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Current music technologies can assist in the process of learning to play a musical

instrument and provide objective measures for evaluating the improvement of music

students in concrete music tasks. In this paper, we investigated the effects of a sound

quality visual feedback system (SQVFS) in violin learning. In particular, we studied the

EEG activity of a group of participants with no previous violin playing experience while

they learned to produce a stable sound (regarding pitch, dynamics, and timbre) in order to

findmotor learning biomarkers in amusic task. Eighteen subjects with no prior experience

in violin playing were divided into two groups: participants in the first group (experimental

group, N = 9) practiced with instructional videos and offline feedback from the SQVFS

provided in alternation with their performance, while participants in a second group

(control group, N = 9) practiced with the instructional videos only. A third group of violin

experts (players with more than 6 years of experience) performed the same task for

comparative purposes (N = 7). All participants were asked to perform 20 trials (4 blocks

of 5 trials) consisting of a violin bowing exercise while their EEG activity and their produced

sound was recorded. Significant sound quality improvements along the session were

found in all participants with the exception of participants in the expert group. In addition,

participants in the experimental group showed increased interest in the learning process

and significant improvement after the second block not present in the control group. A

significant correlation between the levels of frontal gamma band power and the sound

improvement along the task was found in both the experimental and control group. This

result is consistent with the temporal binding model which associates gamma band

power with the role of integrating (binding) information processed in distributed cortical

areas. Task complexity demands more cognitive resources, more binding and thus,

gamma band power enhancement, which may be reduced as the demanded task begins

to be automated as it is likely to be the case in both beginners groups.

Keywords: signal processing, audio, violin, learning, e-learning, EEG, music

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.00165
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.00165&domain=pdf&date_stamp=2019-02-12
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:adavid.blanco@upf.edu
https://doi.org/10.3389/fpsyg.2019.00165
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00165/full
http://loop.frontiersin.org/people/477671/overview
http://loop.frontiersin.org/people/218839/overview


Blanco and Ramirez Evaluation of a SQVFS

1. INTRODUCTION

1.1. Feedback in Motor Learning
There is ample literature reporting on the effects of feedback in
motor learning tasks. From the first attempts to experimentally
test Thorndike’s theory of learning (Trowbridge and Cason,
1932), to more recent work (Newell, 1974; Salmoni et al.,
1984; Schmidt et al., 1989; Winstein, 1991), studies consistently
show how feedback during motor learning increases the rate
of improvement over trials. However, the effects on retention
and long-term learning are less clear. Approaches providing
infrequent feedback have shown improvements in retention
phases usually performed 24 h after the experiment (for a review
of feedback studies see Winstein, 1991). Still, it is important
to consider that this kind of research has focused on studying
the effect of feedback in controlled environments where the
effect of intrinsic feedback (e.g., visual, auditory, proprioceptive)
pertaining to the outcome movement is minimized. This kind
of experimental design may imitate the process of learning in
a person with sensory deficits who is unable to use intrinsic
feedback and depends on the extrinsic feedback (i.e., related
to the result of the action) given by the experimenter. On the
other hand, motivation is very important in learning (Elwell and
Grindley, 1938). Some researchers have attempted to control the
motivational effects of feedback in experimental setups where
subjects were asked to improve their performance or were given
explicit goals (Locke, 1966; Locke and Bryan, 1966) in order
to find a significant goal effect. Although those results may
relate with the learning of motor skills (e.g., in sports, music),
extrinsic feedback could play a different role depending on the
task performed, so more specific research is needed in order
to understand better the impact of feedback technologies in
music students.

1.2. Technology-Enhanced Music Learning
Mastering the violin and other bowed-string instruments require
special considerations compared with other musical instruments.
As opposed to the piano, for instance, pitch control in the violin
is continuous and correct intonation is an important issue. In
addition, the process of good sound generation in the violin is
a notorious complex task which requires precise spatiotemporal
control of bowing gestures (Schoonderwaldt and Demoucron,
2009). Acquiring correct bowing motor skills require many hours
of practice in which aural feedback is crucial for students to
adjust their motor gestures to generate good sound. According
to Konczak and Jaeger (2009) novice players need approximately
700 practice hours to achieve bowing skills comparable to those
of experts. Moreover, string players have the highest risk of
playing-relatedmusculoskeletal injuries/disorders (PRMDs) with
the neck and shoulder being the main body parts affected
(Middlestadt and Fishbein, 1989).

A recent survey on Australian higher education music
students showed how the use of Youtube and self-recording
has become common practice among them (Zhukov, 2015).
Youtube offers videos of professional musicians performing
music repertoire pieces as a model for students while self-
recording has become an important tool for self-evaluation.

Previous research (Kepner, 1986; Bundy, 1987) found that high
school instrumentalists were more able to identify musical
errors when hearing tape recordings of their own performances
than when actually performing the pieces. In particular, Bundy
(1987) explains the obtained results by a sensory blocking
theory which hypothesizes that when musicians are concerned
with monitoring a big number of sensory aspects involved
in performance (like sight-reading or finger movements) the
sense of hearing, which is perceived to be of lesser importance,
is blocked. However, recent research (Hewitt, 2001) studied
the effects of listening to a model (i.e., an expert reference
performance), listening to oneself on audiotape, and self-
evaluation on junior high school instrumentalists, concluding
that there is a significant interaction effect for modeling and
self-evaluation. However, self-evaluation (which in the case of
the study consisted on the Woodwind Brass Solo Evaluation
Form Saunders and Holahan, 1997) or self-recording on their
own were not found to be effective strategies for improving
music performances. Although self-recording may be important,
in absence of a teacher it requires the student to be his/her
own judge which may be problematic. The superiority of highly
trained musicians encoding spectral and temporal features of
music-sound compared with non-musicians has been found in
a large number of neuroscientific studies (Besson et al., 1994;
Koelsch et al., 1999; Pantev et al., 2001; Tervaniemi et al., 2005;
Hutchins and Peretz, 2012). For example, Koelsch et al. (1999)
demonstrated, using electrophysiological and behavioral data,
that highly trained violin players are able to detect automatically
undetectable pitch differences for nonmusicians.

Current music technologies provide us with objective
measures of student improvement in specific music tasks. Thus,
such technologies can allow us to monitor the learning process
of music students in order to provide better and personalized
learning strategies. In addition, objective measures about music
students’ performance may serve as additional information
which could complement the verbal feedback given by the
teacher. In the past, the role of feedback in music learning has
been addressed mainly to study the effects of real-time visual
feedback (RTVF) in singing. Welch et al. (1989) studied the
effect of a feedback system called SINGAD (Singing Assessment
and Development) in 32 primary school children aged 7 years.
The system provided a real-time F0 trace plotted against time
together with the target notes displayed in order to guide time
and pitch accuracy. The study reported improved pitch accuracy
by using the system. Previous research has studied the effect of
using different kinds of interfaces and different kinds of feedback
in singing voice (Thorpe, 2002; Welch et al., 2004; Wilson et al.,
2008; Leong and Cheng, 2014), trombone (Schlegel and Gregory
Springer, 2018), piano (Hamond, 2017), and violin (Wang et al.,
2012). Although there are differences in the way RTVF may
improve performance, most of the previous studies reported
beneficial effects of RTVF in learning. An extensive review on
feedback and technology applied to music learning can be found
in Hamond (2017). The same author also investigated the nature
and application of combined visual-auditory feedback generated
by technology systems in higher education piano learning and
teaching contexts. As suggested by self-reports collected from
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music students, the feedback provided could increase conscious-
awareness of their own performance. As related by one of those
students: “Sometimes you know in your mind what you want to
do, [...] but sometimes you do not realize exactly what you’re
doing in practice[...]. So, when you hear, you can clearly see what
you are doing and what you’re not” (Hamond, 2017, p. 278).

Regarding violin learning, special efforts have been done to
offer different kinds of feedback, not only on the produced
pitch but also on timbre, good posture, and bowing technique.
The i-Maestro project (Ng and Nesi, 2008) was one of the
first steps in that direction offering tools based on gesture
analysis and audio processing. More recently the TELMI project
has developed tools for providing feedback on timbre quality,
pitch and timing accuracy, posture and bowing techniques, and
musical expression (Ortega et al., 2017; Dalmazzo et al., 2018;
Giraldo et al., 2018; Zacharias et al., 2018). Optical motion
capture combined with sensors has also been used to extract
bowing parameters from violin performance (Schoonderwaldt
and Demoucron, 2009; Deutsch, 2011) allowing to study
and compare the motor patterns of professional and student
violinists. Tracking violin performance using low-cost methods
has also been investigated by Perez Carrillo and Wanderley
(2012) through the sole use of audio signal and a system trained
on empirical data previously collected with a highly accurate
sensing system. Pardue et al. (2015) also explored low-cost
methods using a resistive fingerboard and four optical reflectance
sensors placed on the bow stick. Some attempts have been done
in order to evaluate motion capture techniques to teach violin
skills. For example, Van Der Linden et al. (2011) used a wearable
system to teach good posture and bowing technique to novice
violin students and found a larger improvement when compared
with a control group of subjects who received the same number
of training sessions using conventional teaching techniques. One
possible limitation of the previously mentioned study is that the
quality of generated sound is not taken into account, while in
violin learning the production of a good sound is one of the main
reasons for learning a correct bowing technique.

The work of Romaní et al. (2015) aimed to identify
audio descriptors, extracted from the recordings of professional
musicians while playing single notes, maximally correlated with
their own subjective opinions about the quality of the produced
sound. Some of the features that showed higher correlations were
those characterizing pitch stability and dynamic stability. This
research led to the implementation of Cortosia (Korg, 2018) an
app owned by the Korg company, which aims to provide students
with visual feedback about the quality of their produced sound.
More recently, Giraldo et al. (2018) investigated the application
of machine learning techniques to obtain sound quality model
and implemented a real-time feedback system for enhancing
violin learning. However, no studies have been done until now
to evaluate the pedagogical effectiveness of such systems.

One could be tempted to offer simultaneous real-time
feedback in violin learning environments (e.g., violin-bow
orientation, bowing trajectory, and timbre quality). However,
a common concern found in user studies offering several
simultaneous feedback is that participants usually have
difficulties dealing with them (Van Der Linden et al., 2011;

Johnson et al., 2012; Johnson, 2014). Delivering the different
feedback separately at different times and as requested by the
user could be one possibility to resolve that problem, as has been
the approach in the TELMI project. Another common concern
is the potential dependency that feedback systems could create
on students.

Recent research (Brandmeyer et al., 2011) has evaluated
the effects of RTVF on expressive percussion performance
interpreting their results using the Cognitive Load Theory (CLT)
(Paas et al., 2003). In their work, they differentiate between
three different kinds of cognitive load: intrinsic, extraneous and
germane. Intrinsic cognitive load is associated with the difficulty
of the particular task whereas extraneous cognitive load relates to
the manner in which information is received. On the other hand,
germane cognitive load relates to the mental resources involved
in learning in general, independently of the task. Brandmeyer
et al. (2011) found empirically that too many visual elements
can create a high extraneous cognitive load in participants,
dividing their attention and leading to poorer learning outcomes.
However, apart from behavioral measures, no other measures
were used to evaluate the amount of cognitive load participants
were experiencing. Physiological measures can provide objective
measures of the mental work a person is experiencing while
learning. Recently, the neural activity associated with learning
tasks has been investigated by the neuroscientific community
using both functional neuroimaging and electroencephalography
(EEG) techniques. In particular, EEG is the most common
technique used to study cognitive load from brain activity
and one of the most feasible among other electro-physiological
measures (Miller, 2001).

1.3. E-Learning Systems Inspired in Brain
Activity (EEG)
Event-related (de)synchronization (ERS/ERD) is a well-
established measure for the quantification of changes in different
frequency bands of the EEG signal. It reflects the decrease
(desynchronization) or increase (synchronization) in a band
power during a test (time period where the subject is performing
a specific task which demands cognitive load) compared with a
reference baseline (time period without any task demands). This
is usually done for each electrode. A positive ERD/ERS value
means a decrease in a band power (desynchronization, ERD)
while a negative value indicates an increase in band power (ERS).
It has been reported repeatedly for several researchers that alpha
and theta band activity (8–13 Hz and 4–7 Hz, respectively) is
very sensitive to task difficulty or cognitive load in a wide variety
of task demands (Klimesch, 1999; Gevins and Smith, 2003;
Neubauer et al., 2006). Generally, as cognitive load increases,
frontal midline theta band increases, and posterior alpha band
decreases. Larger alpha band ERD has been associated with
highly intelligent subjects and good performance (Jaušovec and
Jaušovec, 2004). Explanations of this phenomenon are usually
delegated to the neural efficiency hypothesis which assumes
that high alpha band power reflects cortical inhibition. On the
other hand, theta has been investigated for its implications in
memory performance (Raghavachari et al., 2006) showing strong
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increases in the frontal area during the encoding and retention
period (Maurer et al., 2015). Thus, an alpha band power decrease
at posterior sites (larger alpha band ERD) and a frontal theta
increase represent a general index for cognitive demands.
Some research also highlights the importance of gamma band
waves (30–100 Hz) which its enhancement is observed within
a task-specific spatial distribution (Fitzgibbon et al., 2004) and
seems to be correlated with cognitive load in humans (Howard
et al., 2003). The temporal binding model gives gamma band the
responsible role of integrating (binding) information processed
in distributed cortical areas. Task complexity demands more
cognitive resources, more binding and thus, gamma band
power enhancement. Interestingly, some research has found
that subjects with musical training show enhanced induced
gamma band activity (Shahin et al., 2008; Trainor et al., 2009)
suggesting it reflects a superior binding of acoustical features
(e.g., pitch, timbre, harmony) and processes also thought to
be enhanced by music training, e.g., anticipation, expectation
and attention (Bhattacharya et al., 2001; Sokolov et al., 2004;
Gurtubay et al., 2006).

The viability of the use of EEG to test the effectiveness of
learning materials designs has been provided by some studies
(Antonenko and Niederhauser, 2010; Antonenko et al., 2010).
Thanks to the measure of participants’ cognitive load it is
possible to assess which learning strategy seems to work better
in concrete situations. On the other hand, some studies have
also started to investigate the potential of real-time monitoring
of mental workload to improve human performance. For
instance, Kohlmorgen et al. (2007) describes a system to reduce
distractions while driving by monitoring mental workload.

EEG has also been used to improve music performance
through the use of an increasingly popular technique called
neurofeedback. It consists of learning, through visual or auditory
feedback, how to modify voluntarily your own mental activity.
Several studies have reported improvements in the music
performance of those musicians who received a neurofeedback
session on the theta /alpha protocol (i.e., learning how to
maximize the theta to alpha ratio) before a performance,
compared with other groups who received different kinds of
relaxing techniques like the Alexander technique or different
neurofeedback protocols (Bazanova et al., 2009; Gruzelier, 2009).
Similar results have also been found for dancers (Raymond et al.,
2005). According to the authors, the production of theta waves
with eyes closed is related to the hypnogogic process which at
the same time is associated with an improvement of the creative
process and well-being of users.

Other studies have tried the use of theta-EEG and EMG
biofeedback with violinists while they perform, with positive
results (Silvana et al., 2008). The pre-recorded sound of applauses
as feedback gave themusician the opportunity to recognize which
is the adequate mental and muscular state needed for optimum
performance. The reason to train theta during the performance
was that some investigations have found enhanced theta activity
in highly-skilled professional musicians (Klimesch et al., 1997;
Bazanova and Aftanas, 2006). According to the neural efficiency
hypothesis experts should show lower brain activation (which
means higher theta power andmore efficient networks), and thus,

training students to learn how to use their brain more efficiently
could lead to an enhancement of their performance.

The relationship between EEG power changes and proficiency
have also been reported in sports activities such as rifle
marksmanship (Haufler et al., 2000; Kerick et al., 2004), archery
(Salazar et al., 1990; Landers et al., 1994) and golf (Crews and
Landers, 1993; Babiloni et al., 2008). This research shows how the
most predictive data of expertise is recorded before the skilled
movements occur, in what is called the “pre-shot routine.” For
instance, it has been shown that the magnitude of the increase
in theta power before the shot is correlated with the accuracy
of the shot. Berka et al. (2010) tracked the learning process
of beginners in rifle marksmanship while firing a total of 40
shots and correlated the accuracy of the results with the EEG
power activity, finding increases in theta and high theta Bands
(6–7 Hz) just as experts showed during all their trials. They
also compared the results of the learning group with another
one which, additionally, received a neurofeedback training based
on the same frequency bands showing how the neurofeedback
group obtained significantly better results. Similar results were
also found by Gentili et al. (2008) where subjects had to learn
and interact with new tools. They found increases in alpha
and theta band power in the frontal and temporal lobes during
movement planning (i.e., just before the movement, like in the
pre-shot routine).

However, in a recent study (Gutierrez and Ramírez-Moreno,
2016) changes in brain activity associated with the progression
of the learning experience were estimated with different results.
They monitored the process of learning to typewrite using
the Colemark keyboard layout, which is an alternative to the
QWERTY layout, finding a decreasing trend of the beta and
gamma bands. They interpreted beta band decrease as a result
of long-duration repetitive hand movements, similar to results
found by as Niemann et al. (1991) and Erbil and Ungan (2007),
and explained the gamma band decrease as a consequence of the
temporal binding model previously mentioned, which associates
gamma band activity with coupling perception and learning, as
reported by Gruber and Müller (2005).

1.4. Aims of the Present Work
The aim of this work is to contribute to the understanding of the
effects of feedback in music learning from an electrophysiological
point of view. For this purpose, we have evaluated the
effectiveness of using a sound quality visual feedback system
(SQVFS) to improve the quality of sound produced by of novice
violin players while their EEG activity and the violin sound
they produced was recorded. These recorded data provides
non-invasive biomarkers of motor learning in a musical task.
Participants (with no previous experience with violin or any other
bowed string instrument) were asked to produce a stable and
sustained violin sound on an open string (i.e., the second string
in the violin). The choice of using an open string was to allow
participants to exclusively concentrate their attention to control
the bow movement. This task requires to control and change the
pressure of the bow along the whole movement due to the fact
that bow pressure requires to be heavier at the frog and lighter
at the tip. If the pressure of the bow is not constant along the
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movement both pitch and energy of the produced tone could
change. For that reason, we hypothesized that the use of dynamic
stability and pitch stability audio descriptors, as Romaní et al.
(2015) did, to measure sound quality among trials would allow
us to track improvement through the session. We also offered the
numerical result of the descriptors as feedback to the participants
(i.e., the SQVFS).

Participants were divided into two groups. Both of them
had access to learning materials and reference videos during
the experiment, but in addition one of the groups received
offline feedback about the quality of their performance given
by the SQVFS. The quality of the produced sound, as well as
the EEG activity of each participant, was recorded during 4
blocks of 5 trials each (20 trials in total). An additional group of
violin experts was considered in the experiment for comparative
purposes. Data recollected in this study is publicly available in
Zenodo (Casares and Ramírez, 2018) and the code to analyze it
in Github (Blanco, 2018).

2. MATERIALS AND METHODS

2.1. Participants
The study was carried out in the recording studio located in
the Information and Communication Technologies Engineering
(ETIC) department of the Universitat Pompeu Fabra, Barcelona
and included the participation of twenty-five right-handed
subjects. Participants conceded their written consent and
procedures were approved by the Conservatoires UK Research
Ethics committee on 04/04/2017, following the guidelines of the
British Psychological Society. Participants provided information
about their musical skills, main instrument and years of music
training. Those with extensive experience in violin playing were
included in the expert group [EG;6 male, 1 female; mean age:
35.2 (9.01); mean years studying violin: 7.6 (2.19)]. Participants
with no violin (or viola, double-bass or cello) experience were
included in the beginner’s group. This last group, was randomly
divided in two groups: the first group [BF; 6 male, 3 female; mean
age: 27.57 (4.46); all of them were musicians with several years
of experience, mean: 9 (5.07)] practiced with instructional videos
and offline feedback from the SQVFS reflecting the quality of
their produced sound, while the second group [BNF; 8 male, 1
female; mean age: 27.2 (2.28)] practiced with the instructional
videos only. All participants were musicians with several years
of experience, mean: 10.8 (4.65).

2.2. Materials
EEG data were acquired using the Emotiv EPOC EEG device. The
Emotiv EPOC consists of 16 wet saline electrodes, located at the
positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4 according to the international 10-20 system (see Figure 1).
The two remaining electrodes located at P3 and P4 are used as
reference. The data acquired were digitized using the embedded
16-bit ADC with 128 Hz sampling frequency per channel and
sent to the computer via Bluetooth. The Emotiv Control Panel
software was used to monitor visually the impedance of the
electrodes contact to the scalp. The data were recorded using
the OpenViBE platform (Renard et al., 2010) and later processed

FIGURE 1 | Emotiv EPOC electrodes aligned with positions in the 10–20

system.

in EEGLAB (Delorme and Makeig, 2004) under the Matlab
environment (MATLAB, 2010).

A Zoom H4N handy recorder was used to record the audio
of each trial which was processed in Matlab using the “Yin
pitch estimation toolbox” (Llimona, 2015) in order to extract
audio features for assessing sound quality and provide feedback
to participants. Yin is a widely used algorithm to estimate
fundamental frequency both in speech and music (De Cheveigne
and Kawahara, 2002).

Visual feedback provided to the BF group consisted of graphs
generated in Matlab showing the sound quality score in the y-
axis and the trial number in the x-axis. Feedback was intended
to allow participants to monitor their progress and compare
their performance to that of an expert participant who previously
did the experiment (also plotted in the feedback screen)
(see Figure 2).

Instructional videos about basic violin playing techniques,
e.g., stance, violin position, bow position, and grip, were used
to provide participants with basic information. The videos were
collected from the web (Sassmannshaus, 2018) (see Figure 3). In
addition, we recorded a reference video of the requested task
performed by a professional violin player. The produced video
was shown to all participants to explain the task to be performed.
The video can be found in Zenodo (Casares and Ramírez, 2018).

EEG acquisition and audio processing were performed on
different laptops (PC1 and PC2, respectively). To synchronize
audio and EEG data PC2 sent markers to OpenVibe in PC1
through OSC everytime a new trial began and ended. The
experimenter controlled the display of instructional videos and
the reference expert video for both BNF and BF groups and sound
quality visual feedback for the BF group (see Figure 4).

2.3. Methods
Due to the nature of the experiment, it was not possible to
conduct a double-blind study. In order to avoid unconscious
bias during the instructions given to participants, both beginner
groups (i.e., BNF and BF) watched the same set of instructional
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FIGURE 2 | Example of the results in dynamic instability, pitch instability and aperiodicity shown to a subject just after performing trial number nine.

videos on violin and bow position and stance with a total
duration of 10 min (Sassmannshaus, 2018). Participants watch
the videos while the EEG device was positioned on their heads.
Once setup of the EEG device and the videos were finished,
participants proceeded to perform the violin bowing exercise
which consisted in the alternation of eight up and down bowing
movements using the full length of the bow with the goal of
producing a sound in the A open string. Participants were asked
to produce a stable and sustained sound at the same tempo of
the reference video. Participants were also asked to minimize
blinking and facial movements during the exercise to avoid
artifacts in the EEG signal.

The blocks of trials were named as follows: early block (trials
from 6 to 10), middle block (trials from 11 to 15), and late
block (trials from 15 to 20). In Figure 5 we can see all the steps
that were involved in the processing of audio and EEG data.
First, audio and EEG data were processed separately to extract
meaningful descriptors. Posterior EEG and audio analysis allows
us to study changes over time and between groups. Finally, the
correlation analysis allows us to measure the correlation between
sound quality features and EEG features.We also did a behavioral
analysis to study participants’ learning patterns, i.e., number of
times they consulted the learning materials. The total duration
of the experiment was approximately 45 min. The first block of
trials, where both groups of beginners did not have the option to
rewatch instructional videos or offline feedback from the SQVFS,
was used as a baseline to compute the amount of change in both
sound quality and EEG waves around the rest of blocks. From
the early block on, BF and BNF had the option to rewatch both
instructional and/or reference expert videos as many times as
they wanted for the rest the trials. In addition, the BF group
had the opportunity to receive offline feedback from the SQVFS
visualizing the dynamic stability, pitch stability and aperiodicity
scores of their performance for each trial. The number of

times a participant requested the learning materials were
also recorded.

2.3.1. Extraction of Audio Features

Violin sounds generated by participants were recorded for each
trial with a sampling rate (SR) of 44,100 samples. The Yin
algorithm was used to extract sound descriptors from the audio
signal of each trial using a windows size of 33 ms and a hop
size of 0.7 ms. Three different parameters were computed for
each window: instantaneous power, fundamental frequency (f0)
in cents (reference: 440) and aperiodicity. The quality of the
sound recorded in one trial may be assessed through sound
descriptors such as dynamic stability (see 1) or pitch stability (see
2) by computing the standard deviation of both f0 and power
throughout the trial (Romaní et al., 2015). Aperiodicity was also
included as a descriptor (details about how aperiodic power is
computed can be found in De Cheveigne and Kawahara, 2002).
See Equations (1–3) for a formal definition of these descriptors.

dynamicStability =
1

√

1
N

∑N
i=1(pi − µ)2

(1)

pitchStability =
1

√

1
N

∑N
i=1(f 0i − µ)2

(2)

aperiodicity =
aperiodicPower

totalPower
(3)

First, the values of pitch stability and dynamic stability
were inverted and renamed pitch instability and dynamic
instability, respectively. After that, the values of aperiodicity
were standardized together with pitch instability and dynamic
instability by mean subtraction and averaged for each trial.
The descriptor resulting from this process was called Sound
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FIGURE 3 | Instructional videos on stance, violin position, straight bow geometry and bow grip were collected from Violinmasterclass.com.

instability. In order to check the utility of using aperiodicity,
we computed Sound instability in two different ways: one
including aperiodicity, and the other not including it. Audio
features’ discriminability between beginner and expert players
was investigated by computing the information gain for each
feature [the Gain Attribute Evaluation (IGAE) implementation in
Weka (Witten et al., 2016) was used to rank the features] over the
first five trials (before receiving any kind of external feedback).

2.3.2. EEG Power Computation
For each subject and each single-trial, the power spectral
density (PSD) was computed from activity in each electrode
using Welch’s overlapped segment averaging estimator using
a window size of 2 s. Four frequency bands were extracted
corresponding to theta (4–8 Hz), alpha (8–13 Hz), beta (13–24
Hz), and gamma (30–50 Hz). Changes in the EEG signal were
computed in the form of event-related desynchronization (ERD)
or an event-related synchronization (ERS). In the ERD/ERS
equation (see 4) the baselineIntervalBandPower corresponds to

the PSD computed during the first block of five trials while
testIntervalBandPower corresponds to the PSD computed for
each other block.

ERD/ERS(%) =
baselineIntervalBandPower − testIntervalBandPower

testIntervalBandPower
∗100

(4)
Outliers were removed for each trial using the modified Z-score
equation (see 5) to label as potential outliers those modified Z-
scores with an absolute value greater than 3.5 as Iglewicz and
Hoaglin (1993) recommend.

Mi =
0.6745(xi − x̃)

median(|xi − x̃|)
(5)

Where x̃ denotes the median, i.e., the denominator is the median
absolute deviation (MAD).

Electrodes were grouped and averaged into different clusters:
frontal (AF3, F7, F3, FC5, FC6, F4, F8, AF4), midfrontal (F3,F4),
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left frontal (AF3, F7, F3, FC5), right frontal (FC6, F4, F8, AF4),
posterior (P7, O1, O2, P8), left posterior (P7,O1), right posterior
(O2,P8) occipital (O1, O2), left parietal (P7), right parietal (P8),
temporal (T7,T8), left temporal (T7), right temporal (T8). The
different frequency bands for each cluster formed the initial
amount of features for each group of participants. Information
gain was computed for each feature over the first five trials to
find those features that discriminate better between beginners
and experts.

3. RESULTS

3.1. Audio Analysis
The results of IGAE ranked the Sound instability descriptor
which included aperiodicity as the most important one to
differentiate between beginners and experts with a value of 0.668.
It was followed by pitch instability with 0.599; dynamic instability

FIGURE 4 | Setup of the experiment. EEG data and audio data from the

participant are processed separately in different computers that are

communicated through OSC. The experimenter controlled the display of

instructional videos (including the reference expert video) for both BNF and BF

groups and sound quality visual feedback for the BF group.

with 0.577; Sound instability without aperiodicity with 0.549 and
aperiodicity with 0.514. A Shapiro-Wilk test for normality was
performed on the data showing significant results leading us to
use non-parametric statistical tests. A Wilcoxon rank-sum test
was performed for each audio descriptor comparing experts and
beginners showing significant results (p < 0.00001 for all the
descriptors). Beginners showed higher values than experts, i.e.,
beginners produced more unstable sound (see Figure 6).

Percentage changes of Sound instability were computed for
each block and for each group using the first block as a baseline.
After adjusting the p-value for three tests using the Bonferroni
method, significant changes through blocks were found for both
beginners groups but not for the experts (Wilcoxon sign-rank
test, BNF: p = 0.00001; BF: p = 0.000005; EG: p = 0.1396).
In order to detect differences between the blocks, three more
Friedman’s tests were performed, one for each group. Only the
BF group showed significant results (p = 0.0011). On average,
the BF group showed a higher amount of change between the
three blocks comparedwith the BNF group together with a higher
variability especially during the Middle and Late period (see
Figure 7). At the end of the session and during the Last period
(trials 16–20), the BF group showed, on average, 200% percent
more than the BNF group on the scores of Sound instability
together with a standard deviation 4.7 times higher., although
This difference was not found to be significant (Wilcoxon rank-
sum test: p = 0.2973).

3.2. EEG Analysis
The results of IGAE ranked beta and gamma band power at
frontal sites as the most important features to discriminate
between beginners and experts with a value of 0.01931 and
0.01905, respectively, followed by gamma band power at
posterior sites with 0.00828; right frontal beta with 0.00811; right
frontal gammawith 0.00562; left frontal gammawith 0.00424; left
posterior gamma and beta with 0.00297 and 0.00269, respectively.

A Shapiro-Wilk test for normality was performed in the
distributions of each group showing significant results leading
us again to use non-parametric statistical tests. Eight Wilcoxon
rank-sum tests were performed for each feature comparing

FIGURE 5 | EEG and audio raw data from each participant and each trial were processed separately to extract meaningful descriptors that were used to analyze

changes over time and between groups together with correlations.
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FIGURE 6 | Median and standard deviation of each audio descriptor during the first block (5 trials). Both groups of beginners are represented together. As expected,

descriptors show how the sound of beginners is more unstable than the one of experts.

FIGURE 7 | Porcentual changes of each experimental group across blocks on

Sound instability scores. Both beginners groups showed significant differences

compared with the baseline but only the BF group showed significant

differences between blocks.

experts and beginners adjusting the p-value with Bonferroni
correction. Only beta and gamma band power at frontal sites
showed significant results (p < 0.00001 both). Figure 8 shows the
differences in beta and gamma band power between beginners
and experts. On average, Beginners showed an amount of 190%
more of power than experts in the beta band and a 16% more in
the gamma band.

ERD/ERS was computed for the rest of the blocks using the
first block as a baseline. AWilcoxon sign-rank test was performed
for each cluster and frequency band to determine those sensor
clusters and frequency bands where variations occurred through

FIGURE 8 | Beta and gamma band power measured at frontal sites during the

first block (5 trials). Beginners are represented in blue and experts in yellow.

Experts exhibited significant lesser values of frontal gamma band power when

compared with beginners at both frequency bands.

the rest of blocks. The p-value threshold chosen after the
Bonferroni correction for 156 tests was p < 0.00032. Results
showed an overall desynchronization of gamma band across the
scalp for all the experimental groups and all the blocks with
certain differences between them. Significant desynchronizations
were obtained for gamma band at frontal electrodes in
both groups of beginners (see Figure 9) but not for experts
(p < 0.00032). Significant desynchronizations for gamma band
were also found at right parietal and left temporal in all
the groups including experts. Only the expert group showed
significant changes at the right temporal cluster reflecting a
synchronization of beta band.
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FIGURE 9 | Upper left Figure: Frontal gamma ERD measured at each block using first five trials as baseline. Only the BNF and BF group showed a significant

desynchronization through the experiment. Desynchronization of the BNF group was significantly higher than the one of the BF group. Upper right Figure: Here we

can see the results for right parietal gamma ERD. Only the EG group showed a significant desynchronization through the experiment. Bottom left Figure: Left

temporal gamma ERD. All the groups showed significant desynchronizations through the experiment. Bottom right Figure: Right temporal beta band ERD. Only the

EG group showed a significant synchronization through the experiment.

Significant results were found when comparing the amount of
desynchronization at frontal sites of the BNF groupwith the BF (p
= 0.057) andwith the EG(p= 0.025). Beta synchronization found
at the right temporal cluster in experts showed significant results
when comparing it with the BNF group (p = 0.000041) and with
the BF group (p= 0.0149). In order to detect differences between
the blocks, three more Friedman’s tests were performed, one for
each group. No significant changes were found in the amount of
ERD/ERS between blocks.

3.3. Correlation Analysis
Four Pearson’s correlations were performed in total. Four of them
between each one of the four frequency bands filtered (theta,
alpha, beta, gamma) from frontal electrodes and Sound instability
across the whole session. After adjusting the p-value for four
statistical tests results showed only one statistically significant
linear correlation at gamma band (R2 = 0.70, p = 0.00001). In
Figure 10 Sound instability results averaged for each trial for both
beginners and expert groups can be seen in comparison with the
averaged gamma band power at frontal electrodes obtained for
each trial.

3.4. Behavioral Analysis
The number of times each participant requested each learning
material (instructional videos, reference video or their score
evaluated with audio descriptors) was recorded and compared

between the two different beginners groups (BF and BNF).
A Shapiro-Wilk test for normality was performed in the
distributions of the number of times each group requested a
learning material showing significant results for the BNF group.
Two statistical tests were performed in total adjusting the p-value
with Bonferroni correction (p = 0.016). Two Mann-Whitney U-
test were performed to find differences between both beginners
group (BF + BNF) in each one of the distributions. No significant
differences were found, although results show some different
tendencies in terms of the number of reference video requests
(p = 0.0203). On average, the BF group requested the reference
video 25.8% more times than the BNF group. In Figure 11, we
can see the differences found in each distribution for each group.
The BF group also had the possibility to request the audio-
based automatic evaluation of their performance produced by
the system. A paired sampled t-test was performed between the
number of times the BF group requested the reference video with
the number of times they requested the audio evaluation. No
significant differences were found (p= 0.37).

4. DISCUSSION

In this work, we have used audio features like pitch stability
and dynamic stability to measure sound quality as has been
done in previously related work (Romaní et al., 2015; Giraldo
et al., 2018). We have found that the aperiodicity measure
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FIGURE 10 | Upper Figure: Frontal gamma band power seen in comparison

with the Sound instability scores of both beginners groups. Bottom Figure:

Frontal gamma band power seen in comparison with the Sound instability

scores of the expert group.

FIGURE 11 | Number of times each group of beginners requested learning

materials during the experiment.

is also a reliable indicator and offers extra information not
found in the rest of descriptors. However, in this work we
have not only shown how these descriptors could be useful
to discriminate between those sounds performed in the violin
by experts and beginners (i.e., a good or bad sound) but, in
addition, we have used them to track the amount of learning of 18
participants, with no prior experience neither with the violin nor
any bowed-string instrument, during 20 trials while learning to
produce a stable and sustained sound in an open string. Allowing
us to study objectively the impact of feedback technologies
in the process of learning to produce a good sound with
the violin.

The visual feedback considered in this study consisted of
a sound quality indicator computed using audio descriptors
extracted from the audio produced by participants. The feedback
was presented offline to participants in the form of a graph where
the sound quality of the last trial was shown relative to the
previous ones. They could also compare their performance to that
of an expert participant who previously did the experiment. We
referred to this type of technology a sound quality visual feedback
system (SQVFS).

At the end of the session, both groups of participants
improved significantly their scores with the exception of the
expert group. However, only participants who received feedback
from the SQVFS improved their results between the different
blocks in which the session was composed while the results of
the rest of participants remained stable after the Early block.
Nonetheless, no significant differences were found at the end of
the session regarding the amount of improvement due to the
fact that they also showed a higher variability during the last
two blocks.

We hypothesize that the reason for the found variability
during the last two blocks is that feedback encouraged
participants to experiment with new ways of producing sound.
After reaching a certain threshold of sound quality, the
produced sound of participants starts to stabilize and requires
experimentation in order to reach the quality of the one produced
by an expert. Without the presence of feedback (like the one
given by an SQVFS in this case) participants may find hard to
detect by themselves how far their sound is from the one of the
expert reference video. Experimenting new ways of displacing
the bow would have been the only way for them to check if it
led to an improvement in the results of the descriptors or not.
Some participants would have improved their results while others
may have tried different strategies without success reflecting thus,
the greater variability seen in the results. This hypothesis is
also supported by the results found in the behavioral analysis.
Participants who received feedback from the SQVF requested, on
average, a bigger number of times the reference video than the
group without feedback, reflecting, in our opinion, bigger efforts
to analyze the sound and technique from the video in order to
replicate it in their own performance.

Regarding the electrophysiological analysis, we found beta
and gamma band power at frontal sites to be the best features
to discriminate between beginners and experts during the first
block of the experiment. Beginners showed significantly higher
activity of those bands than experts. No changes were found
at the theta band as the neural efficiency hypothesis may have
predicted (Klimesch et al., 1997; Bazanova and Aftanas, 2006)
although changes found at beta and gamma bands are consistent
with those found by Gutierrez and Ramírez-Moreno (2016) and
with the temporal binding model (Bhattacharya et al., 2001;
Howard et al., 2003; Fitzgibbon et al., 2004). Differences may
be related to the way the EEG data was acquired and the type
of task. In previous work (Salazar et al., 1990; Landers et al.,
1994; Haufler et al., 2000), the effect of expertise in sports activity
is measured using EEG signals during what is called the “pre-
shot routine”, which is recorded just before the skilled movement
occurs. Tasks like learning to type in a different keyboard
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layout as Gutierrez and Ramírez-Moreno (2016) studied or
maintaining a stable sound with the violin during a period
of time, require measuring the electrophysiological signals not
before but, during the realization of the movement. The location
of the electrodes in this experiment was also different due to
hardware limitations of the Emotiv Epoc device with a more
frontal density of electrodes and less density at parietal and
central areas.

In fact, Gutierrez and Ramírez-Moreno (2016) found
desynchronizations at both beta and gamma bands as
participants started to learn the tasks. In our study, we also
found desynchronizations across blocks in the gamma band at
frontal sites that showed some degree of correlation with task
improvement. The expert group, who did not show significant
improvement along the session, neither exhibited significant
desynchronizations at frontal gamma band as both groups
of beginners did. This results may be interpreted from the
temporal binding model which associates gamma band with
the role of integrating (binding) information processed in
distributed cortical areas. Task complexity demands more
cognitive resources, more binding and thus, gamma band power
enhancement, which may be reduced as the demanded task
begins to be automated which could have been the case of both
beginners groups.

We also found significant differences between the amount
of gamma band desynchronization among beginners groups.
On average, the BNF group showed higher desynchronizations
than the BF group. This results may also be explained by
our experimentation hypothesis. We hypothesize that the lower
desynchronizations found at the BF group could reflect the
higher efforts made during the task trying to achieve the expert
score in the SQVF.

EG showed very clear localized gamma band
desynchronizations at right parietal and left temporal sites
and beta band synchronizations at right temporal area. Both
groups of beginners also showed significant desynchronizations
at the left temporal cluster, however, desynchronizations of the
gamma band at right parietal and synchronizations at right
temporal were exclusive from experts. This may indicate the
use of different strategies when performing the task and maybe,
a good reliable indicator to discriminate between beginners
and experts. This could be exploited as a future neurofeedback
protocol for violin students. Although the limited number
of electrodes of the Emotiv Epoc prevents a deeper analysis
of the results, its low cost and easy setup make it a good
candidate to be used in educational environments or as a
neurofeedback system.

In contrast with most part of the previous research that
has studied the use of technology to provide different kinds
of feedback to improve learning (Thorpe, 2002; Welch et al.,
2004; Wilson et al., 2008; Van Der Linden et al., 2011;
Wang et al., 2012; Leong and Cheng, 2014; Schlegel and
Gregory Springer, 2018), we did not found statistical differences
between the amount of improvement at the end of the task
between the BF and the BNF group. However, behavioral
differences found among the BF group could be the result
of an increment of the conscious awareness of their own

performance as suggested by Hamond (2017). It is important
also to highlight that the demanded task and the feedback
provided in this study differs widely compared with previous
work which mainly studies pitch accuracy and uses real-time
feedback. The amount of time could also have been insufficient
considering that some previous research with novice violinists
used up to six sessions (40 min. each) within a period of 8 days
(Van Der Linden et al., 2011).

One limitation of the present study is the lack of qualitative
analysis that could have been collected at the end of the
experiment to explore the degree of effort and implication that
participants deposited in the task and how much they valued the
use of an SQVFS during their practice. However, questionnaires
also have their limitations and behavioral results like the ones we
showedmay offer us the possibility to infer howmuch they valued
the SQVF by considering the number of times they requested it.

This research could have benefited from optical motion
capture techniques and gesture analysis as has been done before
(Ng and Nesi, 2008; Schoonderwaldt and Demoucron, 2009;
Deutsch, 2011). Tracking with more detail bow movements
of participants along the session would have allowed us to
study with more detail the amount and type of bow movement
experimentation. A higher number of electrodes in the EEG
would have also been beneficial since it would have allowed us
to study changes at central sensorimotor areas and thus, to see
clearly if the results still coincide with those found by Gutierrez
and Ramírez-Moreno (2016).

As motivation seems to be an important variable to take
into account when evaluating learning processes (Elwell and
Grindley, 1938), future work could address optimal ways to
measure it. Different experimental designs may be proposed to
test motivation, for example allowing participants to do as many
trials as they want and to stop whenever they want. If a significant
difference on the time spent learning is found between groups
(technology and no-technology groups), this would indicate that
the motivation offered by this kind of tools may be considered
to be an important factor on the learning process. EEG data
collected from participants could also be a reliable indicator
to measure differences among participants and how cognitive
load or boredom may influence their decision to stop the task
and leave.

Finally, another important limitation of the study is the
small number of participants involved, although results obtained
seem promising. It is also important to take into account
that both beginner groups consisted of musicians due to their
greater accessibility on the campus. Although we hypothesize
that this type of task could have been performed similarly
by both non-musicians and musicians (given that beginner
participants had no experience in violin or related instruments),
it is known that musicians show different patterns of brain
activation than non-musicians in a wide variety of tasks
(Bhattacharya et al., 2001; Sokolov et al., 2004; Gurtubay et al.,
2006; Shahin et al., 2008; Trainor et al., 2009). This means that
we may found different electrophysiological results with non-
musicians than those founds with musicians. Future work is
needed to investigate if the results of this study replicate in
different contexts.

Frontiers in Psychology | www.frontiersin.org 12 February 2019 | Volume 10 | Article 165

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Blanco and Ramirez Evaluation of a SQVFS

5. CONCLUSIONS

In this work, we have studied the effects of an SQVFS in
violin beginner students while learning to produce a stable
sound using the bow. A group of experts was included in the
study as reference. Experts did not show improvement along
the session, while both groups of beginners did. In particular,

only the BF group (beginners with SQVF) showed improvement
through the Middle and Late blocks of the session while the
BNF group (beginners without SQVF) stabilized their results
after the Early block. We hypothesize that SQVF increased

the awareness of participants about how far they were from

an expert performance, leading them to experiment more
with the instrument and getting more involved in the task.

The BF group also requested the reference video more times
compared with BNF.

Higher values of gamma and beta band power were found
at frontal sites of both BNF and BF group when compared
with EG during the first block. However, only beginners showed

significant gamma band desynchronizations across blocks that
showed some correlation with the amount of improvement
in the task. This leads us to propose gamma band as a
potential biomarker of motor learning similarly to Gutierrez
and Ramírez-Moreno (2016). Task complexity demands more
cognitive resources, more binding and thus, gamma band power
enhancement, which may be reduced as the demanded task
begins to be automated as could be the case found of both
beginners groups. Nonetheless, the BNF group showed a higher
amount of desynchronization than the BF group. This results
could also be interpreted from our experimentation hypothesis

as lower desynchronizations found at the BF group could
reflect higher efforts made during the task trying to achieve the
expert score.
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