
time indexing is provided in the discussion section as a future
direction. Given the learner’s engagement mode at a given time
point Di,t , the proposed mixture learning model considers the
between-mode differences of the learners on the following three
sub-models, namely (1) a transition model that captures the
change of latent profile between two adjacent time points, (2)
a measurement model that describes the distribution of item
responses to the assessment questions at a given time point,
and (3) a response time model that outlines the distribution
of reaction times at a given time point. As the learner is
assumed to have only two modes at a given time point, we will
address the above three types of models based on whether the

learner is in an engaged learning mode or a disengaged learning
mode.

First, a learner in an engaged learning mode (Di,t = 0) is
assumed to employ relevant skills to respond to the assessment
questions as accurately as possible. In this case, a reasonable
DCM can be chosen as the measurement model. For example, if
the deterministic input, noisy-“and”-gate (DINA; e.g., Macready
and Dayton, 1977; Junker and Sijtsma, 2001) model is chosen,
then the probability of a correct response on item j by learner i at
time t is given by

P(Xi,j,t = 1 | αi, sj, gj, qj) = (1− sj)
ηijg

1−ηi,j,t
j , (1)

where ηi,j,t =
∏K

k=1 α
qj,k,t
i,k,t

is the ideal response, indicating
whether learner i possesses all required skills to answer item j
correctly, and sj and gj are the slipping and guessing parameters
of item j. Essentially, the DINA model describes the case where
a learner needs to master all requisite skills of an item to be
able to answer the item correctly with high probability (1 −

sj). Missing any of the item’s requisite skills would result in a
probability of a correct response of gj instead. We note that
while the DINA model is chosen in the present study, other
DCMs can be chosen based on the specific assessment items
in hand. This includes, for example, the deterministic input,
noisy-“or”-gate model (Templin and Henson, 2006), the reduced
reparameterized unified model (DiBello et al., 1995; Hartz, 2002;
Roussos et al., 2007), and other general models, such as the log-
linear cognitive diagnosismodel (Henson et al., 2009), the general
diagnostic model (von Davier, 2008), and the generalized-DINA
model (de la Torre, 2011).

When a learner engages in solution behavior on an assessment
item, we adopt the dynamic response time model proposed by
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Wang et al. (2018c) to describe the distribution of the reaction
time to this item. Specifically, Li,j,t is assumed to follow a log-
normal distribution,

log(Li,j,t) ∼ N

(

γj − (τi + φ ∗ Gi,j,t),
1

a2j

)

. (2)

where τi is the initial latent speed of learner i, γj is the time-
intensity parameter of item j, capturing the overall amount
of time the item requires, and aj is the time-discrimination
parameter of item j, which captures variance of log-response
times at a given τi and γj. Gi,j,t is a covariate defined according
to the latent skill profile αi,t , and φ is the parameter that
characterizes the change of the latent speed due to Gi,j,t . The key
part of such a dynamic response time model is the covariate Gi,j,t ,
which captures the change in speed of the subject over time as a
function of the attribute trajectory of subject i, and here we use
the indicator function for G proposed in Wang et al. (2018c),
namely

Gi,j,t =

{

1, if αi,t � qj,

0, otherwise.
(3)

With Gi,j,t defined this way, a learner can take one of two speed
statuses on each item: Depending on whether all the required
skills of item j are mastered time t, his or her speed on the item
is either τi or τi + φ. In terms of the transition probability, we
make the assumption that a learner in the engaged mode also has
high a engagement level in the learning process and thus may
improve in skill mastery over time. In the engaged learningmode,
the learner’s transitions of attribute pattern from that time point
to the next is hence modeled using a simplified version of the
higher order hidden Markov DCM (HO-HM DCM) proposed
by Wang et al. (2018b), specifically, the logit of the probability of
transitioning from non-mastery to mastery on skill k at time t+1
is given by

logit[P(αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] = λ0+λ1θi+λ2

∑

∀k′ 6=k

αi,k′ ,t .

(4)
In this model, θi denotes the overall, time-invariant learning
ability of learner i. The term

∑

∀k′ 6=k ai,k′ ,t represents how many
attributes learner i has already acquired other than attribute
k at time t. By using a higher order logistic model for the
transition probabilities in the hidden Markov model, the effect
of different factors on the probability of learning a skill can hence
be examined. A monotonicity assumption is also imposed in the
current study, where the probability of forgetting a learned skill,
P(αi,k,t+1 = 0 | αi,k,t = 1,αi,t), is 0.

On the other hand, if a learner is in a disengaged learning
mode at time t, with Di,t = 1, we assume this learner takes
the rapid-guessing strategy on assessment items and shows low
engagement in the learning process. We model their rapid-
guessing strategy using similar methods as that in Wang and Xu
(2015), where the probability of correctly responding to item j
is equal to a parameter g∗ ∈ (0, 1) across all items, and the

TABLE 1 | Components of the mixture learning model under different engagement

modes.

Learning mode Engaged (Di,t = 0) Disengaged (Di,t = 1)

P(αi,t+1 | αi,t ) =
logit[P(αi,k,t+1 = 1 | αi,k,t = 0,αi,t )] =

λ0 + λ1θi + λ2
∑

∀k′ 6=k αi,k′,t

I(αi,t+1 = αi,t )

P(Xi,j,t = 1) = (1− sj )
∏K
k=1 α

qj,k
i,t,k g

1−
∏K
k=1 α

qj,k
i,t,k

j
g∗

log(Li,j,t ) ∼ N

(

γj − (τi + φ ∗ Gi,j,t ),
1
a2
j

)

N(µ1, σ
2
1 )

distribution of response times under the rapid-guessing strategy
is also assumed to be the same across items, specifically,

log(Li,j,t) | Di,t = 1 ∼ N(µ1, σ
2
1 ), (5)

where µ1 and σ 2
1 are the mean and variance of the log-response

times in the disengagedmode. The disengagement in the learning
process is reflected in the transition probabilities from the current
stage to the next. In other words, if a learner i is in the disengaged
mode at time t, his or her attribute pattern at time t+1 is assumed
to be unchanged from αi,t . As a summary, Table 1 presents the
learning, response, and response time models for the learners
under two different learning modes.

3.2. Bayesian Estimation
The proposed mixture learning model with engaged and
disengaged modes is fitted under a Bayesian framework. We first
outline the prior for each parameter in this modeling framework.
Recall that Di,t denotes the membership of learner i at time t in
terms of whether one is disengaged, where Di,t = 1 if learner i is
disengaged at time t, and Di,t = 0 otherwise. We assume that

Di,t ∼ Bernoulli(ω), (6)

where ω is the probability an arbitrary learner belongs to the
disengaged group, and the prior distribution of ω is

ω ∼ Beta(1, 1). (7)

The initial attribute pattern of learner i is assumed to be a
multinomial sample from all C = 2K possible classes, with

P(αi,1 = αc) =

C
∏

c=1

π
I(αi,1=αc)
c , (8)

where a Dirichlet prior distribution for the initial probabilities of
each attribute pattern is used,

π = [π1, . . . ,πC] ∼ Dirichlet(1, . . . , 1). (9)

At time t ∈ {1, . . . ,T − 1}, if a learner is in the engaged learning
mode with Di,t = 0, his or her attribute pattern at the next time
point, αi,t+1, conditioning on the attribute pattern at time t is
modeled using the HO-HM DCM in Equation (4). Similar to
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Wang et al. (2018c), we used the following prior probabilities for
the learning model parameters:

λ0 ∼ Normal(0, 1), λ1 ∼ Log-normal(0.5, 1),

λ2 ∼ Log-normal(−0.5, 0.62). (10)

If the learner is disengaged at time t with Di,t = 1, αi,t+1 is equal
to αi,t with probability 1.

The responses of a learner under the engaged mode are
assumed to follow the DINA model in Equation (1). A Beta prior
was used for the slipping and guessing parameters of all the items,
in other words,

p(sj, gj) ∝ s
as−1
j (1−sj)

bs−1g
ag−1

j (1−gj)
bg−1

I(0 ≤ gj < 1−sj ≤ 1).

(11)
On the other hand, the response to an item j by a learner in
the disengaged mode is assumed to be a Bernoulli sample with
success probability g∗, in other words, P(Xi,j,t = 1 | Di,t = 1) =
g∗, where g∗ is assumed to have a Beta(1, 1) prior distribution.

At each time point t = 1, . . . ,T, ifDi,t = 0, subject i’s response
time on each item follow the log-normal distribution in Equation
(2). Similar to that in Wang et al. (2018c), we use the following
priors for the response time model parameters:

γj ∼ N(0, 1),φ ∼ N(0, 1), and a2j ∼ Gamma(1, 1). (12)

IfDi,t = 1, the reaction time to each item by learner i are assumed
to follow the log-normal distribution given in Equation (5), with
the following priors for the response time model parameters:

µ1 ∼ N(0, 1), and σ 2
1 ∼ Inv-Gamma(1, 1). (13)

Lastly, for each learner, his or her latent learning ability θi follows
a standard normal prior distribution, and his or her initial latent
speed τi in the engaged mode is assumed to follow a normal
distribution with mean 0 and variance σ 2

τ , where the variance,
σ 2

τ , has the Inverse-Gamma prior distribution:

σ 2
τ ∼ Inv-Gamma(2.5, 1). (14)

The conditional distribution for each parameter can be derived
based on the specified priors and the likelihood function
of the observed data. The details on the full conditional
distributions of the model parameters are presented in
Appendix I. A Metropolis-Hastings within Gibbs sampler is
developed to iteratively update the parameters by sampling
from their conditional distributions. For θi and for λ, their
conditional distributions do not resemble any known families
of distributions, and thus, Metropolis-Hastings (MH) steps are
used to update these parameters. A special note for the MCMC
algorithm is that when Di,t, = 1, or in other words when
a learner is disengaged, the proposed model assumes that the
attribute pattern at the next time point, αi,t+1, is the same as
αi,t . In this case, αi,t and αi,t+1 share the same attribute pattern.
When updating the αi,ts sequentially for each learner, instead
of sampling each αi,t separately, sets of consecutive αis with no
transitions in between (e.g., αi,t and αi,t+1, if Di,t = 1) are

sampled together, conditioning on the attribute pattern before
the last transition, the learner’s attribute pattern after the next
transition, and the observed responses and response times at
all time points where the underlying attribute pattern is the
current one. For example, if student i is disengaged at time 1
and engaged at time 2, then the proposed model predicts that, by
the assumptions of “no transition” under the disengaged learning
mode, the student should have the same attribute pattern at
times 1 and 2. Thus, the algorithm samples αi,1 and αi,2 together,
conditioning on π , αi,3, and the observed item responses and
response times at time 2. The detailed description of the MCMC
algorithm for parameter estimation is given in Appendix II.

4. ANALYZING LEARNING BEHAVIORS IN
A SPATIAL ROTATION LEARNING
EXPERIMENT

In this section, we apply the proposed mixture learning model to
analyze the data in the motivating example. To demonstrate the
necessity of fitting this complex model, we in addition fitted two
relatively simpler models, one is themodel inWang et al. (2018c),
which is a joint model for response accuracy and response time
without considering the mixture structure, and the other is
an independent model that fit the response accuracy with the
HOHM DCM (Wang et al., 2018b) and the response time with
a static log-normal model. These three models all converged after
20,000 iterations based on the Gelman-Rubin proportional scale
reduction factor (PSRF; Gelman et al., 2014), also known as R̂.
The last 25,000 iterations were thus used to provide estimates
for model parameters. We compared these three models based
on the joint Deviance Information Criteria (DIC) and posterior
predictive checking. First, the joint DIC for the proposed mixture
model is 223104.2, which is the smallest among the three models
[joint (224690.7) and independent (226364.1)], indicating a
better fit of the proposed mixture model compared with the
two simpler models. The testing quantities used in the posterior
predictive checking are the minima, maxima, and mean of the
change score (total score in Module 4 minus that in Module
1) and change response time (testing time in Module 4 minus
that in Module 1). The posterior predictive p-values for these
quantities are documented in Table 2. In general, an extreme p-
value (close to 0 or 1) implies that the model cannot be expected
to capture this aspect of the data. Based on the results in Table 2

we can conclude that the three models had a similar fit in terms
of response accuracy. However, the mixture model had the best
fit for the response time portion, as the other two models had
extreme p-values for the three defined testing quantities. All these
results demonstrate that the mixture learning model can improve
the data-model fit compared with the two simpler models, and
it is necessary to use this model to explore students’ learning
behaviors.

The average proportion of disengaged participants from the
mixture learning model was estimated as ω̂ = 0.03 (SD = 0.004),
indicating on average, about 3% of participants were disengaged
at each time point. The following analysis focuses on interpreting
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TABLE 2 | Posterior predictive p-values for three testing quantities.

Model Change Score Change Time

Min Mean Max Min Mean Max

Mixture 0.375 0.558 0.313 0.706 0.770 0.744

Joint 0.605 0.511 0.311 0.942 0.941 0.930

Independent 0.572 0.514 0.287 0.941 0.949 0.924

the learning behaviors and outcomes in the disengaged learning
group and engaged learning group.

4.1. Disengaged Learning Group
Based on the estimated D̂i,t for each participant i, a total of 41
participants were not engaged in at least one of the four time
points. There were 11 different disengaged learning patterns,
as shown in Figure 5. These patterns can be summarized by
four types of disengaged learning behaviors. The first is the
behavior that participants began as being engaged in answering
questions and learning, but they then became disengaged during
the learning process. Among participants with this pattern, a
relatively large proportion of them were engaged in learning
and testing during the first three modules, but switched to
disengaged in the very last module. This could possibly explain
the exploratory finding in section 2 that the bimodal structure
of the log response time distribution in module 4 is more obvious
than that in the other three modules. The second type of behavior
can be characterized by the participants being disengaged at first
and then switching to engagement in later modules. The third
type of behavior is characterized by constant switching between
disengaged and engaged modes during the learning process.
The last type of behavior is complete disengagement throughout
the four modules. These different disengaged behaviors may
provide feedback on the learning program design. For example,
for the participants who were not engaged in the last module,
about 70% of them were estimated to have mastered all four
skills after the third module. In the last module, participants
may become attuned to the nature of the test or bored, which
leads to disengagement. This indicates that varieties in testing
questions could be enhanced to better attract their attention in
the learning program. When participants was not engaged in
answering questions, they randomly guessed the item correctly
with probability ĝ∗ = 0.503(SD = 0.022). Their log response
time distribution was estimated to follow a normal distribution
with mean µ̂1 = 2.528(SD = 0.069) and variance σ̂ 2

1 =

1.158(SD = 0.038). This translates to an expected response time
of about 12.5 s per item when a learner is disengaged.

4.2. Engaged Learning Group
The posterior means (EAPs) and standard deviations (SDs)
estimated with the MCMC algorithm for the coefficients of the
transition model and the speed change rate in the response
time model are summarized in Table 3. About 52.7% of the
participants were estimated as masters of all four skills at the
initial time point. In general, when a participant was in an
engaged mode, the transition from non-mastery to mastery of a

FIGURE 5 | The distribution of disengagement patterns. The x-axis represents

the estimated summary pattern of Di,ts at four time points, with 1 indicating

disengaged and 0 as engaged.

TABLE 3 | The MCMC parameter estimates for the transition model and φ from

the response time model.

Parameters λ0 λ1 λ2 φ

EAP −2.214 2.757 0.286 −0.332

SD 0.323 0.781 0.119 0.028

The estimates are the averages across five chains.

skill at one time point to the next is significantly and positively
related to one’s general learning ability (λ̂1 = 2.757) and the
number of mastered skills (λ̂1 = 0.286). The speed change rate
is estimated as−0.332, indicating participants on average tended
to respondmore slowly to questions if theymastered the required
skills for a question than when they missed some required skills.
However, this estimate is the average across all participants; a
generalization is to allow each individual to have a different
change rate, which could possibly detect the increased speed due
to the change of latent skill.

The MCMC estimates for the item parameters, including the
DINA model item parameters and the response time model
item parameters, are documented in Table 4. The estimated
DINA model item parameters are similar to the findings in
Wang et al. (2018c) and Wang et al. (2018b), as these two
learning programs share similar test questions. The average
of the estimated time intensity parameters is 3.10, indicating
participants in the engaged mode spent about 22.2 s answering
a test question.

5. SIMULATION STUDY

A simulation study was conducted to achieve three goals. The first
was to verify the accuracy of the proposed MCMC algorithm,
the second was to provide validation for the real data analysis,
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TABLE 4 | The MCMC parameter estimates for item parameters and response

time parameters.

Item s g a γ

1 0.045 (0.014) 0.811 (0.043) 1.410 (0.044) 2.312 (0.040)

2 0.086 (0.018) 0.737 (0.044) 1.776 (0.056) 2.940 (0.037)

3 0.082 (0.019) 0.699 (0.037) 1.865 (0.059) 3.371 (0.035)

4 0.224 (0.026) 0.635 (0.033) 1.679 (0.054) 3.762 (0.035)

5 0.140 (0.023) 0.484 (0.039) 1.781 (0.055) 3.452 (0.034)

6 0.223 (0.025) 0.570 (0.037) 1.702 (0.053) 3.476 (0.035)

7 0.195 (0.026) 0.355 (0.040) 1.869 (0.058) 3.510 (0.033)

8 0.195 (0.025) 0.530 (0.035) 1.737 (0.055) 3.658 (0.034)

9 0.299 (0.029) 0.379 (0.036) 1.735 (0.058) 3.687 (0.035)

10 0.279 (0.029) 0.378 (0.035) 1.533 (0.047) 3.612 (0.037)

11 0.019 (0.008) 0.876 (0.039) 2.103 (0.067) 2.671 (0.034)

12 0.011 (0.006) 0.943 (0.019) 2.271 (0.074) 2.594 (0.033)

13 0.037 (0.010) 0.842 (0.043) 2.113 (0.067) 2.601 (0.033)

14 0.088 (0.015) 0.843 (0.038) 2.150 (0.071) 2.464 (0.034)

15 0.106 (0.014) 0.855 (0.029) 2.155 (0.071) 2.187 (0.035)

16 0.064 (0.015) 0.585 (0.042) 1.820 (0.057) 3.040 (0.035)

17 0.095 (0.019) 0.498 (0.047) 2.011 (0.066) 3.019 (0.035)

18 0.060 (0.013) 0.783 (0.034) 1.975 (0.062) 2.854 (0.034)

19 0.089 (0.016) 0.658 (0.040) 1.723 (0.053) 3.135 (0.036)

20 0.119 (0.019) 0.613 (0.042) 1.655 (0.051) 3.179 (0.037)

21 0.032 (0.010) 0.798 (0.051) 1.848 (0.058) 2.630 (0.035)

22 0.220 (0.022) 0.317 (0.043) 1.769 (0.055) 3.292 (0.035)

23 0.329 (0.025) 0.405 (0.045) 1.947 (0.060) 2.979 (0.034)

24 0.135 (0.019) 0.429 (0.065) 1.500 (0.046) 3.173 (0.040)

25 0.257 (0.024) 0.421 (0.049) 2.099 (0.065) 2.904 (0.034)

26 0.146 (0.020) 0.261 (0.042) 1.817 (0.056) 3.333 (0.035)

27 0.215 (0.023) 0.392 (0.041) 1.732 (0.053) 3.509 (0.036)

28 0.361 (0.026) 0.370 (0.040) 1.810 (0.056) 3.395 (0.034)

29 0.483 (0.026) 0.327 (0.041) 1.749 (0.054) 3.289 (0.035)

30 0.532 (0.026) 0.273 (0.037) 1.743 (0.055) 3.271 (0.036)

31 0.063 (0.013) 0.756 (0.060) 2.108 (0.070) 2.622 (0.034)

32 0.035 (0.009) 0.825 (0.044) 2.106 (0.071) 2.264 (0.035)

33 0.033 (0.009) 0.892 (0.030) 1.867 (0.059) 2.736 (0.036)

34 0.227 (0.022) 0.458 (0.049) 1.701 (0.053) 3.241 (0.036)

35 0.141 (0.019) 0.537 (0.048) 1.727 (0.054) 3.075 (0.036)

36 0.205 (0.022) 0.520 (0.049) 1.780 (0.057) 3.498 (0.036)

37 0.232 (0.023) 0.345 (0.043) 1.546 (0.049) 3.492 (0.038)

38 0.274 (0.024) 0.366 (0.044) 1.662 (0.052) 3.299 (0.037)

39 0.494 (0.027) 0.171 (0.034) 1.373 (0.042) 3.439 (0.041)

40 0.254 (0.024) 0.285 (0.044) 1.368 (0.043) 3.206 (0.041)

Standard errors in parentheses.

and the last was to demonstrate the necessity of modeling
the heterogeneity of learning behaviors when they do exist. In
order to achieve these goals, the proposed mixture learning
model was chosen as the data generation model and the true
model parameters were generated according to the estimated
parameters from the real data analysis. Two additional factors
were considered, one was sample size (N = 585, 1,000, 3,000)
and the other was the overall probability of disengagement (ω =

0.03 or 0.10). Under each simulation condition, 50 data sets
were simulated, and the proposed model was refitted through
the MCMC algorithm. In addition, under each of the two N =

385 conditions (ω = 0.03 or 0.10), one data set generated
from the mixture model was also fitted to the joint learning
model of responses and response times under the HO-HMDCM
framework proposed by Wang et al. (2018c). This assumes all
learners are in the engaged mode across all time points, and the
results from this model misspecification scenario can be used to
demonstrate the third goal. The estimated parameters were then
compared to the ones used to generate the data sets. The details of
the simulation procedures and evaluation criteria are presented
in the following subsection.

5.1. True Parameters
We simulated the attribute trajectories of N = 585, 1,000, or
3,000 learners on K = 4 skills across T = 4 time points. Ten
assesment items were administred at each time point (Jt = 10).
The learners’ initial attribute patterns were randomly sampled
from the set of all possible attribute profiles ({0, 1}K), with
probabilities of each profile set to be the expected a posteriori
(EAP) estimates from the real data analysis. For each learner,
their latent learning ability θi was randomly sampled from the
standard normal distribution, and their latent speed τi was
randomly generated from a normal distribution with mean 0 and
variance σ 2

τ estimated from the empirical data.
At each time point t = 1, . . . ,T, the learners were randomly

assigned to one of two possible learning modes, namely the
engaged learning mode (Di,t = 0) and the disengaged learning
mode (Di,t = 1). The true probability of Di,t = 1 was set to either
ω = 0.03 or ω = 0.1, depending on the simulation condition.
Then, conditioning on the learner’s mode at time t, the attribute
mastery changes, responses, and response times were simulated
with different distributions. More specifically:

1. Transition. If at time t, learner i is in the engaged learning
mode (Di,t = 0), the probability that the learner transitions
from non-mastery to mastery on a skill is given by the
modified HO-HM DCM in Equation (4). Similar to Wang
et al. (2018b), we assumed the monotonicity in the growth
of attribute mastery, in other words, a mastered skill will not
be forgotten. The true intercept (λ0) and slopes (λ1, λ2) of
the learning model were set to the EAP estimates from the
empirical data analysis presented in Table 3. If learner i is
disengaged at time t with Di,t = 1, the learner’s attribute
pattern at the next time point, αi,t+1, was set to be the same
as the current one, αi,t .

2. Response. When a learner is in the engaged learning mode
at time t (Di,t = 0), the learner is assumed to engage in the
solution behavior, and the responses were simulated under
the DINAmodel in Equation (1). The estimated slipping and
guessing probabilities from the empirical data were used as
the true parameters of the 40 items (Table 4). On the other
hand, if the learner is disengaged at time t with Di,t =

1, a rapid-guessing strategy is assumed and the learner’s
responses are generated from Bernoulli(g∗). Similar to the
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other parameters, we set g∗ equal to the EAP estimate from
the real data analysis, which is 0.503.

3. Response Times. We assumed that when a learner is in
the engaged learning mode, the observed response times
follow the log-normal model in Equation (2), with Gi,j,t =

I(αi,t � qj), which takes the value 1 if learner i has mastered
all requisite skills for item j by time t and 0 otherwise.
For each assessment item, the empirically estimated time
intensity parameter γj and time discrimination parameter aj
in Table 4were used as the true parameters in the simulation
study and, similarly, the true value of the slope in front of
the covariate Gi,j,t , φ was set equal to the EAP obtained
from the real data, which is –0.332. If Di,t = 1. In other
words, learner i is disengaged at time t, the observed reaction
time to any item at that time point was simulated from
log-normal(µ1, σ1), again, the EAPs of µ1 and σ1 estimated
from the real data were used as the true parameters.

5.2. Parameter Estimation
To start the MCMC, we first generated initial values of all
the model parameters, and each of them was sequentially
updated given the others from the conditional distributions in
the Appendix. Specifically, the initial fixed parameters were
generated as follows:

λ0 ∼ N(0, 1), λ1 ∼ U(0, 1), λ2 ∼ U(0, 1),

π ∼ Dirichlet(1), φ ∼ U(0, 1), ω ∼ U(0, 0.2),

g∗ ∼ U(0, 0.5), sj ∼ U(0, 0.3), gj ∼ U(0, 0.3),

µ1 ∼ N(2, 1), σ1 ∼ U(0, 1), γj ∼ N(3.45, 0.52),

aj ∼ U(2, 4), σ 2
τ ∼ Inv-Gamma(1, 1).

The random parameters, namely D,α, θ and τ , were then
randomly generated based on the corresponding fixed
parameters.

A chain length of 30,000 iterations was used for the MCMC,
with the first 5,000 as the burn-in that were excluded for the
computation of the point estimates of the parameters. From the
post burn-in iterations, we calculated the expected a posteriori
(EAP) estimates of each of the model parameters by taking
the average of the parameter samples. For the discrete model
parameters, α andD, the final point estimates were dichotomized
depending on whether the associated post burn-in average was<

or > 0.5.

5.3. Evaluation Criteria
The performance of the proposed algorithm is evaluated in terms
of two aspects. The first is to evaluate the convergence of the
MCMC algorithm. Five separate chains with different starting
values were run with chain lengths of 30,000 iterations under the
N = 585,ω = 0.1 condition, based on one randomly simulated
data set. The R̂ (Gelman et al., 2014) was calculated for each
parameter at different chain lengths, with the first half of the
chain as the burn-in, and the progression of the maximum R̂ out
of all estimated parameters was used to determine an adequate
chain length for convergence. The second was to evaluate the
ability of the proposed algorithm to accurately recover the true
parameters. The following indices were used to evaluate different

parameters in the model. Specifically, the recovery of the learners’
attribute patterns of at each time point was evaluated using the

attribute-wise agreement rate, AAR =
∑N

i= 1

∑K
k= 1 I(αikt=α̂ikt)

N×K ,

and the pattern-wise agreement rate, PAR =
∑N

i= 1 I(αi,t=α̂i,t)
N ,

between the true (α) and estimated (α̂) attribute patterns. Note
that the learners who were estimated as not engaged in any of
the four time points were excluded from calculating these two
indexes, as no information was available to provide estimates for
their latent profile at each time point. We further evaluated the
recovery of φ, σ 2

τ ,π , λ, ω, µ1,σ1, and g∗ by comparing the mean
and standard deviation of the posterior parameter samples to the
true values. The agreement between true and estimated response
time model parameters (a and γ ), learning ability (θ), and latent
speed (τ ) was evaluated in terms of the correlation between true
and estimated values, and similarly for a, γ , θ , s, and g. Note that
for each learner, the data used to update θ are the transitions
from non-mastery to either non-mastery or mastery at the next
time point. Therefore, once a learner becomes a master of all
skills, the subsequent αs will not provide additional information
on θ , and no data on the transitions are available for learners
who have mastered all skills at the very beginning. For this
reason, the learners whose estimated initial attribute pattern was
(1, 1, 1, 1) were excluded from the computation of the correlation
between true and estimated learning abilities. The last index is the
sensitivity and specificity of the detection of disengagements, that
is, the proportion of times that true disengagement is correctly

detected, which is defined as
∑N

i= 1

∑T
t= 1 I(D̂i,t=1,Di,t=1)

∑N
i= 1

∑T
t= 1 I(Di,t=1)

), and the

proportion of times that true engagement is correctly identified,

which is defined as
∑N

i= 1

∑T
t= 1 I(D̂i,t=0,Di,t=0)

∑N
i= 1

∑T
t= 1 I(Di,t=0)

.

5.4. Results
5.4.1. Parameter Convergence
Figure 6 presents the change of the maximum univariate R̂
among all model parameters as chain length increases. From the
figure, we observe that after approximately 2,000 iterations, the
maximum R̂ fell below 1.2, and that at around 5,000 iterations, R̂
has fully stabilized, indicating chain convergence.

5.4.2. Parameter Recovery
Table 5 presents the attribute-wise agreement rates (AARs)
and the pattern-wise agreement rates (PARs) between the
true and estimated attribute patterns (α) at each time point,
under different disengagement rate (ω) and sample size (N)
conditions. Across all conditions and time points in the learning
process, the proposed estimation algorithm achieved over 85%
accuracy inmeasuring the presence/absence of attributes for each
participant. The estimation accuracy was the lowest for the initial
time point (t = 1), and it increased as t increased, achieving
over 90% agreement at t = 4. We also observed slightly higher
accuracy in the α estimates when sample size was larger and when
the probability of disengagement was lower.

In Table 6, we present the biases and RMSEs of the fixed
parameters in the model and the sensitivity and specificity of the
learning mode estimates (Di,t) averaged across 50 replications.
Specifically, these fixed parmeters include the transition model’s
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FIGURE 6 | Maximum Gelman-Rubin Proportional Scale Reduction Factor across all parameters with different chain lengths. The x−axis is the length of the MCMC

chain, and the y−axis is the maximum PSRF. The dashed line represents the commonly used threshold of R̂ = 1.2 for parameter convergence, and the solid line

corresponds to R̂ = 1, the minimum R̂ that can be achieved.

TABLE 5 | The averaged attribute-wise and pattern-wise agreement rates (AARs

and PARs) between the true and estimated α across 50 repetitions under each

simulation condition.

ω N Criteria t = 1 t = 2 t = 3 t = 4

0.03 585 AAR 0.872 0.910 0.923 0.923

PAR 0.683 0.745 0.784 0.793

1,000 AAR 0.875 0.912 0.926 0.926

PAR 0.688 0.749 0.789 0.798

3,000 AAR 0.877 0.913 0.927 0.928

PAR 0.696 0.752 0.792 0.800

0.10 585 AAR 0.864 0.901 0.916 0.915

PAR 0.666 0.726 0.769 0.776

1,000 AAR 0.869 0.903 0.917 0.918

PAR 0.678 0.732 0.770 0.782

3,000 AAR 0.872 0.905 0.919 0.919

PAR 0.688 0.738 0.775 0.784

intercept (λ0) and slopes (λ1, λ2), the correct response probability
in the disengaged mode (g∗), the probability of disengagement
(ω), the mean (µ1) and standard deviation (σ1) of the log
response times in the disengaged mode, the coefficient for the
increase of latent speed (φ) for engaged learners, and the variance
of latent speed (σ 2

τ ). Across all conditions, the bias of the
estimated fixed parameters, except those associated with the
transition model (λ), were relatively small, with small RMSEs.
One possible reason for the relatively large bias and RMSE for

λ is that with T = 4, each learner could be observed on at
most 3 transitions, and considering that a large proportion of
learners started with mastery of all or most of the skills at the
initial time point and that some learners might be disengaged at
a selection of time points, the actual number of observations for
transitions is usually <3 per learner. Thus, the amount of data
available for estimating the transition model parameters, as well
as the θs, is limited. We further observed that larger sample sizes
were associated with slightly lower bias and standard error of the
parameter estimates. In addition, a higher rate of disengagement
(ω = 0.1) was associated with larger biases and RMSEs of
learning model parameter (λ) and φ estimates, but smaller biases
and RMSEs of g∗ and µ1, σ1, the parameters associated with
the response and response time distributions in the disengaged
mode. This trend is expected, as a higher ω translates to a larger
number of observations associated with disengagement and less
observations associated with engagement.

Across several repetitions of the simulation study, the
estimated learning mode of each learner at each time point, Di,t ,
showed high agreement with the true values, with sensitivity
over 95% when ω = 0.03 and over 96% when ω = 0.1,
and specificity over 99% across all simulation conditions. This
suggests that under the proposed estimation algorithm, whether
a learner is disengaged or engaged at a given time point could
be detected correctly most of the times based on their response
times, responses, and transitions in attribute mastery.

The correlation between true and estimated values of
θ , τ , a, γ , s, and g are presented in Table 7. For the items’
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TABLE 6 | The bias and RMSE of the fixed parameter estimates under different simulation conditions and the specificity and sensitivity of the Di,t estimates.

True ω N λ0 (RMSE) λ1 (RMSE) λ2 (RMSE) g∗ (RMSE)

0.030 585 0.562 (0.631) −0.423 (0.775) 0.043 (0.145) 0.001 (0.026)

0.030 1,000 0.430 (0.499) −0.408 (0.626) 0.037 (0.135) 0.001 (0.022)

0.030 3,000 0.231 (0.307) −0.204 (0.352) −0.004 (0.106) 0.003 (0.013)

0.100 585 0.628 (0.691) −0.556 (0.837) 0.059 (0.153) −0.000 (0.014)

0.100 1,000 0.479 (0.546) −0.359 (0.646) 0.037 (0.137) 0.001 (0.011)

0.100 3,000 0.230 (0.313) −0.225 (0.388) 0.014 (0.119) 0.001 (0.007)

True ω N ω (RMSE) µ1 (RMSE) σ1 (RMSE) φ0 (RMSE)

0.030 585 0.000 (0.005) −0.000 (0.066) 0.003 (0.042) −0.017 (0.031)

0.030 1,000 0.000 (0.004) −0.001 (0.048) −0.004 (0.033) −0.010 (0.023)

0.030 3,000 0.000 (0.003) −0.001 (0.030) −0.000 (0.022) −0.003 (0.012)

0.100 585 0.001 (0.008) −0.000 (0.034) 0.000 (0.023) −0.023 (0.033)

0.100 1,000 −0.001 (0.007) −0.001 (0.027) −0.002 (0.019) −0.005 (0.022)

0.100 3,000 0.000 (0.004) −0.003 (0.014) 0.001 (0.010) −0.005 (0.014)

True ω N σ2
τ (RMSE) DP: Sensitivity D: Specificity

0.030 585 0.005 (0.015) 0.952 0.999

0.030 1,000 0.003 (0.010) 0.954 0.999

0.030 3,000 0.001 (0.005) 0.954 0.999

0.100 5,85 0.005 (0.015) 0.967 0.996

0.100 1000 0.002 (0.010) 0.965 0.996

0.100 3,000 0.001 (0.005) 0.967 0.996

Values outside the parenthesis for λ,g∗,ω,µ1, σ1,φ0, and σ 2
τ are the biases of the parameter estimates averaged across 50 replications. Values in the parenthesis are the RMSEs of

the parameter estimates averaged across 50 replications.

TABLE 7 | Correlations between true and estimated latent learning ability (θ ) and

initial speed (τ ) of learners, item response time model parameters (a, γ ), and DINA

model item parameters (s,g).

ω N ρθ ρτ ρa ργ ρs ρg

0.03 585 0.663 0.968 0.967 0.998 0.989 0.982

1,000 0.670 0.968 0.982 0.999 0.993 0.989

3,000 0.669 0.968 0.994 1.000 0.998 0.997

0.10 585 0.643 0.964 0.967 0.998 0.988 0.982

1,000 0.647 0.964 0.979 0.999 0.993 0.989

3,000 0.645 0.965 0.993 1.000 0.997 0.996

response time model parameters (a, γ ), the DINA model
parameters (s, g), and the learners’ initial latent speeds (τ ), there
was a high agreement between the true and estimated values,
with correlations over 96%. For the latent learning abilities of
the learners (θ), the estimate values demonstrated larger errors
with correlations around 0.67 when ω = 0.03 and around 0.64
when ω = 0.1. Similar to the larger errors in the transition model
parameter estimates, we think the larger error in the estimation
of θ can potentially be attributed to the paucity of data available
to update θi for each subject.

5.4.3. Consequences of Misspecification
Finally, we briefly summarize the parameter recovery results
when the model is misspecified, that is, when the data generating

model is the mixture model but the mixture structure is ignored
when refitting data. We note that this is a special case of the
proposed mixture model with Di,t = 0 for all i and t.

Table 8 presents the summary of the parameter recovery
results when the model without mixture is fitted to the data
generated from the mixture learning model, with different true
disengagement probabilities (ω = 0.03 or 0.10). In both cases,
a sample size of N = 585 was used. We present the correlations
between the true and estimated θ , τ , a, γ , s, and g. In addition, we
also present the averaged attribute agreement rate (AAR) between
true and estimated α across the four stages.

Compared to when themixture is explicitly modeled, ignoring
the mixture in the data resulted in remarkable decreases in the
estimation accuracy of θ , τ , a, and the attribute trajectories of
the learners, α. The decrease in estimation accuracy is more
salient when the proportion of disengagement is higher. Thus, we
conclude that when learner disengagement exists in the learning
process, assuming that all learners are engaged could greatly
sabotage the model parameter estimates, including the estimates
of the learner’s skill mastery patterns and latent traits.

In addition to the recovery of the truemodel parameters under
model misspecification, we also compare themodel-data fit of the
missepcifiedmodel and that of the mixture model. As a reminder,
these two models were fitted to the response and response times
data generated under the mixture condition with N = 585 and
ω = 0.03. On the same data set, the DIC obtained from the
mixture learningmodel and the misspecifiedmodel was 223269.1
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TABLE 8 | Recovery of the model parameters when the mixture in the data is

ignored.

True ω ρθ ρτ ρa ργ ρs ρg ¯AAR

0.03 0.561 0.904 0.926 0.997 0.983 0.958 0.859

0.10 0.426 0.815 0.827 0.993 0.979 0.965 0.802

and 226197.3, respectively. This suggests that when a mixture
structure does exist in the observed data, the model without the
mixture fits significantly worse than the mixture model.

6. DISCUSSION

In this paper, we propose amixture learningmodeling framework
which can address the heterogeneity in learning behaviors. A
simple model with two possible learning modes, namely the
engagedmode and the disengagedmode, motivated by a real data
analysis on a computer-based learning program, is provided as
an example. Specifically, with this model, learners are assumed
to demonstrate different learning and response behaviors under
different modes, leading to differences in the distributions of
attribute mastery transitions over time, item responses, and
response times. A Bayesian estimation procedure is established to
estimate the parameters of the mixture learning model. Different
learning behaviors were discovered by applying the proposed
model to the real data from the spatial rotation learning program.
Simulation studies showed that the model parameters could
be accurately estimated, the learners’ learning mode could be
detected with high accuracy, and the Markov chains stabilized
within 5,000 iterations. In addition, the simulation results from
the model misspecification scenario suggested the necessity
of fitting the proposed mixture learning model instead of a
homogeneous learning model when data suggest the existence of
a mixed structure of learning modes.

The proposed mixture learning model has the potential to
detect learner disengagement in an online learning context.
Compared to traditional classroom learning, online learning
programs often provide the learners with a significantly more
flexible and less controlled environment. Whereas, instructors in
traditional classrooms can directly observe the learners’ behaviors
and their reactions to different interventions, in online learning,
the educators do not interact face to face with the learners.
This mixture learning model framework provides a way for
educators to infer the online learners’ learning mode (e.g.,
engaged or disengaged) and their corresponding latent skills
based on the observed responses and reaction times to assessment
questions at different time points. This can help the educators to
provide different stimuli to different learners through the online
learning environment. Furthermore, the proposed model can
also help to refine and design individualized learning materials.
As demonstrated from the real data analysis, learners may
become disengaged at a certain stage of the learning process, and
if this can be detected, then different types of learning materials
can be delivered so that it does not make the learning tasks
boring or transparent. Finally, even though illustrated within a
DCM framework, the way to model the engaged and disenaged

learning behavior can be generalized to other latent variable
models based on specific assessment requirements. For example,
if a continuous latent trait is assumed to be measured by the
assessment, then a traditional Item Response Theory Model can
be used for response accuracy. The latent growth model can be
used to describe the change of the continuous latent trait.

Though promising, the proposed mixture learning model has
the limitations that it only considers two learning modes and it
assumes the learning mode is the same for all items in the same
module. These restrictions can all be relaxed in future studies,
in which more than two learning modes can be considered to
differentiate various types of disengagement or to capture other
learning behaviors other than engagement and disengagement,
such as a warm-up mode, where students have low familiarity
with the learning environment and need some time to adjust
before fully engaging. We can also consider the learners’ modes
and attribute patterns at a finer grain size, such as treating the
response to each item as a time point. Another direction is to
consider a higher order model that describes the probability that
a learner is disengaged at a specific time point, given a set of
time dependent or time independent covariates, such as learners’
demographic information or other characteristics, the mode of
instruction (e.g., video, text, interactive exercise), or the temporal
position of the current learning block (e.g., first learning block
which may show slow warm-up of the learners, or later learning
blocks on which learners may demonstrate fatigue). Lastly, a
prior sensitivity analysis needs to be conducted in the future to
investigate the sensitivity of the model estimation results to the
prior specification.
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