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The purpose of this study is to develop and evaluate two diagnostic classification

models (DCMs) for scoring ordinal item data. We first applied the proposed models

to an operational dataset and compared their performance to an epitome of current

polytomous DCMs in which the ordered data structure is ignored. Findings suggest

that the much more parsimonious models that we proposed performed similarly to

the current polytomous DCMs and offered useful item-level information in addition to

option-level information. We then performed a small simulation study using the applied

study condition and demonstrated that the proposed models can provide unbiased

parameter estimates and correctly classify individuals. In practice, the proposed models

can accommodate much smaller sample sizes than current polytomous DCMs and thus

prove useful in many small-scale testing scenarios.

Keywords: diagnostic classification model, ordinal item responses, partial credit model, rating scales, Bayesian

estimation, Markov Chain Monte Carlo (MCMC)

Grouping people into different categories are often of interest in educational and psychological
tests. For example, the Five Factor Personality Inventory-Children (McGhee et al., 2007) aims
to identify which personalities a child possesses. In another case of career assessment, the
Strong Interest Inventory (Prince, 1998; Staggs, 2004; Blackwell and Case, 2008) aims to
categorize individuals into occupational themes for identifying their career interest areas. From
a psychometric standpoint, those tests share at least three commonalities. First, they are usually
multidimensional tests, meaning that multiple latent traits are assessed. Second, the purpose of
such tests is to label individuals through assigning them with one of the pre-defined categories.
Third, they usually allow for ordinal item responses such as strongly disagree, disagree, agree and
strongly agree. For scoring tests with such features, diagnostic classification models (DCMs) have
provided an attractive framework in psychometrics because they are designed to classify individuals
into pre-defined latent categories (Rupp and Templin, 2008; Rupp et al., 2010). However, most
current DCMs for polytomous items consider item response categories as nominal without using
the ordered category information (Templin et al., 2008; e.g., de la Torre, 2010; Ma and de la Torre,
2016). As a result, those models are often large and require a sample size hardly attainable for
parameter estimation. The purpose of this study is to create smaller ordinal DCMs that are designed
to score individuals on an ordinal scale. In this article, we first review current polytomous DCMs.
Then, we explain the theoretical development of the proposed models. Next, we fit the proposed
models to an operation dataset and compare their performance with a current polytomous DCM
in which the ordered structure is ignored. Afterwards, we performed a small simulation study using
the applied study condition to evaluate the parameter recovery of the proposed models. Finally, we
discuss the application and advantages of the models and offer future research recommendations.
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REVIEW OF CURRENT POLYTOMOUS
DCMS

Existing literature has considered DCMs from either the
perspective of Bayesian networks or confirmatory latent class
models. In the Bayesian networks literature, the Dibello-
Samejima modeling framework advanced by Almond et al.
(2001, 2009, 2015), and Levy and Mislevy (2004) is an example
of scoring polytomous item data. In this article, we consider
DCMs as confirmatory latent class models with two outstanding
features. First, the latent traits, commonly referred to as
attributes, are defined a priori. The possible possession status
of all latent traits forms latent classes, commonly referred to
as attribute profiles. In this article, we use k = 1, . . . , K to
index latent traits and αc = {α1, . . . , αK} to index attribute
profiles for latent class c. Second, the measurement relationship
between items and attributes is defined a priori. This information
is contained in an item-by-attribute incidence matrix, commonly
referred to as the Q-matrix (Tatsuoka, 1983), where an entry
qik = 1 when item imeasures attribute k, and qik = 0 otherwise.

To our knowledge, eight DCMs have been developed to
score polytomous item data. Each model is constructed through
applying a polytomous extension method to a dichotomous
DCM. We listed such information in Table 1. Most polytomous
DCMs are developed based on the log-linear cognitive diagnosis
model (LCDM; Henson et al., 2009) or its equivalent: the
generalized deterministic input noisy “and” gate (GDINA; de
la Torre, 2011) model. The NRDM, GDM, PC-DINA, and SG-
DINA utilize the concept of the nominal response model (NRM;
Bock, 1972) in item response theory where each response option
in each item has its own intercept and slope; The P-LCDM,
DINA-GD, and GPDM utilize the concept of the graded response
model (GRM; Samejima, 1969) where the differences between
cumulative probabilities of adjacent options are modeled; the
RSDM utilize the concept of the rating scale model (RSM;
Andrich, 1978) where items measuring the same set of attributes
share response option parameters. To summarize, many current
DCMs are built to accommodate nominal response data. For

TABLE 1 | Previous DCMs for scoring polytomous item data.

Model Full Name Dichotomous Core Similar Extension Method in IRT Models

NRDM The nominal response diagnostic model (Templin et al., 2008) LCDM The nominal response model (NRM; Bock,

1972)

GDM The general diagnostic model (von Davier, 2008) LCDM NRM

PC-DINA The partial-credit deterministic input noisy “and” gate model

(de la Torre, 2010)

DINA NRM

P-LCDM The polytomous log-linear cognitive diagnosis model

(Hansen, 2013)

LCDM The graded response model (GRM; Samejima,

1969)

PC-DINA The sequential generalized DINA model (Ma and de la Torre,

2016)

LCDM NRM

DINA-GD The DINA model for graded data (Tu et al., 2017) DINA GRM

GPDM The general polytomous diagnosis model (Chen and de la

Torre, 2018)

LCDM GRM

RSDM The rating scale diagnostic model (Liu and Jiang, submitted) LCDM The rating scale model (RSM; Andrich, 1978)

example, the NRDM defines the probability of individuals in
latent class c selecting response optionm on item i, such that

P(Xi = m|αc) =
exp[λ0,i,m + λ

T
i,mh

(

αc,qi
)

]
∑M−1

m=0 exp[λ0,i,m + λ
T
i,mh

(

αc,qi
)

]
, (1)

where λ0,i,m is the intercept parameter associated with option m
on item i, and λ

T
i,mh

(

αc,qi
)

index all the main effects and higher-
order interaction effects of the k attributes associated with option
m on item i, which can be expressed as

∑K
k=1 λ1,i,k,m(αc,kqi,k) +

∑K−1
k=1

∑K
k′=K+1 λ2,i,k,k′ ,m

(

αc,kαc,k′qi,kqi,k′
)

+ . . ..
Let us break down the summation symbol in Equation 1 for

an instructional example. On item i with four response options
(M = 4): 0,1,2, and 3, the probability of selecting response option
2 is expressed as

P (Xi = 2|αc) =
exp[λ0,i,2 + λ

T
i,2h

(

αc,qi
)

]

exp[λ0,i,0 + λ
T
i,0h

(

αc,qi
)

]+

exp
[

λ0,i,1 + λ
T
i,1h

(

αc,qi
)]

+

exp
[

λ0,i,2 + λ
T
i,2h

(

αc,qi
)]

+

exp[λ0,i,3 + λ
T
i,3h

(

αc,qi
)

]

. (2)

It should be clear in Equation 2 that each option in item i is
associated with its own set of intercept, main effects and higher-
order interaction parameters. As a result, the NRDM is able to
accommodate polytomous response options that can be either
ordered or not ordered.

MODEL DEVELOPMENT

To develop DCMs that utilize the ordered structure of response
options in many polytomous items (e.g., 0 = never, 1 = seldom,
2 = sometimes, 3 = usually), we contemplated on how the
parameters on the NRM can be constrained to create the
Generalized Partial Credit Model (GPCM; Muraki, 1992) and
Generalized Rating Scale Model (GRSM; Muraki, 1992) in item
response theory. The probability of selecting option m on item i
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given a unidimensional latent trait θ for examinee e is defined as

P(Xi = m|θe) =
exp

(

dimθe + bim
)

∑M−1
m=0 exp

(

dimθe + bim
)
, (3)

for the NRM,

P(Xi = m|θe) =
exp

∑m
m=0 [di

(

θe + bim
)

]
∑M−1

s exp
∑s

m=0 [di
(

θe + bim
)

]
, (4)

for the GPCM, and

P(Xi = m|θe) =
exp

∑m
m=0 [di

(

θe + bi + tm
)

]
∑M−1

s exp
∑s

m=0 [di
(

θe + bi + tm
)

]
, (5)

for the GRSM. The dim and bim in Equation 3 are the slope
parameter and intercept parameter for option m in item i,
respectively. In Equation 4, the slope parameter di loses the
subscript m; instead, summation symbols are used such that the
dim in Equation 3 is represented bym×di ∀m > 0 in Equation 4.

To obtain Equation 5, an extra constraint is imposed on
Equation 4 where the bim is decomposed into a general item
intercept for item i: bi and a general response option intercept
for optionm: tm that is applicable to all items.

Inspired by how the NRM can be constrained to arrive at
the GPCM and GRSM, we propose two ordinal DCMs through
applying constraints to the NRDM so that the proposed models
are targeted for scoring ordered item data. We refer to these
models as the Ordinal Response Diagnostic Model (ORDM) and
the Modified Ordinal Response Diagnostic Model (MORDM).
The ORDM is defined as

P(Xi = m|αc) =
exp

∑m
m=0 [λ0,i,m + λ

T
i h

(

αc,qi
)

]
∑M−1

s exp
∑s

m=0 [λ0,i,m + λ
T
i h

(

αc,qi
)

]
, (6)

where λ
T
i h

(

αc, qi
)

=
∑K

k=1 λ1,i,k(αc,kqi,k) +
∑K−1

k=1
∑K

k′=K+1 λ2,i,k,k′
(

αc,kαc,k′qi,kqi,k′
)

+ . . .. For identifiability
purposes, we impose three sets of constraints on the ORDM.
First, in order to fix the scale, we adopt Thissen (1991)’s approach
and fix all parameters associated with the first response option to
0, such that

∑0

m=0

(

λ0,i,m
)

= 0 ∀ i,

∑0

m=0

(

λ1,i,k
)

= 0 ∀ i, k,

∑0

m=0

(

λ2,i,k,k′
)

= 0 ∀ i, k, k′,

and for all higher-order interactions. Second, we constrain
parameters associated with main effects and higher-order
interactions to be <0 so that the possession of more attributes

increases the probability of selecting a higher response option:

λ1,i,k > 0 ∀ k,

λ2,i,k,k′ > 0 ∀ k, k′,

and for other higher-order interactions. Third, we constrain
intercept parameters of a higher response option to be smaller
than those of a lower response option so that the probability
of selecting a higher response option is smaller for individuals
without the measured attributes such that

λ0,i,m ≥ λ0,i,m+1∀ i,m.

Comparing Equation 6 to Equation 1, the λ
T
i,m in Equation 1 loses

the subscript m. The λi parameters in Equation 6 are summated
for their associated response options.

Let us break down the summation symbol in Equation 6 for
an instructional example. On item i with four response options:
0,1,2, and 3, the probability of selecting response option 2 is
expressed as

P(Xi = 2|αc) =
exp

[

0+
[

λ0,i,1 + λ
T
i h

(

αc, qi
)]

+
[

λ0,i,2 + λ
T
i h

(

αc, qi
)]]

exp (0) + exp
[

0+
[

λ0,i,1 + λ
T
i h

(

αc, qi
)]]

+ exp
[

0+
[

λ0,i,1 + λ
T
i h

(

αc, qi
)]

+
[

λ0,i,2 + λ
T
i h

(

αc, qi
)]]

+

exp
[

0+
[

λ0,i,1 + λ
T
i h

(

αc, qi
)]

+
[

λ0,i,2 + λ
T
i h

(

αc, qi
)]

+
[

λ0,i,3 + λ
T
i h

(

αc, qi
)]]

(7)

Equation 7 is similar to Equation 2 in two ways. First, both
equations ask what the probability is that an individual in latent
class c selecting option 2 as compared to the sum of probabilities
of all response options that the individual could select. Second,
the intercept parameter is freely estimated for each response
option in each item (e.g., λ0,i,1, λ0,i,2, and λ0,i,3). However, what
is different is that the λ

T
i,2h

(

αc, qi
)

in Equation 2 is replaced by

2 × λ
T
i h

(

αc, qi
)

in Equation 7. It should be clear now that the
proposed ORDM can be expressed as a constrained version of
the NRDM, analogous to how the GPCM can be formulated as a
constrained version of the NRM.

TheMORDM is defined the same as the ORDM in Equation 6,
except that the λ0,i,m is decomposed into general item parameters
and shared response option parameters. Before deciding to share
response option parameters across all items, we should remember
that DCMs are multidimensional models while the NRM is a
unidimensional model. Therefore, it would be unwarranted to
assume that all items in a DCM can share the same set of
response option parameters because those items may measure
different traits. Instead, what we can do is to allow response
option parameters to be shared within each dimension. As
introduced above, DCMs are confirmatory latent class models,
which means that the dimensions in DCMs can be represented
through latent classes (i.e., attribute profiles). We express the
relationship between items and attribute profiles in an item-
by-attribute-profile incidence matrix called the W-matrix (Liu
and Jiang, submitted), where an entry wiv = 1 when item i
measures attribute set v, and 0 otherwise. By definition, each
column corresponds to a unique attribute profile; each row has
only one entry of 1 and all others of 0. Utilizing theW-matrix, we
are able to allow response option parameters to be shared within
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items that measure the same set of attributes. Subsequently, the
λ0,i,m in Equation 6 is decomposed into λ0,i and

∑V
v=1 λ0,mvwiv in

the MORDM, where the
∑V

v=1 λ0,mvwiv represents the response
option parameters shared across items that measure attribute set
v. Now, we can define the MORDM as

P(Xi = m|αc) =
exp

∑m
m=0 [λ0,i +

∑V
v=1 λ0,mvwiv + λ

T
i h

(

αc,qi
)

]
∑M−1

s exp
∑s

m=0 [λ0,i +
∑V

v=1 λ0,mvwiv + λ
T
i h

(

αc,qi
)

]
.

(8)
The constraints we impose on the MORDM is the same as those
on the ORDM, except that the third constraint (i.e., for the
intercept parameters) needs to be adapted to the MORDM. In
the MORDM, we impose this constraint:

∑V

v=1
λ0,mvwiv ≤

∑V

v=1
λ0,m−1vwiv∀ v,m.

to make sure that individuals without the measured attributes
have a smaller probability of selecting a higher response option.

Let us continue the example of selecting response option 2 on
an item with options 0,1,2, and 3. The MORDM in such case is
expressed as

P (Xi = 2|αc) =
exp

[

0+
[

λ0,i +
∑V

v=1 λ0,m=1vwiv + λ
T
i h

(

αc, qi
)

]

+
[

λ0,i +
∑V

v=1 λ0,m=2vwiv + λ
T
i h

(

αc, qi
)

]]

exp (0) + exp
[

0+
[

λ0,i +
∑V

v=1 λ0,m=1vwiv + λ
T
i h

(

αc, qi
)

]]

+

exp
[

0+
[

λ0,i +
∑V

v=1 λ0,m=1vwiv + λ
T
i h

(

αc, qi
)

]

+
[

λ0,i +
∑V

v=1 λ0,m=2vwiv + λ
T
i h

(

αc, qi
)

]]

+

exp
[

0+
[

λ0,i +
∑V

v=1 λ0,m=1vwiv + λ
T
i h

(

αc, qi
)

]

+
[

λ0,i +
∑V

v=1 λ0,m=2vwiv + λ
T
i h

(

αc, qi
)

]

+
[

λ0,i +
∑V

v=1 λ0,m=3vwiv + λ
T
i h

(

αc, qi
)

]]

(9)

Equation 9 can be viewed as a constrained version of Equation 7
where the intercept parameters are decomposed. To summarize,
one can constrain the main effect parameters of the NRDM
to arrive at the ORDM, and further constrain the intercept
parameters of the ORDM to arrive at the MORDM.

OPERATIONAL STUDY

The purpose of this operational study is to compare the
performance of the ORDM and the MORDM with the
NRDM through fitting these three models to an ordinal item
response dataset. The motivating research question was: can
the more parsimonious ORDM and/or the MORDM perform
similarly to the NRDM? To answer this question, we looked
into the following six types of outcomes: (1) model fit, (2)
profile prevalence estimates, (3) item parameter estimates,
(4) conditional response option probabilities, (5) attribute
and profile classification agreement rates, and (6) individual
continuous scores.

Data
The dataset used in this study came from a survey of 8th grade
students in Austria. We obtained this dataset from the “CDM”
(Robitzsch et al., 2018) R package alongside the permission to
use this dataset from the authors. In the survey, there were four
questions asking about respondents’ self-concept in math, and

TABLE 2 | Item data information.

Item Dimension 0 (Low) 1 (Mid-low) 2 (Mid-high) 3 (High)

1 Math Self-concept 154

(30.8%)

233

(46.6%)

94

(18.8%)

19

(3.8%)

2 Math Self-concept 203

(40.6%)

178

(35.6%)

92

(18.4%)

27

(5.4%)

3 Math Self-concept 237

(47.4%)

153

(30.6%)

65

(13.0%)

45

(9.0%)

4 Math Self-concept 105

(21.0%)

197

(39.4%)

145

(29.0%)

53

(10.6%)

5 Math Joy 13

(2.6%)

67

(13.4%)

196

(39.2%)

224

(44.8%)

6 Math Joy 31

(6.2%)

136

(27.2%)

191

(38.2%)

142

(28.4%)

7 Math Joy 97

(19.4%)

160

(32.0%)

147

(29.4%)

96

(19.2%)

8 Math Joy 73

(14.6%)

160

(32.0%)

155

(31.0%)

112

(22.4%)

four questions asking about howmuch they enjoy studying math.
Therefore, two attributes were specified: “math self-concept”

and “math joy.” Each of the eight questions has four response
options: 0 (low), 1 (mid-low), 2 (mid-high) and 3 (high). We
randomly selected 500 individuals’ responses from the entire
dataset because we are interested in the model performance
under small and attainable sample size conditions.We display the
item-trait relationship and frequencies of each response option
on each item in Table 2. A brief look of Table 2 reveals that the
response data is positively skewed for items 1–4 (i.e., measuring
math self-concept) with more individuals selecting options 0 and
1, while it is negatively skewed for items 5–8 (i.e., measuringmath
joy) with more individuals selecting options 2 and 3.

Analysis
Parameters were estimated through implementing Hamiltonian
Monte Carlo (HMC) algorithms in Stan (Carpenter et al., 2016).
HMC has been acclaimed for its estimation efficiency compared
to Gibbs sampler and the Metropolis algorithm especially when
complex models including DCMs are involved (e.g., Girolami
and Calderhead, 2011; da Silva et al., 2017; Jiang and Skorupski,
2017; Jiang and Templin, 2018; Luo and Jiao, 2018). The Stan
codes used in this study for estimating the ORDM and MORDM
are provided in the Supplementary Material.

We used less informative priors in the HMC algorithms
with N (0, 20) for each item parameter and Dirichlet(2) for
each attribute profile. The priors are considered less informative
because a large standard deviation (i.e., 20) produces a relatively
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flat-shaped normal distribution, and a conjugate Dirichlet
distribution with all equivalent parameter values (e.g., 2,2,2,2)
is approximately a uniform distribution. Using less informative
priors are recommended in similar DCM studies such as Chen
et al. (2018), Culpepper and Hudson (2018), and Jiang and Carter
(2018).

For each model, we ran two Markov chains with random
starting values. The total length of the HMC sample was
6,000, for which the first 2,000 iterations were discarded as
burn-in. To assess whether the Markov Chains converged to a
stationary distribution the same as a posterior distribution, we
computed the multivariate Gelman-Rubin convergence statistic
R̂ proposed by Brooks and Gelman (1998). R̂ smaller than 1.1 for
each parameter is usually considered convergence (Gelman and
Rubin, 1992; Junker et al., 2016). For each of the three models, we
obtained all the R̂ smaller than 1.1.

We successfully applied the constraints designed for the
ORDM to both the NRDM and the ORDM, and applied the
constraints for the MORDM to itself through specifying pseudo
response option parameters such that

λz,m=m = λz,m=1 + λ′z,m=2 + . . . + λ′z,m=m ∀ z,m. (10)

with the constraint λ′0,m ≤ 0 ∀m and λ′z,m ≥ 0 ∀ z ≥ 1,m.
For model fit assessment, we used the leave-one-out (LOO)

cross-validation approach for Bayesian estimation to compute
the expected log predictive density (ELPD) and LOO information
criterion (LOOIC) for each model. As suggested in Gelman
et al. (2014), Vehtari et al. (2017) and Yao et al. (2018), the
LOOIC is preferred over traditional simpler indices such as
the Akaike information criterion (AIC), Bayesian information
criterion (BIC) and deviance information criterion (DIC). Note
that research has been lacking on the performance of the
LOOIC for assessing DCM model fit. Regarding other latent
variable models, Revuelta and Ximénez (2017) found that the
LOOIC perform poorly with multidimensional continuous latent
variable models, despite its fully Bayesian nature and excellent
performance with unidimensional IRT models (e.g., Luo and
Al-Harbi, 2017).

Results
We estimated 48, 32, and 22 item parameters for the NRDM,
the ORDM and the MORDM, respectively. For this dataset, the
ORDM was 33% smaller than the NRDM, and the MORDM was
54% smaller than the NRDM. For each parameter, we report the
mean of the posterior distribution as the point estimate and the
standard deviation of the posterior distribution to indicate the
uncertainty around the mean estimate. We first examined the
results on model fit indices and listed the ELPD and LOOIC
estimates and standard errors for each model in Table 3. For each
index, smaller values indicate better fit. Although both indices
suggested better fit for the ORDM than the other two models,
their differences relative to the scale of the standard error indicate
that the three models did not fit significantly different from each
other. In practice, one would probably either select the most
parsimonious MORDM or the best fitting ORDM for further
interpretations.

TABLE 3 | Model fit information in the operational study.

NRDM ORDM MORDM

Estimate Se Estimate Se Estimate Se

ELPD −9.5 2.1 −9.3 2.0 −9.7 1.6

LOOIC 19.1 4.2 18.7 3.9 19.3 3.3

TABLE 4 | Profile prevalence estimates and standard deviations under the NRDM,

the ORDM and the MORDM in the operational study.

Profile NRDM ORDM MORDM

(0,0) 0.346 (0.029) 0.351 (0.027) 0.351 (0.026)

(1,0) 0.084 (0.021) 0.074 (0.016) 0.105 (0.019)

(0,1) 0.147 (0.024) 0.156 (0.022) 0.125 (0.021)

(1,1) 0.424 (0.028) 0.419 (0.025) 0.418 (0.024)

Examining profile prevalence estimates provides further
evidence about the similar performance of the three models.
Table 4 lists the estimates and standard deviations of the profile
prevalence. Each estimate represents the probability of an
individual having an attribute profile at large. The estimates
for the NRDM were very similar to the ORDM as the point-
estimate differences between the models were smaller than 0.01
for every profile. The point-estimate differences between the
NRDM and the MORDM were all smaller than 0.02 for every
profile.

We could also look into the similarities of the item parameter
estimates. Tables 5–7 display the item parameter estimates and
their standard deviations for the NRDM, the ORDM, and the
MORDM, respectively. Remember that the estimated pseudo
parameters can be transformed to real parameters using Equation
10. For example, the intercept parameter for response option 2
of item 1 under the MORDM can be obtained through λ0,i +

λ0,m=1 + λ0,m=2
′ = 5.834 − 6.204 − 2.871 = −3.241. Results

show that the parameter estimates were similar across the three
models. For example, the intercept estimates for response option
1 of item 1 were−0.423,−0.390, and−0.370, respectively for the
NRDM, ORDM and MORDM.

Such similarities can be more revealing through computing
probabilities of selecting each response option for individuals
with and without the measured attribute. We selected items 1
and 4 (measuring math self-concept) to display their response
option curves (ROCs) in Figure 1. The three ROCs for each
item were similar to each other although those under the NRDM
and the ORDM were even more alike. Also made clear by the
ROCs is that the response option parameters in the MORDM
are not unique to each item; instead, the first four items share
the same set of response option parameters. Hence, the ROCs
under the MORDM depart a bit more from those ROCs under
the NRDM and the ORDM. The location of each intersection
between the two curves on the x-axis in each graph represents the
minimum response option where individuals with the attribute
start to have higher probabilities to select than individuals
without the attribute. For example, for items 1 and 4, individuals
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TABLE 5 | NRDM: item parameter estimates and standard deviations in the operational study.

λ0,i,m=1 λ
′

0,i,m=2 λ
′

0,i,m=3 λ1,i,m=1 λ
′

1,i,m=2 λ
′

1,i,m=3

Item 1 −0.423

(0.187)

−10.710

(4.389)

−12.578

(4.827)

3.619

(0.601)

10.339

(4.380)

10.981

(4.817)

Item 2 −0.934

(0.195)

−2.265

(0.439)

−1.927

(0.294)

2.149

(0.310)

1.995

(0.482)

0.744

(0.686)

Item 3 −1.557

(0.148)

−6.900

(1.610)

−10.818

(4.956)

2.714

(0.347)

6.354

(2.600)

10.481

(4.949)

Item 4 0.269

(0.064)

−4.540

(1.582)

−3.491

(1.854)

3.886

(1.815)

5.319

(1.790)

2.507

(1.846)

Item 5 1.986

(0.202)

−0.036

(0.003)

−1.241

(0.216)

16.908

(5.130)

2.756

(0.501)

2.130

(0.247)

Item 6 1.347

(0.210)

−0.716

(0.166)

−2.305

(0.471)

17.927

(5.469)

2.780

(0.345)

2.322

(0.481)

Item 7 0.296

(0.156)

−1.850

(0.210)

−2.255

(0.835)

0.926

(0.340)

2.857

(0.362)

1.940

(0.858)

Item 8 0.642

(0.145)

−10.306

(4.748)

−11.038

(4.195)

18.139

(5.770)

12.357

(4.731)

10.716

(5.182)

TABLE 6 | ORDM: item parameter estimates and standard deviations in the

operational study.

λ0,i,m=1 λ
′

0,i,m=2 λ
′

0,i,m=3 λ1,i

Item 1 −0.390

(0.154)

−4.088

(0.500)

−5.321

(0.562)

3.735

(0.496)

Item 2 −0.834

(0.144)

−2.181

(0.282)

−3.127

(0.338)

1.971

(0.236)

Item 3 −1.533

(0.200)

−3.377

(0.335)

−3.194

(0.334)

2.841

(0.274)

Item 4 0.289

(0.144)

−2.180

(0.327)

−3.784

(0.540)

2.902

(0.454)

Item 5 1.991

(0.214)

−0.029

(0.020)

−1.352

(0.224)

2.290

(0.216)

Item 6 1.352

(0.211)

−0.670

(0.146)

−2.586

(0.269)

2.626

(0.229)

Item 7 0.071

(0.144)

−1.370

(0.185)

−2.297

(0.235)

2.039

(0.181)

Item 8 0.646

(0.141)

−10.395

(3.543)

−12.733

(4.500)

12.427

(4.498)

with the math self-concept have higher probabilities selecting
response option 1 and above than those without the math self-
concept.

Ultimately, the three models can be concluded to have similar
performance if individuals have received similar categorical and
continuous scores. The categorical scores include individuals’
attribute and profile classifications. Table 8 cross-tabulates the
attribute classification agreement between each pair of models.
The agreement rates between the NRDM and the ORDM were
very high: 99.0% and 99.8% for each attribute, respectively.
The agreement rates were all over 99.0% on the math self-
concept attribute for each pair of models, and the lowest
agreement rate was on the math joy attribute: 92.6% between
the ORDM and the MORDM. Table 9 cross-tabulates the profile
classification agreement between each pair of models. Agreement
rates between each pair were also very high. For example, only 6

TABLE 7 | MORDM: item parameter estimates and standard deviations in the

operational study.

λ0,i λ0,m=1 λ
′

0,m=2 λ
′

0,m=3 λ1,i

Item 1 5.834

(2.232)

−6.204

(3.227)

−2.871

(0.182)

−3.781

(0.185)

2.472

(0.148)

Item 2 5.141

(2.238)

* * * 2.512

(0.154)

Item 3 4.491

(2.245)

* * * 2.732

(0.145)

Item 4 6.424

(2.236)

* * * 3.200

(0.162)

Item 5 10.313

(4.794)

−7.893

(4.766)

−0.527

(0.091)

−2.111

(0.120)

3.262

(0.181)

Item 6 9.339

(4.756)

* * * 2.348

(0.139)

Item 7 7.948

(4.770)

* * * 1.622

(0.111)

Item 8 8.285

(4.808)

* * * 2.033

(0.117)

The cells with “*”indicates that it shares the same parameter with the cell above it.

out of the 500 individuals were classified into different profiles
under the NRDM and the ORDM. The continuous scores are
individuals’ marginal probabilities of possessing each attribute
(Liu et al., 2018). We display the continuous scores for all
individuals between each pair of models in Figure 2. As expected,
most individuals had scores close to either 0 or 1 under each
model. For the pair of the NRDM and the ORDM, individuals’
scores almost fit into a linear y=x line, meaning that both models
produce very similar continuous scores. For other pairs, most
scores can still fit into a linear line with only a few cases where
scores differed substantially. To quantify the score differences,
we computed the root-mean-square deviation (RMSD) for
scores between each pair of models. For α1, the RMSD values
were 0.04, 0.06 and 0.06 for NRDM/ORDM, NRDM/MORDM,
and ORDM/MORDM, respectively. For α2, the RMSD values
were 0.03, 0.15, and 0.16 for NRDM/ORDM, NRDM/MORDM,
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FIGURE 1 | Response option curves for two items in the operational study.

and ORDM/MORDM, respectively. To summarize, results
show that the score differences were very small between the
models, and we conclude that the three models performed
similarly.

SIMULATION STUDY

Methods
The purpose of this simulation study was to investigate whether
the proposed ORDM and MORDM can provide unbiased
parameter estimate and accurate attribute classification under
the operational study condition. In order to do this, we
used the parameters obtained from the operational study
and generated 100 datasets in R (R Core Team, 2018) for
each model. In each dataset, 500 individuals were simulated
from a multinomial distribution of (0.351, 0.074, 0.156,
0.419) for each of the four attribute profiles: (0,0), (1,0),
(0,1), and (1,1), respectively. We used the item parameters
listed in Tables 6, 7 to generate item response for the
ORDM and MORDM, respectively. We then fit the ORDM
to its 100 datasets and the MORDM to its 100 datasets
using the same HMC specifications in the operational study.
Similar to what we did in the operational study to assess
convergence, we obtained the multivariate Gelman-Rubin
convergence statistic R̂ and found that all the R̂ values were

between 0.97 and 1.01, indicating that the Markov chains have
converged.

To assess parameter recovery, we computed the bias and
root mean square error (RMSE) for each item parameter and
attribute prevalence estimate. Bias and RMSE for parameter x
were computed as:

Bias(x) =

∑R
r=1 [êr(x)− e(x)]

R
, (11)

RMSE(x) =

√

1

R− 1

∑R

r=1
[êr(x)− e(x)]

2

, (12)

where e(x) is the true value of parameter x, êr(x) is the rth
replicate estimate of parameter x among R = 100 datasets.
To assess classification accuracy, we explored the agreement
between true and estimated classifications on each attribute and
provided descriptive statistics on the agreement rates across the
100 datasets.

Results
Tables 10, 11 list the bias and RMSE for the item parameter
estimates in the ORDM and MORDM, respectively. Of
interest is that most item parameter estimates list bias
close to 0 and RMSE smaller than 0.5. We also observed
that some of the biases and RMSEs are larger than others.
For example, in Table 10, the bias and RMSE for λ0,5,m=1
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FIGURE 2 | Comparison of continuous scores for each pair of models in the operational study.

seems larger than the λ0,i,m=1 parameter for other items
under the ORDM. We hypothesize that the unbalanced
class membership probability and the uniqueness of
the original distribution of examinee scores could both
contribute to the larger bias and RMSE. A quick revisit
of Table 2 reveals that the response option distribution of
item 5 is negatively skewed, which sets itself apart from
the other three items that measure the same attribute
“math joy.” However, this is our initial hypothesis which
may be test through a more robust simulation in the
future.

Table 12 displays the bias and RMSE for the attribute
prevalence estimates in the ORDM and MORDM, respectively.
All the bias and RMSE values in this table are smaller than

0.02. Table 13 contains the descriptive statistics for classification
accuracy results. The classification accuracy for each attribute
under both models are mostly above 0.99. Results show that both
models can correctly recover parameters and provide accurate
attribute classifications.

DISCUSSION

Scoring items in an ordinal fashion is common in educational
and psychological tests. For example, an essay can be scored
on a 0–6 scale, a two-step math question can be partially
scored for responses on each step, and a questionnaire can
have Likert-type items with eight response options. DCMs
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TABLE 8 | Attribute possession agreement between each pair of models in the

operational study.

NRDM ORDM

α1 = 0 α1 = 0

α1 = 0 238 (47.6%) 0

α1 = 1 5 (1.0%) 257 (51.4%)

α2 = 0 α2 = 1

α2 = 0 220 (44.0%) 0

α2 = 1 1 (0.2%) 279 (55.8%)

The total number of agreements between the two models for α1 and α2 was 495

(99.0%) and 499 (99.8%), respectively. Cohen’s Kappa for α1 and α2 were 0.98, and

1.00, respectively.

NRDM MORDM

α1 = 0 α1 = 0

α1 = 0 237 (47.4%) 1 (0.2%)

α1 = 1 1 (0.2%) 261 (52.2%)

α2 = 0 α2 = 1

α2 = 0 208 (41.6%) 12 (2.4%)

α2 = 1 24 (4.8%) 256 (51.2%)

The total number of agreements between the two models for α1 and α2 was 498

(99.6%) and 464 (92.8%), respectively. Cohen’s Kappa for α1 and α2 were 0.99, and

0.86, respectively.

ORDM MORDM

α1 = 0 α1 = 0

α1 = 0 238 (47.6%) 5 (1.0%)

α1 = 1 0 257 (51.4%)

α2 = 0 α2 = 1

α2 = 0 208 (41.6%) 13 (2.6%)

α2 = 1 24 (4.8%) 255 (51.0%)

The total number of agreements between the two models for α1 and α2 was 495 (99.0%)

and 463 (92.6%), respectively. Cohen’s Kappa for α1 and α2 were 0.98, and 0.85,

respectively.

are psychometric models that aim to classify individuals into
groups according to their estimated possession status of the
measured attributes. Up to this point, polytomous DCMs,
such as the NRDM and its special cases and extensions, are
designed for nominal (i.e., unordered) responses. Although those
DCMs can accommodate ordered response data, they ignore
the monotonicity of response option probabilities and require
a very large sample size to estimate. The ORDM and the
MORDM were introduced in this paper to constrain the NRDM
to situations where items are scored on an ordinal scale. Because
the ORDM and the MORDM are polytomous extensions of
the binary LCDM core, one could easily constrain the ORDM
and the MORDM to arrive at other polytomous DCMs. For
example, one could replace the LCDM core with the DINA
model to arrive at the (modified) polytomous response DINA
model.

TABLE 9 | Profile possession agreement between each pair of models in the

operational study.

NRDM ORDM

(0,0) (1,0) (0,1) (1,1)

(0,0) 160 (32.0%) 0 0 0

(1,0) 3 (0.6%) 57 (11.4%) 0 0

(0,1) 1 (0.2%) 0 77 (15.4%) 0

(1,1) 0 0 2 (0.4%) 200 (40.0%)

The total number of profile agreements between the two models was 494 (98.8%),

with a Cohen’s Kappa of 0.98.

NRDM MORDM

(0,0) (1,0) (0,1) (1,1)

(0,0) 151 (30.2%) 1 (0.2%) 8 (1.6%) 0

(1,0) 0 56 (11.2%) 0 4 (0.8)

(0,1) 8 (1.6%) 0 70 (14.0%) 0

(1,1) 0 16 (3.2%) 1 (0.2%) 185 (37.0%)

The total number of profile agreements between the two models was 462 (92.4%),

with a Cohen’s Kappa of 0.89.

ORDM MORDM

(0,0) (1,0) (0,1) (1,1)

(0,0) 151 (30.2%) 4 (0.8%) 9 (1.8%) 0

(1,0) 0 53 (10.6%) 0 4 (0.8%)

(0,1) 8 (1.6%) 0 70 (14.0%) 1 (0.2%)

(1,1) 0 16 (3.2%) 0 184 (36.8%)

The total number of profile agreements between the two models was 458 (91.6%), with

a Cohen’s Kappa of 0.88.

The analysis of the survey data demonstrated that the
proposed models perform similarly to the NRDM but with
much fewer parameters to estimate. With four response options
in this dataset, the ORDM was 33% smaller than the NRDM.
The ORDM will show more comparative advantages if the
number of response options increases. If there are seven response
options, the ORDM requires estimations of 56 parameters,
which is 42% smaller than the NRDM. The MORDM was 54%
smaller than the NRDM in this dataset, and it will require
only 29 item parameters if there are seven response options,
which is 70% smaller than the NRDM. The smaller model
sizes of the ORDM and the MORDM comparing to traditional
polytomous models allow them to accommodate much smaller
sample sizes and thus prove useful in many small-scale testing
scenarios.

In addition to their smaller model sizes, the ORDM and
the MORDM offer information that can easily capture item
characteristics in addition to response option characteristics.
In the NRDM, each type of parameters (i.e., intercept,
main effects and interactions) is freely estimated for each
response option on each item. As a result, it would be
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TABLE 10 | ORDM: bias and RMSE of estimated item parameters in the

simulation study.

λ0,i,m=1 λ
′

0,i,m=2 λ
′

0,i,m=3 λ1,i

Bias Item 1 0.009 −0.307 −0.344 0.308

Item 2 −0.004 −0.021 −0.048 0.011

Item 3 −0.047 −0.098 −0.090 0.098

Item 4 −0.014 −0.115 −0.161 0.132

Item 5 0.162 −0.101 −0.044 0.089

Item 6 0.021 −0.020 −0.060 0.045

Item 7 0.011 −0.015 −0.050 0.046

Item 8 0.006 −0.431 −0.201 0.289

RMSE Item 1 0.134 0.576 0.501 0.567

Item 2 0.122 0.254 0.315 0.225

Item 3 0.174 0.382 0.407 0.329

Item 4 0.126 0.325 0.410 0.341

Item 5 0.381 0.115 0.220 0.249

Item 6 0.200 0.138 0.269 0.228

Item 7 0.121 0.203 0.292 0.225

Item 8 0.149 0.762 0.719 0.715

TABLE 11 | MORDM: bias and RMSE of estimated item parameters in the

simulation study.

λ0,i λ0,m=1 λ
′

0,m=2
λ
′

0,m=3
λ1,i

Bias Item 1 −0.176 0.168 −0.030 −0.039 0.033

Item 2 −0.163 * * * 0.030

Item 3 −0.207 * * * 0.031

Item 4 −0.154 * * * 0.017

Item 5 −0.172 0.312 0.009 −0.020 0.033

Item 6 −0.202 * * * 0.019

Item 7 −0.297 * * * 0.000

Item 8 −0.269 * * * 0.009

RMSE Item 1 0.468 0.471 0.162 0.178 0.152

Item 2 0.491 * * * 0.159

Item 3 0.509 * * * 0.156

Item 4 0.488 * * * 0.176

Item 5 0.175 0.450 0.086 0.127 0.164

Item 6 0.458 * * * 0.137

Item 7 0.437 * * * 0.109

Item 8 0.410 * * * 0.134

The cells with “*” indicates that it shares the same parameter with the cell above it.

easier to discuss the quality of each response option than
that of the whole item. In the ORDM, we only have
one main effect parameter for each measured attribute
representing its effect on the whole item. In the MORDM,
we estimate a general intercept parameter: λ0,i for each

TABLE 12 | Bias and RMSE of estimated attribute prevalence for the ORDM and

MORDM in the simulation study.

Profile ORDM MORDM

Bias RMSE Bias RMSE

(0,0) −0.006 0.008 −0.004 0.009

(1,0) 0.000 0.005 0.000 0.007

(0,1) 0.020 0.021 0.018 0.022

(1,1) −0.014 0.016 −0.014 0.017

item, representing the general item difficulty. Such item-level
information can be helpful for item selection, revision, and
reporting.

We consider the study as one of the first steps incorporating
the ordinal response option characteristics into DCMs. A major
limitation of this study is that the findings are couched within
the particular data used for this study. For future research,
we encourage a more robust simulation study examining the
performance of the ORDM and the MORDM under a wide
range of factors. For example, one could examine the impact
of sample sizes on the performance of the new models. We
expect that both models can accommodate even smaller sample
sizes than the dataset we used in this paper because DCMs,
different from multidimensional item response theory models
(e.g., Reckase, 1997), do not aim to precisely locate individuals
on multiple continua. But this is unknown until tested. We also
encourage researchers to investigate the impact of the Q-matrix
complexity on the models’ performance. Although the increase
of Q-matrix complexity generally reduces model performance
(e.g., Madison and Bradshaw, 2015; Liu et al., 2017), its impact
on the ORDM and the MORDM remains unknown. In addition,
we did not assume an ordered sequence on the possession of
attributes in this study, although attribute structures can be
found in educational and psychological assessment representing
the presence of certain attributes given the presence/absence
of other attributes (Leighton et al., 2004; Liu and Huggins-
Manley, 2016; Liu, 2018). Examining the impact of different
attribute structures on the model performance would be of
interest. Finally, we used a fully Bayesian approach to estimate
the model parameters. Alternatively, one could estimate the
parameters via parametric approaches such as the expectation
maximization (EM; e.g., Templin and Hoffman, 2013) and the
differential evolution optimization (DEoptim; e.g., Jiang and Ma,
2018).

To summarize, the ORDM and the MORDM are
psychometric models that can score ordinal item data to
classify individuals into latent groups. They are much smaller
and thus easier to implement than DCMs for nominal responses.
They also offer useful item-level information in addition to
option-level information. With the active research and practice
in the area of diagnostic measurement, we anticipate that the
proposed models will be useful for scoring polytomous item
responses in a wide range of educational and psychological
assessments.
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TABLE 13 | Descriptive statistics of attribute classification accuracy for the ORDM and MORDM in the simulation study.

ORDM MORDM

Min Mean Max SD Min Mean Max SD

α1 0.992 0.998 1.000 0.002 0.981 0.995 1.000 0.005

α2 0.990 0.998 1.000 0.003 0.979 0.993 1.000 0.006
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