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A simulation based comparative study was designed to compare two alternative

approaches to structural equation modeling—generalized structured component

analysis (GSCA) with the alternating least squares (ALS) estimator vs. covariance

structure analysis (CSA) with the maximum likelihood (ML) estimator or the weighted

least squares mean and variance adjusted (WLSMV) estimator—in terms of parameter

recovery with ordinal observed variables. The simulated conditions included the

number of response categories in observed variables, distribution of ordinal observed

variables, sample size, and model misspecification. The simulation outcomes focused

on average root mean square error (RMSE) and average relative bias (RB) in parameter

estimates. The results indicated that, by and large, GSCA-ALS recovered structural path

coefficients more accurately than CSA-ML and CSA-WLSMV in either a correctly or

incorrectly specified model, regardless of the number of response categories, observed

variable distribution, and sample size. In terms of loadings, CSA-WLSMV outperformed

GSCA-ALS and CSA-ML in almost all conditions. Implications and limitations of the

current findings are discussed, as well as suggestions for future research.

Keywords: generalized structured component analysis, alternating least squares estimation, maximum likelihood

estimation, diagonally weighted least squares estimation, structural equation modeling, covariance structure

analysis, monte carlo simulation

Latent variable modeling has become a methodological mainstay in social and behavioral
sciences research and beyond. Specifically, structural equation modeling (SEM; Jöreskog, 1970,
1973), a method of path analysis using latent variables, has been extensively utilized and
evaluated by substantive experts and methodological researchers. However, as there are many
different approaches for conducting SEM (e.g., covariance structure analysis, partial least squares
path modeling, generalized structured component analysis), many questions regarding optimal
modeling approaches still exist. For instance, responding to estimation challenges in the context
of ordinal observed variables and developing strategies to counteract model misspecifications are
areas of importance in SEM research (e.g., Flora and Curran, 2004; Bandalos, 2008; Li, 2016).

Recently, Li (2016) carried out a simulation study to examine the performance of
covariance structural analysis (CSA) with ordinal observed variables, comparing the conventional
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normal-theory estimation method, maximum likelihood (ML),
with the methods employing a robust correction for non-
normality. ML estimation uses a sample covariance matrix
as input data under the assumption of continuous observed
variables and multivariate normality of the observed variables,
while the robust methods, diagonally weighted least squares
(DWLS) estimation and unweighted least squares (ULS)
estimation, use a polychoric correlation matrix with the
assumption that a continuous and normally distributed latent
variable underlies each observed variable. In this simulation,
the study conditions were manipulated by varying distributional
properties of ordinal observed variables, the number of response
categories, and sample size. The simulation results revealed that
compared to ML, DWLS, and ULS produced more accurate
estimates for the factor loadings in all differing number of
response categories; as well as for the path coefficients in nearly all
asymmetric distribution conditions. Similar to previous findings
(see Muthén et al., 1997), both DWLS and ULS did not require
a large sample for the parameter recovery—i.e., a sample size of
200 or 300 would be sufficient for accurate parameter estimation.
In short, Li (2016) showed that when observed variables in
SEM are ordinal variables, DWLS and ULS are favorable to
ML in terms of parameter recovery. Nevertheless, ML would
be recommended for cases with observed variables that have
symmetric distributions in a large sample.

In the current study, we incorporate generalized structured
component analysis (GSCA; Hwang and Takane, 2004, 2014),
which is component-based SEM and an alternative to factor-
based CSA (Tenenhaus, 2008; Rigdon, 2012), for use with
continuous and ordinal observed variables. GSCA postulates that
weighted composites or components of indicators may serve as
proxies for latent variables as in principal component analysis,
while factor-based CSA assumes that common factors may
approximate latent variables as in common factor analysis. As
such, GSCA is capable of providing unique latent variable scores
while avoiding latent variable score indeterminacy in CSA. More
importantly, GSCA can accommodate models with a higher
degree of complexity, which may be difficult or impossible for
factor-based SEM due to technical difficulties such as model non-
identification, presence of improper solution, non-convergence,
and so on. Hwang and Takane (2014) highlighted the practical
usefulness of GSCA in regard to flexibility in model specification
and computational efficiency in parameter estimation. At a
glance, GSCA uses an alternating least squares (ALS; De Leeuw
et al., 1976) algorithm for parameter estimation and employs
the bootstrap method (Efron, 1982) to assess the reliability of
parameter estimates without rigid distributional assumptions
(e.g., multivariate normality assumption that is often made in
CSA). Thus, it allows for stable parameter estimates even in a
small sample.

A simulation study by Hwang et al. (2010) examined the
parameter recovery in GSCA-ALS and CSA-ML using a relatively
simple model with three latent variables and three normally
distributed, continuous observed variables per latent variable.
This study showed that when the model is correctly specified,
CSA-ML tends to produce better parameter estimates compared
to GSCA-ALS. In contrast, when the model is misspecified,

GSCA-ALS tends to have superior parameter recovery. These
findings suggest that GSCA-ALS is recommended over CSA-ML
unless a correct model specification is ensured. Unfortunately,
little is known for the ordinal variable case, even though Likert-
type ordinal scales are very commonly used to operationalize
latent variables in applied research. If researchers inadvertently
treat ordinal variables as continuous, it may lead to unreliable
parameter estimates and incorrect inferences (Flora and
Curran, 2004). Therefore, a thorough, empirical examination
is imperative to understand the performance of GSCA-ALS,
in comparison with CSA, on parameter recovery for ordinal
observed variables.

The organization of this article is as follows. The following
sections demonstrate GSCA and CSA approaches to SEM and
discuss some estimation issues relevant to those methods. Then,
the design and analysis procedure of a Monte Carlo simulation
study are presented. In the final section, the authors discuss
study findings and implications, as well as limitations and
directions for future research. The present study may contribute
to the literature by allowing for researchers and practitioners
to acknowledge viable options and potential consequences and
implications of their choice when conducting a SEM analysis with
ordinal observed variables.

GENERALIZED STRUCTURED
COMPONENT ANALYSIS WITH
ALTERNATING LEAST SQUARES
(GSCA-ALS)

Generalized structured component analysis (GSCA) is
component-based SEM (Tenenhaus, 2008). GSCA defines
latent variables as weighted composites or components of
observed variables as follows:

γi = Wzi

where zi denotes a vector of observed variables for a respondent
i (i =1, . . . , N), γi is a vector of latent variables for a respondent
i, andW is a matrix consisting of component weights assigned to
observed variables. This equation is called the weighted relation
model. Both zi and γi are assumed to be standardized with
zero mean and unit variance. Here, components or weighted
composites of the indicators are assumed to be proxies for latent
variables in GSCA or other multivariate methods, aiming to
capture the most representative variation in the indicators. In
contrast, in factor-based CSA, common factors are postulated
as latent variables, which are assumed to only account for
covariances among indicators.

GSCA comprises two additional equations for model
specifications. One is for the measurement model which specifies
the relationships between observed variables and latent variables,
and the other is for the structural model which captures the
relationships among latent variables. The measurement model is
given by the following:

zi = Cγi + εi,
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where C is a matrix of loadings relating latent variables to
observed variables and εi is a vector of residuals for zi. The
structural model is defined by the following:

γi = Bγi + ξi,

where B is amatrix of path coefficients connecting latent variables
among themselves and ξi is a vector of residuals for γi.

Then, the GSCA model is derived from integrating the three
submodels into a single, general model as follows:

[

zi
γi

]

=

[

C
B

]

γi +

[

εi
ξi

]

[

I
W

]

zi =

[

C
B

]

Wzi +

[

εi
ξi

]

Vzi = AWzi + ei,

where

V =

[

I
W

]

, A =

[

C
B

]

, ei =

[

εi
ξi

]

,

and I is an identity matrix (Hwang and Takane, 2004, 2014).
The unknown parameters of GSCA (W and A) are estimated

such that the sum of squares of all residuals (ei) is as small as
possible across all respondents. This pertains to minimizing the
following least squares criterion:

φ =

N
∑

i= 1

(Vzi − AWzi)
′ (Vzi − AWzi) ,

with respect to W and A, subject to the constraint that each
latent variable is standardized,

∑N
i= 1 γ 2

id
= N, where γid is

the dth element of γi. An ALS algorithm was developed to
minimize the least squares criterion—we therefore refer to this
approach as GSCA-ALS. This algorithm alternates two main
steps as many times as necessary until all parameter estimates
stabilize. In the first step, for fixed W, A is updated in the
least squares manner. In the second step, W is updated in the
least squares sense for fixed A (for a detailed description of
the algorithm, see (Hwang and Takane, 2014)). In GSCA-ALS,
a bootstrap method is utilized to calculate the standard errors
and confidence intervals of parameter estimates without the
multivariate normality assumption of observed variables. The
bootstrapped standard errors or confidence intervals can be used
for testing the statistical significance of the parameter estimates.

The simulation study by Hwang et al. (2010) investigated the
performance of GSCA-ALS and CSA-ML using a simple model
with three latent variables and normally distributed, continuous
observed variables. They arrived at two major conclusions. First,
when the model is correctly specified, factor-based CSA-ML may
be used over GSCA-ALS. Second, when the model is incorrectly
specified, GSCA-ALS may be chosen over factor-based CSA-ML.
In another Monte Carlo simulation study, Dynamic GSCA (Jung
et al., 2012), an extended model of GSCA for longitudinal and
time series analysis, showed reasonable parameter recovery rates
with a very complexmodel (i.e., seven latent variables were nearly
fully connected by contemporaneous reciprocal relations and by
autoregressive paths), even in small samples (i.e., n= 50 or 100).

COVARIANCE STRUCTURAL ANALYSIS
WITH MAXIMUM LIKELIHOOD (CSA-ML)

Using the notations commonly used in covariance structure
analysis (CSA) (Bollen, 1989; Kaplan, 2008), the measurement
models for endogenous variables and exogenous variables are
defined by the following:

y = 3Yη + e

and

x = 3xξ + δ,

where y is a vector of endogenous observed variables, η is a
vector of endogenous latent variables, x is a vector of exogenous
observed variables, ξ is a vector of exogenous latent variables,3Y

and 3x are factor loading matrices, and e and δ are uniqueness
vectors, respectively. The structural model is defined by the
following:

η = Bη + Ŵξ + ζ

where B is a matrix of path coefficients relating the latent
endogenous variables to each other, Ŵ is a matrix of path
coefficients relating endogenous variables to exogenous variables,
and ζ is a vector of disturbance terms.

Assuming the multivariate normality of observed variables,
the ML estimator produces parameter estimates that maximize
the fit function FML (Bollen, 1989):

FML = ln
∣

∣

∣

∑

(θ)

∣

∣

∣
+ trace

[

S6−1 (θ)
]

− ln |S| − r

where θ denotes a vector of model parameters,
∑

(θ) is a model
implied covariance matrix, S is a sample covariance matrix, and r
is the total number of observed variables.

CSA-ML assumes the observed data to be multivariate
normally distributed, but often this assumption is not tenable for
ordinal variables. In such case, CSA-ML can yield remarkably
erroneous parameter estimates (Boomsma, 1982; Chou et al.,
1991). This problem is exacerbated with small samples—for
instance, Anderson and Gerbing (1984) and (Boomsma, 1982,
1985) showed that the chance of an improper or inadmissible
solution, such as negative residual variance estimates, increases
with non-normally distributed ordinal observations from a small
sample.

COVARIANCE STRUCTURAL ANALYSIS
WITH WEIGHTED LEAST SQUARES
(CSA-WLSMV)

Weighted least squares (WLS) is an asymptotically distribution-
free estimator for non-normal continuous or categorical data
(Brown, 2006). It utilizes a consistent estimate of the asymptotic
covariance matrix of sample variances and covariances (Browne,
1984). Muthén (1984) adapted this approach for SEM with
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ordinal observed variables by making the assumption that
a normal, latent response distribution underlies each ordinal
observed variable in the population. That is, first, thresholds are
estimated from the univariate marginal distribution, and then
polychoric correlations are estimated from the bivariate marginal
distributions for the given threshold estimates (Olsson, 1979). A
consistent estimator of the asymptotic covariance matrix of the
polychoric correlation and threshold estimates is used as a weight
matrix � to obtain parameter estimates by minimizing the WLS
fit function FWLS (Muthén, 1984):

FWLS = [s− σ (θ̇)]′�−1[s− σ (θ̇)]

where s is a vector containing the non-duplicated, vectorized
elements of sample statistics (i.e., polychoric correlation and
threshold estimates), θ̇ is a vector of model parameters, is a
model-implied vector consisting the non-dupulicated, vectorized
elements of the polychoric correlation matrix 6∗θ̇ [i.e., σ θ̇ =

vec(6∗θ̇)].
Previous simulations studies have shown that WLS is prone

to non-covergence problems with small samples and complex
models (Flora and Curran, 2004). When sample sizes are small,
the estimated asymptotic covariancematrix shows great sampling
variation, and its inversion is typically infeasible. Moreover, as
the number of ordinal observed variables increases, the size
and invertibility of the weight matrix grow rapidly, leading to
computational challenges and numerical issues in parameter
estimation (Browne, 1984). To circumvent these problems,
diagonally weighted least squares (DWLS, Christoffersson, 1977)
estimation has been proposed by choosing a reduced and
invertible asymptotic covariance matrix. The fit function can be
represented as:

FDWLS = [s− σ (θ̇)]′�D
−1[s− σ (θ̇)]

where �D involves only diagonal elements of the estimated
asymptotic covariance matrix of the polychoric correlation
and threshold estimates. The weighted least squares mean
and variance adjusted (WLSMV) estimator (Asparouhov and
Muthén, 2010) for DWLS estimation was chosen for the current
investigation. WLSMV approximates the mean of the expected
χ2 distribution as well as its variance. WLSMV has been found to
outperform WLS in case of small samples and complex models,
even when non-normally-distributed ordinal data with small
number of categories were analyzed (Flora and Curran, 2004;
Bandalos, 2008; DiStefano and Morgan, 2014).

MATERIALS AND METHODS

The relative performance of CSA (using the ML or WLSMV
estimator) and GSCA (using the ALS estimator) with non-
normally-distributed ordinal data was analyzed using a Monte
Carlo simulation. Considering a comparability with previous
simulation work, a similar five-factor data-generating model as
used in Li (2016) was utilized to compare primarily the parameter
recovery under the conditions of correct or incorrect model
specification. Additionally, the current simulation considered

several condition factors such as different number of response
categories, level of distributional asymmetry, and sample
size.

Population model
Figure 1 depicts the structural layout of the data-generating
model (i.e., population model) used for the current simulation.
As in the study by Li (2016), a five-factor structural equation
model with four ordinal observed variables were selected to
ensure a representative structural equation model from an
applied standpoint. The structural part of the population model
(i.e., structural model) contains three endogenous and two
exogenous latent variables with a series of structural regression
paths specified between them, which range in magnitude from
a coefficient of 0.1 to 0.6. As shown in Figure 1, the six
endogenous-to-exogenous paths are labeled by γ ; and the three
exogenous-to-exogenous paths are labeled by β . The single
correlation term between the two endogenous latent variables
is labeled by φ. Additionally, the measurement part of the
population model (i.e., measurement model) was set to be
homogenous between all the latent variables, i.e., each latent
variable featured four observed variables with standardized
loadings of 0.8, 0.7, 0.6, and 0.5.

Simulation Design
The population model was estimated with either correct
or incorrect structural model specification. Under structural
misspecification, we have chosen to omit the four weakest
paths in the model, namely, γ22, γ31, γ32, and β31. This choice
represents the a priori decision to exclude effects that have been
shown to be non-significant in previous studies. The exclusion of
such paths is common in SEM; it presents a seemingly acceptable
detraction from an unknown data-generating model based on
a negligible difference in model fit. Those three omitted paths
under model misspecification are depicted as dotted lines in
Figure 1.

For observed variables, we simulated several different
instances of ordinal data configuration that are most commonly
encountered in applied research. Specifically, we manipulated
the number of response categories by using observed variables
with 4, 5, 6, and 7 categories. In addition, we considered two
different distributions for those observed variables; a symmetric
distribution with zero skewness and kurtosis ranging from−0.49
to −0.48, and an asymmetric distribution with skewness from
−1.39 to−1.38 and kurtosis from 1.14 to 1.19.

Sample size was also one of the condition factors under study.
In the CSA literature, there are many articles focusing on finding
an optimal sample size within different data environments, with
recommendations usually varying by the number of parameters
in the model. On the other hand, GSCA models make no
such restrictions, and are reportedly able to provide adequate
estimates at sample sizes commonly considered small under CSA
(Hwang and Takane, 2014). To empirically test the difference,
we considered five sample sizes, ranging from what have been
previously reported as small (n = 50, 100, 200), medium (n =

500), and large (n= 1000).
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FIGURE 1 | The population structural model with five latent variables. The paths omitted in the misspecification condition are displayed as dotted lines.

The algorithms used for model estimation included ALS
estimator for GSCA and ML and WLSMV estimators for CSA.
Previous research, including Li (2016), Flora and Curran (2004),
and Muthén et al. (1997), has shown that WLSMV is superior to
ML in case of ordinal observed variables in terms of accuracy and
bias. At the same time, WLSMV is known to have convergence-
related stringencies related to low sample size (Flora and Curran,
2004). For this reason, we have chosen to include both estimation
methods for CSA.

In sum, there were 2 (misspecification: yes/no) × 4 (number
of response categories) × 2 (observed variable distributions)
× 5 (sample sizes) = 80 experimental conditions in the
current simulation. Five hundred samples were drawn in each
of 80 conditions, yielding a total of 40,000 replications. Data
generation was completed using the MONTECARLO command
in Mplus 7 (Muthén and Muthén, 1998–2012). Data analysis
was performed using Mplus 7 for CSA models and using the R
software (R Core Team, 2017) with the gesca package (Hwang
et al., 2016) for GSCA models.

Evaluation Criteria
We considered two primary evaluation criteria for parameter
recovery: (a) average relative bias of parameter estimates, (b)
average root-mean-squared error of parameter estimates. The
formulae for relative bias (RB) and root mean square error
(RMSE) for the estimated value θ̂ of each parameter k (k= 1, . . . ,
p) in replication j (j= 1, . . . , r) relative to its respective population

parameter value θ , are as follows:

RB
(

θ̂k

)

=
1

r

r
∑

j= 1

[

θ̂kj − θk

θk

]

× 100%

and

RMSE
(

θ̂k

)

=

√

√

√

√

√

1

r

r
∑

j=1

[

θ̂kj − θk

θk

]2

.

RB quantifies the amount to which the estimated parameter
values detract from the true parameter values. This measure
further indicates the degree to which the chosen algorithm
properly estimates the model parameters. On the other hand,
RMSE represents the degree to which the estimated parameter
values vary around the parameter value, thereby incorporating
both bias and variance of the estimated parameters. For this
study, we calculated means of the RB and RMSE across the
loading and path coefficients to ascertain the average value of
each measure across each type of parameter:

RBa

(

θ̂
)

=
1

p

p
∑

k= 1

RB
(

θ̂k

)
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and

RMSEa

(

θ̂
)

=
1

p

p
∑

k= 1

RMSE
(

θ̂k

)

.

Although we acknowledge the importance of adhering to a
singular criterion for non-ignorable bias in parameter estimates,
we agree with Reise et al. (2013) that in many similar cases,
parameter bias is largely context dependent and therefore
comparing against an absolute criterion can be misleading. We
therefore chose to interpret parameter bias as well as error within
each study condition and our conclusions were drawn relative to
the context.

Non-convergence
The quality of the results was also evaluated for each condition
by considering the proportion of non-converged solutions. We
define non-convergence as instance in which either (1) the
software program exceeds the number of default iterations
without meeting the usual convergence criterion, or (2) the
model converged on an improper solution that contains one
or more non-positive definite matrices, also referred to as a
Heywood case. In either case, the non-converged solutions were
excluded from any further analysis and were not incorporated in
the presented results.

RESULTS

Parameter Recovery
We began by determining the simulation conditions that
produced substantial variability in the path coefficients and
loadings. In order to conceptualize variability as distinct from
the specified fluctuation in the model parameters, we calculated
the mean absolute difference (MAD) of parameters and their
estimates as follows:

MAD =

∑P
j=1 |θ̂j − θj|

P

where θ̂j and θj are an estimate and its parameter, respectively,
and P is the number of parameters. The MAD of the estimated
parameters θ̂j was analyzed as the outcome in an analysis
of variance (ANOVA) model, with the five simulation design
parameters serving as predictors. The interaction terms of those
design parameters were also included as predictors in up to a
maximum-possible 5-way interaction. Due to the large number
of available observations, we focused on effect sizes (e.g., η2) of
the predictors rather than their statistical significance (see Paxton
et al., 2001), and decided to interpret only those effects which
were at least medium inmagnitude, e.g., η2 ≥ 0.06 (Cohen, 1988).

For the path coefficients, the estimator (η2 = 0.49), model
misspecification (η2 = 0.18), and observed variable distribution
(η2 = 0.07) were considered, as were their interactions: estimator
by misspecification (η2 = 0.56), estimator by distribution (η2 =
0.08), and distribution by misspecification (η2 = 0.11). For the
loadings, only the estimator was considered (η2 = 0.84). Note
that all the exact values of RMSE and RB of loadings and path
coefficients are provided in tables as Supplementary Materials.

Loadings
Considering the current simulation incorporated model
misspecification at the structural level but not at the
measurement level, we did not expect to see a difference
in recovery of loading parameters between the correct and
incorrect specification conditions. This finding was confirmed,
as shown in Figures 2, 3. The pattern of parameter recovery was
also similar between the symmetric and asymmetric distribution
conditions. That is, in both distribution conditions, average
RMSE suggested that CSA-WLSMV (WLSMV, hereafter) had
the lowest estimation error, followed by CSA-ML (ML, hereafter)
and lastly GSCA-ALS (ALS, hereafter). However, ALS showed
similar performance to both CSA conditions when the indicators
where asymmetrically distributed. According to average RB,
in both indicator-symmetry conditions, ML and WLSMV had
better recovery than ALS. Overall, ML was more biased relative
to WLSMV but even more so in the asymmetric condition.

For all three algorithms, in general, average RMSE decreased
as the sample size increased in a non-linear (quadratic) fashion.
However, sample size had no effect on bias—see the relatively
flat trajectories of average RB over different sample sizes in the
figures.

Path Coefficients
Although the pattern of parameter recovery in path coefficients
was similar between the symmetric and asymmetric distribution
conditions, the effect of model misspecification was compelling,
as shown in Figures 4, 5. In the correct specification condition
(see left panels of Figures 4, 5), average RMSE suggested that ALS
had much lower estimation error than both ML and WLSMV
when the sample size was small, but at a sample size of 500 or
greater, the amount of estimation error became negligible in each
algorithm. According to average RB, when the (structural) model
was correctly specified, ML and WLSMV had lower estimation
error than ALS. On the other hand, under model misspecification
(see right panels of Figures 4, 5), ALS outperformed the CSA-
based methods in terms of both average RMSE and average RB,
regardless of sample size.

Non-convergence
The non-convergence issues of CSA-based models resided
primarily with small sample sizes, which is to be expected due
to the complexity of the population model. Markedly, neither
ML nor WLSMV yielded any successfully converged solutions
in the conditions with a sample size of 50. The two CSA-
based estimation methods experienced similar non-convergence
problems in the other small sample size conditions—the
most problematic conditions were those in which the model
contained asymmetrically-distributed observed variables with
more than four categories, a sample size of 100, and was
estimated with WLSMV (41–57% converged). A lesser degree
of non-convergence was observed in the model that was
also estimated with WLSMV but had either asymmetrically-
distributed variables with four categories or symmetrically-
distributed variables with any number of categories (73–79%
converged). The least severe conditions for non-convergence
involved asymmetric distribution, <6 categories, a sample size
of 100, and ML (85–94% converged). All other conditions at
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FIGURE 2 | Estimation error and bias in loadings with symmetrically distributed indictors.

FIGURE 3 | Estimation error and bias in loadings with asymmetrically distributed indictors.

a sample size of 200 and below had trivial amount of non-
convergence (95–99% converged). No non-convergence was
observed for CSA-based models with a sample size of 500 or
greater. Under ALS estimation, there were no instances of non-
convergence even at the smallest sample size of 50, suggesting
that ALS vastly outperformed both ML and WLSMV on this
metric.

DISCUSSION

In this Monte Carlo simulation study, we demonstrated the
relative performance of GSCA-ALS, CSA-ML, and CSA-WLSMV
with ordinal observed variables in terms of parameter recovery.
The major findings can be summarized as follows. First, when

the structural model was correctly specified, all three algorithms
under-estimated the parameter values of path coefficients in a
similar degree when the sample size was small. However, both
CSA-ML and CSA-WLSMV produced unbiased path coefficient
estimates when the sample size was 200 or larger, compared
to GSCA-ALS. On the other hand, taking into account both
bias and variability of the parameter estimates (i.e., average
RMSE), GSCA-ALS showed much smaller error in estimating
path coefficients than both CSA-ML and CSA-WLSMV when
the sample size was small, but at a sample size of 500 or
larger themagnitude of estimation error became negligible across
all three algorithms. Second, when the structural model was
incorrectly specified, GSCA-ALS outperformed the two CSA-
based methods in terms of parameter recovery of the path
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FIGURE 4 | Estimation error and bias in structural path coefficients with symmetrically-distributed indicators.

FIGURE 5 | Estimation error and bias in structural path coefficients with asymmetrically-distributed indicators.

coefficients. That is, GSCA-ALS showed a trivial amount of
estimation error compared to both CSA-ML and CSA-WLSMV
and overwhelmingly smaller biases, regardless of the sample size.
Third, the different conditions of observed variable distribution
(i.e., symmetric or asymmetric) did not lead to considerable
differences in parameter recovery of the path coefficients among
the methods. On the other hand, the simulation results for
the loadings indicated that under the asymmetric distribution
condition, GSCA-ALS had lower estimation error than CSA-ML
and CSA-WLSMV, and both CSA-ML and GSCA-ALS produced
extremely biased loading estimates. In the symmetric distribution
condition, both CSA-ML and CSA-WLSMV generally had better
recovery of the loadings than GSCA-ALS in terms of both

estimation error and bias. Fourth, CSA-ML and CSA-WLSMV
suffered from massive-to-moderate non-convergence problems
with small sample sizes (i.e., 50, 100, and 200). On the other hand,
GSCA-ALS did not encounter any convergence problems even at
the smallest sample size of 50.

These findings have important implications for researchers
in substantive areas who apply structural equation modeling for
their non-normally distributed ordered data. The choice over
different estimation algorithms should be carefully considered
especially when the sample size is less than moderate or/and
when they are uncertain if the model has been correctly
specified. Our stimulation results revealed outperformance of
GSCA-ALS over both CSA-ML and CSA-WLSMV under model
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misspecification. Thus, we would recommend the adoption of
GSCA-ALS when a correct specification of (structural) model
cannot be ensured. In addition, when the sample size is relatively
small (e.g., 100 or smaller), our findings suggest GSCS-ALS
as the method of choice. In all other circumstances, when
the researcher assures the model of being correctly specified,
we recommend CSA-WLSMV. The WLSMV estimator has
demonstrated superior parameter recovery for both loadings and
path coefficients, when the model is correctly specified.

Despite these significant contributions, the current study
has several limitations. Most apparently, for the comparative
study of GSCA and CSA in parameter recovery, we generated
simulation data within the CSA framework—i.e., assuming that
latent variables are approximated by common factors rather than
components of observed variables. The measurement model in
CSA is typically a confirmatory factor-analytic model, where
common factors explain the covariances among indicators and
unique factors represent measurement error. On the other hand,
the measurement model in GSCA is a confirmatory component-
analytic model (e.g., Kiers et al., 1996), where components aim to
explain the entire variances of the indicators with no distinction
between common and unique variances. In this sense, GSCA
cannot define and handle measurement error in the same way
as common factor analysis, tending to produce biased parameter
estimates of factor-based models. Consequently, GSCA might be
placed at a disadvantage in this simulation study.

We should have considered alternative data generation
procedures as well in a fair manner. Moreover, although the
present simulation involved a more realistic structural model
and most relevant conditions, the relative performance of each
method might be conditional on the specific levels chosen for the
experimental conditions. Thus, it might be necessary to consider
a broad range of conditions and models for more rigorous
investigations.

Given the superiority of GSCA-ALS over CSA-ML and
CSA-WLSMV under model misspecification, future studies
would expand their scope to other robust CSA methods for

a comparison with GSCA-ALS. For instance, Bollen (1996)
recommended using two-stage least squares (2SLS) estimation
for CSA in the presence of incorrectly specified models. CSA-
2SLS is a limited-information estimation procedure that employs
one equation at a time in parameter estimation, and consequently
a specification error in one equation does not necessarily
affects the other equations. Bollen et al. (2007) have empirically
demonstrated the robustness of 2SLS to misspecification, as
compared to CSA-ML. Thus, a Monte Carlo simulation on
the relative performance of CSA-2SLS and GSCA-ALS under
various misspecification conditions would ascertain the relative
benefits of each approach. Another direction for future studies is
to compare GSCA-ALS with its regularized extension (rGSCA-
ALS; (Hwang, 2009)). rGSCA-ALS combines a ridge type of
regularization into GSCA in a unified framework, thereby
handling potential multicollinearity problems more effectively.
In the preliminary simulation study, rGSCA-ALS was found
to provide parameter estimates that are as good as or better
than those from original GSCA-ALS in various conditions
of normally-distributed data. Therefore, it is suggested to
compare GSCA-ALS and rGSCA-ALS under more realistic
situations involving observed ordinal variables and the presence
of multicollinearity.
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