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With the rise of more interactive assessments, such as simulation- and game-based

assessment, process data are available to learn about students’ cognitive processes

as well as motivational aspects. Since process data can be complicated due to

interdependencies in time, our traditional psychometric models may not necessarily

fit, and we need to look for additional ways to analyze such data. In this study,

we draw process data from a study on self-adapted test under different goal

conditions (Arieli-Attali, 2016) and use hidden Markov models to learn about test takers’

choice making behavior. Self-adapted test is designed to allow test takers to choose

the level of difficulty of the items they receive. The data includes test results from

two conditions of goal orientation (performance goal and learning goal), as well as

confidence ratings on each question. We show that using HMM we can learn about

transition probabilities from one state to another as dependent on the goal orientation,

the accumulated score and accumulated confidence, and the interactions therein. The

implications of such insights are discussed.

Keywords: hidden Markov model, self-adapted test, likelihood ratio test, goal orientation, confidence

1. INTRODUCTION

With the rise of interactive assessment and learning programs, process data become available
to infer about students’ cognitive and motivational aspects. Process data can help us learn
about students’ strategies, preferences, and attitudes. In the context of problem solving, detecting
strategies may reveal the cognitive processes needed to perform the task, and may even be
considered as a factor in ability estimating (DiCerbo and Behrens, 2012; Liu et al., 2018). However,
interactive assessments such as simulation- and game-based assessments often afford opportunities
to make choices about the course of game/simulation (e.g., which variables to try in the simulation,
which path to take in the game) that are not directly connected to ability albeit may influence its
assessment. Such choices may be a result of or reflect metacognitive or motivational aspects of task
performance. For example, students’ self-estimated knowledge and belief in their ability, students’
tendency toward challenge, or whether students are motivated to do their best or just perform at
minimum effort are just a few of the factors that may play a role in choices made in interactive
assessment.

Metacognition of task performance is rarely assessed as part of educational or academic
assessments, yet it is acknowledged as important in student performance (Camara et al., 2015).
One aspect of metacognition is the Feeling of Knowledge (FOK; Koriat, 1993) that is evoked
naturally when attempting to answer a question. The cognitive process of attempting to answer
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a question evokes the FOK based on the implicit and explicit
accessibility cues (the easiness of accessing the answer, the
vividness of the clues, the amount of information activated,
etc.), and the content of that knowledge, its coherence, and the
inferences that can be made from various clues retrieved (cf.
Koriat, 1993, 2000). The more information activated and the
easier it is accessed, the more confident a person is in his or
her answer. Asking people to evaluate their level of confidence
in answering a question is the most common way to eliciting
their FOK estimation and is amoderately valid predictor of actual
knowledge (Koriat, 1993, 2000; Wright and Ayton, 1994).

Feeling of knowing and estimation of one’s own ability
relate to and affect a student’s engagement or motivation when
performing a task, which is called the “expectancy component”
in the Expectancy-Value Model of motivation by Pintrich and
colleagues (Pintrich, 1988; Pintrich and De Groot, 1990; Pintrich
and Schunk, 2002). Another component of the Expectancy-Value
Model is the perceived value of the task. One aspect of perceived
value is the goal orientation toward the task. Research on goal
orientation of task performance yields a primary distinction
between “performance” and “learning” goals (Dweck and Leggett,
1988). Individuals with a performance goal strive to perform at
their best to demonstrate their skills to themselves or others,
while individuals with a learning goal toward a task strive to
learn from the task caring less about demonstrating their skills.
Although individuals often exhibit these attitudes in general
(Dweck et al., 1995), studies have shown that the orientation
goal can be changed via psychological intervention given prior
to performing a task and even only by the instructions of the
task (Dweck, 2006). One of the pervasive findings regarding
this distinction is that students with a learning goal are more
motivated and seek more challenges (Dweck, 2006; Blackwell
et al., 2007; Yeager and Dweck, 2012).

In this study we tap into motivational and metacognitive
aspects of task performance via modeling process data. We are
analyzing data from a previous study (Arieli-Attali, 2016) that
applied the goal-orientation manipulation in a self-adapted test,
while collecting also confidence ratings. Self-adapted testing is
designed to allow test takers to choose the level of the difficulty
of the items they receive. In her study, Arieli-Attali (2016)
instructed participants in one condition to perform at their
best on the test, with incentive of a reward; participants in the
second condition were instructed to use the self-adapted test as a
learning tool for a test the following day. Main findings showed
that participants in the learning goal condition chose overall
more difficult items (about half a level on average out of seven
possible levels) compared to the performance goal condition,
after controlling for pre-test performance, manifested both in the
start of the test (the first choice) and the mean choices across
all items. In addition, participants in the learning goal condition
reverted to a strategy of choosing only the easiest level for all
items significantly less frequently than those in the performance
goal condition did (3.4% compared to 11.5%, respectively), and
showed more exploratory behavior by choosing a wider range
of difficulty levels (range of 3 levels compared to 2.5 levels
in the performance goal condition).These results support the
general theory and converge with previous findings by Dweck

and colleagues about the higher motivation and tendency to seek
more challenges when one is holding a learning goal orientation.
Regarding confidence ratings, Arieli-Attali found that those in
the learning goal condition showed under-confidence while those
in the performance goal condition showed over-confidence (−1.4
vs. +1.9% respectively), similar to a recent study by Dweck
and colleagues (Ehrlinger et al., 2016). Using the process data
from Arieli-attali’s study will allow us to tap deeper into the
dynamics of choices as changing over time and depending on goal
orientation and confidence rating. Before we describe the details
of the current study, we provide a brief summary of research on
self-adapted testing.

Self-adapted tests are designed to allow test takers to choose
the level of difficulty of the items they receive (Rocklin and
O’Donnell, 1987; Wise et al., 1992; Hontangas et al., 2004;
Arieli-Attali, 2016). Such tests provide both product data—
which items were answered correctly—as well as process data—
what difficulty levels were chosen across time. Using an item
response theory modeling approach, each test taker’s ability
can be estimated using the product data regardless of the item
difficulty levels chosen. However, the difficulty preferences (the
process data) may also be useful as an indication of the test taker’s
metacognitive and/or motivational state.

Previous studies on self-adapted tests were primarily
concerned with the product data and its reliability and validity.
However, there were also studies that looked into the process
data particularly to examine the strategies of test takers in
choosing the difficulty levels (Rocklin, 1989; Johnson et al., 1991;
Ponsoda et al., 1997; Hontangas et al., 2000; Revuelta, 2004). In
these studies, strategies were examined with regards to correct
or incorrect responses to the adjacent preceding item, based on
the assumption that the “results” on a previous item, whether
correct or incorrect, would affect the next choice. Researchers
were interested in uncovering the “rules,” if existed, in examinees’
choices, mostly adopting the approach of defining predetermined
rules and looking in the data to find them. For example, Rocklin
(1989) defined a “flexible strategy” as a selection of an easier
level after an incorrect response, and a more difficult level after
a correct response. This strategy is intuitive and in fact simulates
the sequence of item difficulty produced by a Computer Adaptive
Test (CAT) algorithm that maximizes test accuracy, where test
takers often receive an easier item after incorrect response, and
a harder item after a correct response, based on item response
theory (Hambleton and Swaminathan, 1985). Defining such a
strategy is based on the intuition that this would also be the most
“rational” strategy people are using in their choices. In addition
to the flexible strategy, Rocklin (1989) defined two variations:
the “failure tolerant” and “failure intolerant.” In the former,
selections do not change after incorrect response (thus, showing
tolerance to incorrect/failure), and in the latter, selections do
not change after correct responses. Findings from this study and
another study that followed (Johnson et al., 1991) showed that
few test takers adhere to one of the three clear-cut categories,
while most people exhibit more of a mixed strategy (or what
Johnson et al., 1991 termed as “sluggishly flexible”) where test
takers selected a harder level after one or a string of several
correct responses, and selected an easier level after one or a string
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of several incorrect responses. In other studies (e.g., Hontangas
et al., 2000; Revuelta, 2004) authors made somewhat different
distinctions (such as totally rigid, partly flexible, and partly
rigid); however, the findings were still very similar, showing that
the majority of test takers are in the “partly rigid partly flexible”
category, supporting previous findings. In Revuelta (2004)’s
study, the author also reported that a majority of selections
(about 60%) had the same difficulty level as the previous
item.

In the current study, we take a different approach to look
at the sequences of difficulty choices. Although we still look
at transitions, we adopt a hidden latent approach rather than
direct analysis of the observed choices. In addition, due to
the inter-dependencies among difficulty choices, we apply a
hidden Markov model (HMM). Under an HMM we assume
independence between the observed choices conditional on
respective latent states, which follow a first-order Markov
process such that the current state only depends on the
previous state. We explain initial states and state transitions
in terms of probabilities and the effects of covariates on these
probabilities. The HMM approach, as well as other variations
of Markov models, are becoming increasingly popular among
the educational measurement community for cognitive modeling
(Yudelson et al., 2013; Li et al., 2016; LaMar, 2018; Wang et al.,
2018) and analyses involving serially dependent process data
(Vermunt et al., 1999; Dutilh et al., 2010; Bergner et al., 2017;
Shu et al., 2017). We add to the literature an application of the
HMM approach in characterizing test takers’ behavior in self-
adapted tests. The advantages of using this approach in our
context are three-fold: (1) the introduction of the latent state
as the metacognitive and/or motivational state that drives the
observed difficulty choices can separate the stochasticity in the
underlying metacognitive process from measurement errors; (2)
it allows the same observed difficulty level to be a reflection of
different latent states depending on the choices before and after
(see Figure 5 below for a specific example); (3) the estimation
is robust against some design decisions such as the number of
difficulty levels offered in different applications of self-adapted
testing (whether 5, 7, or 9 difficulty levels are offered may change
the observed sequence).

2. THE CURRENT STUDY

In this paper we conduct a secondary analysis of the data from
Arieli-Attali (2016). The original study evaluated how the goal
orientation conditions affected test takers’ item difficulty choices,
as well as the influence of different feedback conditions that
will not be considered here. The aim of the current analysis
is to model test takers’ choices of item difficulty under the
two orientation goal conditions, while taking into account the
correctness and confidence ratings of previous items. We applied
a first order Markov process, that looked at the change of the
current state/class as dependent on the previous one. However,
we used accumulated correctness and confidence as predictors.
That is, we assumed that accumulated prior results of overall
success (accumulated correct answers) and overall state of FOK

(accumulated confidence) would affect the latent state and hence
the next observed choice.

Using HMM we obtained the transition probabilities between
the latent classes. Transition from a class with lower difficulty
level to one with a higher difficulty level (i.e., an upward
transition) represents a scenario where a test taker was willing
to take on higher difficulty levels presumably due to increase
in motivation, openness to challenge and exploration and/or
increase in self-perceived ability due to evidence of success. On
the contrary, a transition from choosing higher to lower difficulty
items (i.e., a downward transition) illustrates the case where a
test taker preferred to lower the difficulty, presumably due to a
decrease in motivation or to alleviate stress, and/or as a strategy
to get a better score/feedback (get more items correct).

Our first research question concerned modeling the
transitions between latent states given the current state in
the two goal conditions. Based on Arieli-Attali (2016)’ results we
anticipated that participants in the performance goal condition
would not only have higher probability of choosing the lower
difficulty state initially but also transition less from this state.

Our second research question addressed transitions in
difficulty as dependent on correctness of and confidence on
past items responses. We hypothesized that overall accumulated
correctness and confidence would interact such that being correct
and confident would generally enhance upward transitions while
being incorrect and unconfident would enhance downward
transitions. Regarding transitions in the mis-match cases of being
correct with low confidence (under-confident) or being incorrect
with high confidence (over-confidence), we hypothesized overall
more transitions in both directions resulting from the conflict
between confidence and feedback about correctness.

The paper is organized as follows: we first describe the data
and the modeling approach. Next we provide some insights into
the data using visualization of the raw data, the most common
sequences and the patterns observed. We then report the results
of the HMM analysis addressing specifically the two research
questions. Lastly, we discuss these results in relation to their
contribution to the emerging field of analyzing process data in
assessment.

3. METHODS

3.1. Participants, Design, and Procedure
Arieli-Attali (2016) reported a final sample of 583 adult
participants (age range = 18–74 years, M = 33.09; 45% women),
recruited through Amazon Mechanical Turk (limited to native
English speakers and residents of the US or Canada), who
participated in a task over 2 days. Ethics approval for the study
was obtained from Fordham University Institutional Review
Board and a written informed consent was obtained from all
participants (for the IRB approval and informed consent form see
appendix E in Arieli-Attali, 2016). Our analysis includes data only
from Day 1 of the experiment. On Day 1, participants completed
a 24-item non-adaptive pre-test and a 40-item self-adapted test,
both comprising open-ended general knowledge items. We used
the pre-test scores that were obtained in the form of percentage
of correct responses (ranged from 0.22 to 1, with a mean of
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0.75, and standard deviation of 0.16). Following completion
of the pre-test, participants were randomly assigned to one of
two goal conditions: 286 participants were in the performance
goal condition (condition = 1), instructed to maximize their
score on the test, and 297 were in the learning goal condition
(condition = 0), instructed to use the test as a learning tool for
the test the next day. During the self-adapted test, participants
chose a difficulty level for each item out of seven difficulty
levels offered. After responding to each question, participants
rated their confidence in their answer on a scale from 0 to 100
with 10-point intervals. After submission of the answer and the
confidence ratings, participants received feedback whether their
answer was correct or not and were provided with the correct
answer. Coding of correctness was 0 for incorrect and 1 for
correct. The observed item difficulty levels were integers from 1
to 7, which we divided by 7 to arrive at a range comparable with
other variables used in the model fitting. Confidence reporting
was converted proportionally to a scale from 0 to 1.

3.2. Modeling
We modeled test takers’ choices of item difficulty using a hidden
Markov model (HMM; Vermunt et al., 1999; Böckenholt, 2005;
Visser and Speekenbrink, 2010; Visser, 2011) that assumed the
manifest variables (i.e., item difficulty choices) are conditionally
independent given an underlying latent Markov chain with
a finite number of latent states or classes of the general
difficulty preferences. We assumed that there are M states in the
Markov chain. In the following text, we use “state” and “class”
interchangeably to refer to the latent state of theM-state Markov
chain, which is denoted as Si,j, where integers i and j, respectively
index participants and items. The categorical variable Si,j was
an integer element from the finite set {1, 2, · · · ,M} and varies
across people and items. In our measurement model (as shown
in the upper panel of Figure 1), we assumed that the conditional
distribution of the manifest choices of item difficulty, yi,j, given
Si,j, was univariate normal with mean µSi,j and variance of σ 2

Si,j
.

Although yi,j was ordinal in our current study, we treated it as
continuous because we conceptualized the 7 manifest difficulty
levels as a continuum representing participants’ preferences
of item difficulty and the intervals between any two points
were approximately equal. The seven-level difficulty structure
corresponded to the seven categories of a categorized item
difficulty continuous scale (−3, −2, −1, 0, 1, 2, 3). The average
difficulties of items at each difficulty level are: −3.3, −1.8,
−0.9. −0.2, 0.5, 1.0, and 1.8 for level 1 through 7 respectively
(corresponding to 92, 80, 68, 55, 41, 30, and 16% average
probability of correct answer at each level) (Arieli-Attali, 2016).
So the data were an ordinal approximation of a continuous
variable. Practically, the rule of thumb is that ordinal variables
with five or more categories can often be used as continuous
without substantial harm to the analysis (Johnson and Creech,
1983; Norman, 2010; Rhemtulla et al., 2012). There were 7
categories in our study. We preferred to treat the data as
continuous rather than as categorical for ease of interpretation.
Depending on the magnitude of µSi,j , each class thus represented
a more general item difficulty level that the participants feel

FIGURE 1 | An illustration of a 3-state hidden Markov model. The latent

categorical Si,j is linked to the observed variable yi,j , j = 1, 2, · · · , 40 through a

measurement model. πm,i1,m = 1, 2, 3 is the probability of individual i’s being

initially in the class m and is explained by observed covariates I i,j . plm,ij is the

probability of individual i’s transitioning from class l at item j − 1 to class m at

item j, and is explained by observed covariates hi,j .

comfortable choosing but may stochastically end at different
manifest choices according to the measurement model.

In the latent model (as shown in Figure 1), we assumed that
the change process of Si,j followed a first-order Markov chain
process, where the current state only depended on the previous
state. We described the dynamics of Si,j through its initial state
and transitions between the states. The former depends on aM×

1 vector of initial state probabilities, π i1 = [πm,i1], and the latter
is characterized by aM ×M matrix of transition probabilities of
moving from a state l to a statem, Pij = [plm,ij], whose k-th row is
denoted as Pij,k. Individual differences in the dynamic processes
of Si,j were assumed to lie in the initial state probabilities and the
transition probabilities, represented by two multinomial logistic
regression models as follows:

Pr
(

Si,1 = m|Ii,1
) 1
= πm,i1 =

exp(am + b
T
mIi,1)

∑M
k=1 exp(ak + b

T
k Ii,1)

, (1)

Pr
(

Si,j = m|Si,j−1 = l, hi,j
) 1
= plm,ij =

exp(clm + d
T
lmhi,j)

∑M
k=1 exp(clk + d

T
lkhi,j)

,

(2)

where m = 1, 2, · · · ,M denotes the latent classes, Ii,1, hi,j
are vectors of covariates used for prediction in the logistic
regressions, am and clm denote the logit intercepts, and bm,
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and dlm denote the regression coefficients of the covariates in
the associated log-odds (LO) relative to a specified reference
class. In the current study, we predicted the initial class
probabilities, πm,i1, using the goal condition (abbreviated as
d), pre-test score (abbreviated as p), and their interactions,
and explain the transition probabilities, plm,ij, using the
goal condition, accumulated correctness (abbreviated as r),
accumulated confidence (abbreviated as f), and the interactions
therein. The accumulated correctness and confidence at item
j were calculated as the percentage of correctness or average
confidence among items from the beginning to item j.

For identification purposes, both Equations (1) and (2) require
specification of a reference class where all parameters in the
regression equation are zero, which ensures that the initial class
probabilities across all classes and the probability of moving into
any class from a single class sum to 1.0. πm,i1 is the probability
of individual i’s being initially in the class m, and the regression
coefficients bm denote the effects of the covariates in the LO of
being initially in the class m relative to the reference class. plm,ij

is the probability of individual i’s transitioning from class l at
item j − 1 to class m at item j, and the slopes in dlm represent
the effects of the covariates on the LO of transitioning from
the lth class into the mth class relative to transitioning into
the reference class. The choice of the reference class will only
affect the logit regression parameters to be estimated, but will
not influence the fit indices, the other parameter estimates, and
the transformed estimated probabilities by a notable significant
amount. Theoretically, the probability of being in the reference
class cannot be zero in the model. Practically, it is recommended
to choose a class that is presumably large enough and can make
interpretation of results easier, for example, the normative class,
the largest class, or the intermediate class. In this study, we used
the default latent reference class of the R package depmixS4 (i.e.,
the first class), which turned out to be the medium class based on
its mean estimate, but the findings should not be sensitive to this
choice.

We can summarize Equations (1) and (2) into vector forms of
π i1 = g([am + b

T
mIi,1]) and Pij = g([clm + d

T
lmhi,j]), where g(·) is

the softmax (normalized exponential) function. In our full model
(also shown in Table 1), Ii,1 is a 3 × 1 vector of the covariates
d, p, and their interaction dp, and hi,j is a 7 × 1 vector of the
covariates including d, r, f, three two-way interactions (df, dr, and
fr), and one three-way interaction (dfr). Accordingly, there are 3
parameters in bm and 7 parameters in dlm. Altogether, there are
2M+4(M−1)+8M(M−1) parameters in the model, consisting
of 2M parameters in the measurement model, (3+1) parameters
each forM− 1 regressions of initial class probabilities, and (7+1)
parameters each (i.e., clm and dlm) for M(M − 1) regressions of
M(M − 1) transition probabilities.

Parameters of the model can be estimated using the
expectation-maximization (EM) algorithm, where the
expectation of the complete log-likelihood function of the
parameters given the observations yi,j and states Si,j are
iteratively maximized to yield parameter estimates. In the R
package depmixS4 (Visser and Speekenbrink, 2010), the EM
algorithm has been implemented for unconstrained models,
using the standard glm routine and the nnet.default routine in the

nnet package (Venables and Ripley, 2002) in the maximization
step for maximizing different parts of the expectations obtained
in the expectation step. For more information on the estimation,
we direct the readers to check the Visser and Speekenbrink
(2010) paper.

Model fit of hidden Markov models can be compared using
Akaike information criterion (AIC; Akaike, 1973) and Bayesian
information criterion (BIC; Konishi et al., 2004). The lower the
AIC or BIC, the better the model fits the data. The fit of nested
models can also be examined using likelihood ratio tests (LRT;
Vermunt et al., 1999; Giudici et al., 2000). If p < 0.05, the more
general model shows significant improvements in fit than the
constrained model at the .05 level.

Additionally, given a sequence of observations {yi,j} and a
hidden Markov model, we could get the most probable sequence
of the state estimates of {Si,j}, using the Viterbi algorithm (Viterbi,
1967; Forney, 1973; Rabiner, 1989). In the depmixS4 package,
one can use the posterior() function to obtain the Viterbi most
probable states, as well as the highest probabilities of a state
sequence ending in a certain state at item j with all observations
up to the item j taken into account.

4. RESULTS

In this section, we first provide a description and visualization
of the data, along with the HMM general results about state
classifications and initial state modeling, followed by two sets
of our transitions modeling questions: (1) modeling transitions
between states in the two goal conditions; (2) modeling
transitions based on accumulated correctness and confidence and
their interactions.

4.1. Description of Data
Here we summarize the most relevant characteristics of the
data. First we present the choice sequences and the visualization
of the data: Figure 2 was created using the R package
TraMineR (Gabadinho et al., 2011), and shows all the difficulty
choice sequences and the ten most frequent sequences for
the performance (P) and learning (L) goal conditions. The
most frequent sequences are those with no transitions, where
participants chose a level and stayed with it for the entire 40-
item test, most frequently the extreme levels (level 1 and 7).
Although there was not a clear difference between the conditions
in the number or proportion of participants choosing to start
and stay at the highest difficulty level (level 7; 3 participants in
the performance goal condition, constituting 1.05%, and 5 in
the learning goal condition, taking up 1.68%), substantially more
participants chose to start at the lowest difficulty level (level 1)
and stay there in the performance goal condition (33 or 11.54%)
than in the learning goal condition (10 or 3.37%). In the learning
goal condition there were also frequent sequences of starting and
staying at level 2, 4, and 5 (as can be seen in the right-most panel),
while in the performance goal condition these sequences were not
frequent. Generally, there were also more switches in difficulty
levels in the learning goal condition than in the performance goal
condition. The average number of upward (i.e., from a lower
manifest difficulty level to a higher one) and downward (i.e.,
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TABLE 1 | Fit indices and parameter estimates across fitted models.

Model A B B1 B2a B2b B3

M 2 3 3 3 3 3

[1, I i,j ] [1, d, p, dp] [1, d, p, dp] [1, d, p, dp] [1, d, p, dp]

[1, hi,j ] [1, d] [1, f, r, fr] [1, d, f, r, fr, df, dr, dfr]

AIC −16658.95 −27223.54 −27282.80 −27306.69 −27466.63 −27487.31

BIC −16602.55 −27110.74 −27121.66 −27097.20 −27160.46 −26987.77

df 7 14 20 26 38 62

logLik 8336.474 13625.771 13661.399 13679.344 13771.316 13805.653

LRT B ⊂ B1 B1 ⊂ B2a B1 ⊂ B2b B2b ⊂B3

1
χ2 [1df ] 71.26*[6] 35.89*[6] 219.83*[18] 68.67*[24]

µ1(σ1) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07)

µ2(σ2) 0.62 (0.22) 0.51 (0.12) 0.51 (0.12) 0.51(0.12) 0.51(0.11) 0.51(0.11)

µ3(σ3) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13)
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*p < 0.05; d, condition; p, pre-test score; f, accumulated mean confidence; r, accumulated mean correctness.

from a higher manifest difficulty level to a lower one) transitions
in the learning condition were 7.43 and 6.51, respectively, both
slightly higher than in the performance condition (6.07 and 5.40,
respectively).

Regarding the distribution of choices, among all chosen item
difficulty levels (i.e., a total of 583 × 40 choices), 22.85% were at
level 1, ranked as the highest proportion and followed by 19.67%
at level 4, 16.13% at level 3, 14.22% at level 2, 10.73% at level

5, 8.87% at level 7, and 7.52% at level 6. The distribution of the
manifest choices is displayed in Figure 3, which suggests that
the marginal distribution of the data should follow a mixture
distribution. The chosen item difficulty levels were negatively
correlated with answer correctness (point-biserial correlation rpb
= −0.30, p <0.001) and perceived confidence (r = −0.28, p
<0.001), while the latter two variables were positively correlated
(rpb = 0.60, p <0.001).
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FIGURE 2 | Sequences of difficulty choices and the most frequent 10 sequences across the performance (P) and learning (L) conditions.

FIGURE 3 | The distribution of manifest difficulty choices overlaid with the normal densities from the fitted 3-state HMM model.

To examine the item dependencies in the difficulty choices,
we obtained the residuals of the manifest difficulty data after
removing the participant and item effects in a generalized
additive mixed model using the R package mgcv (Wood,
2006). The autocorrelation functions (ACFs) of the residuals
are plotted in Figure 4 using the R package itsadug (van
Rij et al., 2017), where the first panel displays the average
ACF across participants, and the rest five are the ACFs for 5
randomly selected individuals. Although there were individual
differences in the ACFs, on average the lag-1 autocorrelation was
relatively high, around 0.44, suggesting the need of a first-order
Markov model.

4.2. Hidden Markov Modeling Results
We used R package depmixS4 (Visser and Speekenbrink, 2010)
to fit a series of HHMmodels to the data, which are summarized
in Table 1. Comparison analyses indicated that a 3-state HMM
(Model B; AIC = −27223.54, BIC = −27110.74) provided a
better fit to the data than a 2-state HMM (Model A; AIC =
−16658.95, BIC = −16602.55) based on the AIC and BIC (see
Table 1). We hence present the results from 3-state HMMs.
The parameter estimates of µSi,j and σSi,j in the measurement
model are summarized in Table 1. Based on Table 1, the three
latent states respectively represent low [L; µ1(σ1) = 0.19 (0.07)],
medium [M; µ2(σ2) = 0.51 (0.12)], and high [H; µ3(σ3) = 0.86
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FIGURE 4 | The autocorrelation functions in the residuals of manifest difficulty choices after removing participant and item effects; the dashed blue lines represent the

95% confidence limits.

(0.13)] item difficulty levels. The estimated normal densities
are shown as overlaid on the manifest distribution in Figure 3.
The fitted mixture distribution of the hidden Markov models
was still able to capture the manifest distribution of the chosen
difficulty levels.

Figure 5 shows four representative participants’ trajectories of
item difficulty choices, accumulated confidence, and accumulated
correctness, accompanied by the estimated most probable state
at each item colored differently in the background. For example,
participant 27 in the learning goal condition stayed at the low-
level difficulty across time (switching between level 1 and 2)
and the most probable latent state throughout was the L latent
class (background colored blue). The accumulated correctness
was generally high (above 70%) and the accumulated confidence
was relatively low (mostly below 50%), yet they co-varied across
time. Participant 347 in the performance goal condition, on the
other hand, chose high-difficulty items across time (levels 5,
6, and 7) and the most probable latent state was the H latent
class (background colored pink). The levels of confidence and
correctness for this participant were almost identical, with a
decline at approximately item 8. Participants 374 and 468 showed
more transitions in their choices of difficulty levels. Participant
468 showed a gradual increase in item difficulty choices reflected
in the transition of the most probable latent state from L to
M to H latent states (blue → green → pink) with a steady
high accumulated correctness albeit moderately low accumulated
confidence. Lastly, participant 374 showed many transitions
upwards and downwards, while correctness and confidence
were moderately low. Note that participant 374 provides an

illustration of how the samemanifest/observed difficulty level can
be associated with different most probable latent states: level 4
(just above .5 on the y-axis) was linked to the H state when the
surrounding difficulty choices were higher (between item 10 and
20), but linked to the M state when the preceding choices were
lower (between item 25 and 30) (see arrows on the figure).

Similar to Arieli-Attali (2016) in predicting choices, we used
pre-test score (i.e., percentage of correctness), goal condition, and
their interaction as predictors of initial difficulty latent state; the
resulting Model is Model B1. As noted above Arieli-Attali (2016)
reported that test takers’ selection of difficulty on the first item
differed across goal conditions, with lower difficulty chosen in the
performance group, after controlling for pre-test performance.
Our model analysis adds to this finding by using the three latent
states rather than manifest difficulty levels. Parameter estimates
and fit indices are shown in Table 1. Model B1 fits significantly
better than Model B based on the LRT (1χ2 = 71.26, 1df = 6,
p < 0.05). As it is not intuitive for us to draw conclusions from
the parameter estimates in the LO sense, we illustrate the logistic
regression results in terms of expected probabilities evaluated at
certain values of the predictors in stacked bar figures. Figure 6
indicate that when participants’ pre-test scores are controlled,
the expected probability of starting the test in a low-difficulty
state compared to medium- or high-difficulty, is higher in the
performance goal condition. Also it is evident from Figure 6, that
within a condition, the higher the pre-test score, the higher the
probability that the participant would initially be in amedium- or
high-difficulty state. In particular, participants who answer fewer
than half of the pre-test items correctly are more likely (above the
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FIGURE 5 | Four representative individuals’ trajectories of item difficulty choices, accumulated confidence, and accumulated correctness, with the estimated most

probable state at each item as identified by the 3-state hidden Markov model colored differently in the background.

50%) to be in the low-difficulty initial state. Participants who have
higher or full pre-test scores are more likely to be in initial state
of medium- or high-difficulty. Now we turn to model transitions.

4.3. Research Question 1: Modeling
Transitions in the Two Goal Conditions
Our first research question addressed modeling transitions
between states in the two goal conditions. We added a
multinomial logistic regression of the transition probabilities
with condition as predictor to Model B1 (i.e., Model B2a), which
significantly improves the fit of Model B1 (1χ2 = 35.89, 1df

= 6, p < 0.05) and has a lower AIC value1. Fitting results of
Model B2a are presented in Table 1 and Figure 7. Figure 7 shows
the expected probability of transitions to and from each of the
three latent states separately for each condition. As this figure
shows, in both conditions the most probable choice behavior
is staying in the same latent difficulty state with probabilities
of over 90% (recall that different manifest difficulty levels were
included in each latent state). However, when looking at the
transitions between conditions, the model predicts a higher
likelihood of staying at low difficulty and a lower likelihood
of upward transitions from low to medium difficulty in the
performance goal condition. In other words, participants in the

1Please note that the BIC of B2a is larger than that of B1.

performance goal condition are expected to transition less from
the low state, confirming and adding to the results reported
by Arieli-Attali (2016) that test takers in the performance goal
condition tended to choose the lower level more frequently than
in the learning goal condition, shown here also when considering
latent states and transitions between states. Note that transitions
from the medium or high state (either upwards or downwards)
were similar between the two goal conditions.

4.4. Research Question 2: Modeling
Transitions Based on Correctness and
Confidence
We next fitted a more general model than Model B1,
with accumulated correctness and confidence across items as
predictors without condition (i.e., Model B2b), to evaluate
the influence of these characteristics on transitions. Parameter
estimates and fit indices are presented in Table 1 and expected
probabilities are displayed in Figure 8. Compared to Model B1,
B2b fits the data significantly better (1χ2 = 219.83, 1df = 18,
p < 0.05) and has lower AIC and BIC values. Note that the figure
presents the four extreme quadrants of the two continuous scales.
The horizontal line represents the accumulated correctness
showing the extreme ends of the scale as “all incorrect” and “all
correct” (from left to right), while the vertical line represents
the accumulated confidence, showing the extremes of lowest and
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FIGURE 6 | Effects of condition and prescore on initial class probabilities. The numbers in the stacked bars are expected probabilities evaluated at certain values of

the predictors based on the model fitting results.

FIGURE 7 | Effects of condition on the transition probabilities. The numbers in the stacked bars are expected probabilities evaluated at certain values of the predictors

based on the model fitting results.
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FIGURE 8 | Effects of accumulated correctness, confidence, and their interactions on the transition probabilities. The numbers in the stacked bars are expected

probabilities evaluated at certain values of the predictors based on the model fitting results.

highest confidence (from bottom to top). As this figure shows,
with high accumulated correctness (top and bottom right-side
panels), expected probability of transitions is low and staying
at the same difficulty state has the highest likelihood across
the confidence scale. However, when accumulated correctness
decreases (toward the quadrants in the top and bottom left-
side panels) there is higher likelihood for transitions in both
directions, and the likelihood of transitions increases as the
confidence increases (i.e., illustrating the interaction between
these factors). In particular, we can see expected downward
transitions from the medium state when confidence is low
(22.3%; bottom left-side panel), and from the high-state when
confidence is high (27.7%; top left-side panel), as expected.
However, we can also see that when the accumulated confidence
is highest (top left-side panel; indicating over-confidence)
participants are more likely to transition upwards from the low
state (66.1%) equally to either themedium- or high-state. In other
words, staying at the same state is the least probable in this case
relative to other quadrants and states (recall that this quadrant
is the extreme end of the confidence scale, and transition
upwards from the low state are expected to increase as confidence
increases). To get a sense of the frequency of participants
with different relations between accumulated correctness and

confidence, in particular considering the representation within
each of the four quadrants illustrated in Figure 8, we show
in Figure 9 the relation between accumulated correctness and
confidence after 10, 20, 30, and 40 items. As can be seen, the data
cluster along the diagonal increasingly as the number of items
increased, with sparse representation in the quadrants with mis-
matches between correctness and confidence. This suggests that
test takers were overall well-calibrated in their confidence, with
little representation of over- and under-confidence.

We then further added back goal condition as a predictor
of the transition probabilities to Model B2b (i.e., Model B3),
which significantly improved the fit of Model B2b (1χ2 = 68.67,

1df = 24, p < 0.05) and has a lower AIC value2. Figure 10
shows the same transition probabilities as in Figure 8 split by
goal condition. The downward transitions when accumulated
correctness decreases are also evident when split into the goal
condition and are more so in the learning goal condition. The
findings about higher likelihood of upward transitions in the
over-confident quadrant are still evident when split into the goal
conditions, with somewhat more transitions in the performance
goal compared to learning goal condition (73.8 and 65.2%,

2Please note that the BIC of B3 is larger than that of B2b.
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FIGURE 9 | The distribution of accumulated confidence and correctness.

respectively at the extreme quadrant of the confidence scale). A
new finding from this split analysis is that there are also more
transitions in the performance goal condition when accumulated
correctness is high but confident is low (27%; bottom right-side
panel, the quadrant indicating under-confidence).

5. DISCUSSION

The purpose of our secondary data analysis from Arieli-Attali
(2016) was to apply a hiddenMarkovmodel to test takers’ choices
of item difficulty in a self-adapted test. We investigated whether
those choices could be modeled by the goal condition (learning
vs. performance), as well as the test takers’ correctness and
confidence across items. Analysis of the data using the hidden
Markov model identified three latent states of difficulty from
the seven manifest levels. These three latent states correspond
to low, medium and high difficulty levels, and may be an
indication of a low, medium or high self-estimated ability and/or
motivation. We first modeled test takers’ initial difficulty state
based on their pre-test scores and goal condition, confirming past
results (Arieli-Attali, 2016) about preference of lower difficulty
in the performance goal condition, showing it here also as a
higher expected probability of starting in the low state in the
performance goal condition after controlling for pre-test scores.
The results here add to the understanding that this is not just the
single first choice influenced by the goal orientation (in addition
to the self-perceived ability), but rather it is the participant’s
latent state that is influenced and therefore drives the choices

accordingly. This result further confirms that when the goal
orientation is to excel at a task individuals may avoid taking on
challenges (Dweck, 2006).

We then used the model to predict transitions across items,
and found the highest likelihood was to remain at the same
difficulty state across items. This is the main contribution
of applying a latent state approach in this context, because
manifested choices may show transitions attributable to random
variability while actual latent states are less likely to change.
When using only goal condition as a predictor, there was
no difference in transitions from the middle- or high- states
between the two goal conditions, however there was a slightly
lower likelihood of upward transitions from the low state in
the performance goal condition relative to the learning goal
condition, confirming the overall finding that test takers in the
performance goal condition applied a strategy of the “easy way
out,” keeping low effort (Arieli-Attali, 2016).

The main contribution of this analysis is in the application of
the HMM to model the interaction between answer correctness
and confidence. We have shown that the likelihood of transitions
increased when the accumulated correctness decreases. This
result is intuitive as it means that participants were attentive to
the correctness feedback and when they were overall wrong they
tended to transition or change their metacognitive/motivational
state. We found that downward transitions were more likely
across the confidence scale as expected, but upward transitions
were more likely when confidence increased for those who
were in the low state, that is, we found that when confidence
was highest, it reached the highest likelihood of about 2/3
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FIGURE 10 | Effects of condition, correctness, confidence, and their interactions on the transition probabilities. The numbers in the stacked bars are expected

probabilities evaluated at certain values of the predictors based on the model fitting results.

upward transitions in the over-confidence end of the scale.
This finding can be related to the literature on confidence and
learning from errors by Metcalfe and colleagues (Butterfield and
Metcalfe, 2001; Metcalfe and Xu, 2018). This line of research
generally showed that people who made an error with high
confidence were more likely to correct their mistake compared
to a situation when the error was made with low confidence (the
hypercorrection phenomenon). One of the explanations of this
phenomenon is the surprise/attention explanation, which says
that individuals experience surprise at being wrong when they
were sure they were right, and as a consequence they rally their
attentional resources (Butterfield and Metcalfe, 2006; Metcalfe
et al., 2012). In our study we showed that individuals with high
confidence whowere proven incorrect weremore likely to change
difficulty state as reflected in more transitions upwards. The
transitions upwards may be a reflection of being more attentive
or putting forth more effort, similar to what occur under the
hypercorrection phenomenon.

We also found that accumulated correctness and confidence
interacted with goal condition in predicting transitions. The
transitions when accumulated correctness decreases were also
likely when split into the goal conditions but the downward
transitions have higher likelihood in the learning goal condition,

while the upward transitions in the over-confidence case have
higher likelihood in the performance goal condition. This
analysis also revealed a new finding of higher likelihood of
upward transitions in the performance goal condition when
accumulated correctness was high but confident was low, i.e.,
in the under-confidence end of the scale. These two findings
together, that in the performance goal condition test takers were
more likely to transition upwards from the low state in both mis-
matched conditions (over- and under- confidence), indicate the
specific interaction of the goal with correctness and confidence,
and may suggest that when (1) participants are instructed to
do their best, (2) they experience mis-match between what they
think they know and what they actually know (feedback of
correctness), and (3) they are in the low state without possible
downward transition, they try to “find their luck” someplace else
or decide to put more effort. This finding may suggest that mis-
calibration between confidence and correctness could serve as a
motivating factor, as being in the low state in the performance
goal condition has been shown to stem from low motivation
(Arieli-Attali, 2016). This combined pattern was not found for
the learning goal condition, suggesting that evidence about mis-
calibration when one is striving to learn has less of an effect (i.e.,
it had an effect in over-confidence, but not in under-confidence).
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These results are consistent with the literature on goal
orientation, showing that participants who are encouraged to
use the test for learning rather than focusing on performance
are more likely to seek challenges and show resilience amid
difficulties (Yeager and Dweck, 2012). However, our additional
findings about the interaction between correctness, confidence,
and goal orientation further shed light on the complexity of
the choices made in self-adapted test. The interactions we
found suggest that the test takers’ goal (i.e., whether the
participant needs to maximize one’s score, as the goal of the
test), confidence across items (as a reflection of one’s internal
states), and correctness (as an outside feedback) together may
form a recursive feedback loop that results in the changes of an
individual’s motivational and/or metacognitive state and further
affects choice behavior.

To summarize, in this study we explored ways to learn
about the motivation and feeling of knowledge of test takers
and its affect on their actions while engaging in an interactive
self-adapted test, via analyzing process data. Motivation and
engagement is particularly crucial in low stakes assessment
programs (such as the National Assessment of Educational
Progress program, or the Trends in International Mathematics
and Science Study), where test scores have no personal

consequences for individuals, potentially resulting in low
motivation to do one’s best, and subsequently threatening the
validity of the test scores. While low stakes programs make
attempts to make their tests more interactive and appealing
to participants in order to increase their engagement, we offer
insights on how goal orientation, correctness and confidence
influence choices that determine the course of the test. More
research is needed to learn about how complex choice making
in simulation- and game-based assessment can be modeled by
factors inherent to the simulation or the game (such as curiosity,
challenge seeking, sense of satisfaction, and the like).
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