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Computer adaptive testing (CAT) has been shown to shorten the test length and increase

the precision of latent trait estimates. Oftentimes, test takers are asked to respond to

several items that are related to the same passage. The purpose of this study is to explore

three CAT item selection techniques for items of the same passages and to provide

recommendations and guidance for item selection methods that yield better latent trait

estimates. Using simulation, the study compared three models in CAT item selection

with passages: (a) the testlet-effect model (T); (b) the passage model (P); and (c) the

unidimensional IRT model (U). For the T model, the bifactor model with testlet-effect or

constrained multidimensional IRT model was applied. For each of the three models, three

procedures were applied: (a) no item exposure control; (b) item exposure control of rate

0.2 ; and (c) item exposure control of rate 1. It was found that the testlet-effect model

performed better than passage or unidimensional models. The P and U models tended

to overestimate the precision of the theta or latent trait estimates.

Keywords: CAT, item response theory, multidimensional item response theory, MLE, IRT, MIRT, testlet-effect,

passages

INTRODUCTION

In Reading, Mathematics, Listening, and English tests, students are often asked to respond to
several items related to a common stimulus. Information used to answer these items is interrelated
in the passage. These kinds of assessments are known to be likely to produce local item dependence
(LID). Oftentimes, for simplicity, the related items are scored independently or are summed as one
score. Yen (1993) points out two negative measurement effects of ignoring LID in standard item
response theory (IRT) parameter estimation and scoring, namely overestimation of the precision
of prociency estimates and bias in discrimination parameter estimates.

A testlet can be created by combining the set of inter-related items. For dichotomous scored
items, testlet effect has been modeled to include a random testlet effect by modifying the two
parameter model (testlet-effect-2PL; Bradlow et al., 1999) and the three-parameter model (testlet-
effect-3PL; Waniner et al., 2000), Rasch model (testlet-effect-Rasch; Wang and Wilson, 2005).
DeMars (2006) applied the Bi-Factor multidimensional three-parameter logistic (M-3PL) IRT
model to the testlet-based test. The testlet-effect-3Pl model is a constrained M-3Pl model in
parameter estimation and ability estimation. These models were applied to tests of traditional paper
and pencil format.
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Computer adaptive testing (CAT) has the advantages of
increasing the measurement precision; after each item selection,
the examinee’s ability is updated and the next selected item will
maximally improve the accuracy for this estimated examinee.
Testing companies administrate items of passages for content
areas such as Reading and Paragraph Comprehension. There
are usually two methods in CAT item selection. One method
is to use the unidimensional IRT (UIRT) CAT item selection
method and treat each item as independent; even though the
items in the passage are dependent. The other method is to select
the passage with the maximum information or the minimum
error variance and to have the items in the passages be all
administrated or partially administrated; the information for
the passage is the sum of the informations for all the items in
the passage.

Murphy et al. (2010) studied and compared the 3PL IRT and
3PL TRT (testlet response theory) item selection methods, and
found that they performed similarly. However, the information
for the passage is computed based on the sum of item information
under the 3PL IRTmodel, and item dependency is ignored during
item selection. Models taking into account the item dependency
in item selection for CAT have not been studied.

This study used simulation and compared three models
in CAT item selection: (a) the testlet-effect model (T); (b)
the passage model(P); and (c) the unidimensional IRT model
(U). The newly proposed T model for CAT is compared with
two commonly used P and U models. For the T model, the
bifactor model (M-3PL) with testlet-effect was applied. The
information for each testlet was computed based onM-3Pl model
and was used as the item selection criteria. For the P model,
the information for the passage was computed based on the
sum of item information under the 3PL IRT model, and item
dependency was ignored during item selection; this is similar to
the TRT model in Murphy et al. (2010). For the U model, the
regular 3PL model was applied and the information for each item
was used as the item selection criteria.

For each of the three models, three procedures were applied:
(a) no item exposure control; (b) item exposure control of rate 0.2
using priority indexmethod; and (c) item exposure control of rate
1 using priority index method. Priority Index (PI) is a method
that puts probability or weight on each item in the pool after each
item selection.

Various item selection criteria have been proposed and
studied. Murphy et al. (2010) has applied MFI (maximum
information), MPWI (maximum the posterior weighted
information), and MEPV (minimum the expected posterior
variance); they found no or little difference among these. For
both MPWI and MEPV, integral or weighted summation would
require much longer computation time for multidimensional
models (T model here). Other methods such as Kullback-Leibler
information (Chang and Ying, 1996; Veldkamp and van der
Linden, 2002) and Volume (Segall, 1996) methods have been
studied and compared in the MIRT frame work (Yao, 2012). The
testlet-effect model in this paper was a constrained MIRT model
with 39 dimensions. Thus, only the maximum information item
selection criteria was applied, as other methods would require
much longer computer time.

Multidimensional Models and
TestLet-Effect Models
For a dichotomous scored or multiple choice item j, the
probability of a correct response to item j for an examinee
with ability Eθi = (θi1, · · · , θiD), following the multidimensional
three-parameter logistic (M-3PL; Reckase, 1997, 2009) model is
defined as:

Pij1 = P(xij = 1 | Eθi, Eβj) = β3j +
1− β3j

1+ e(−
Eβ2j⊙EθTi +β1j)

, (1)

where xij = 0 or 1 is the response of examinee i to item j.
Eβ2j = (β2j1, · · · ,β2jD) is a vector of dimension D for item
discrimination parameters. β1j is the scale difficulty parameter.
β3j is the scale guessing parameter. Here the dot product is

defined as Eβ2j ⊙ EθTi =
∑D

l=1 β2jlθil. The parameters for the jth

item are Eβj = ( Eβ2j,β1j,β3j).
For a polytomous scored or a constructed response item j, the

probability of a response k − 1 to item j for an examinee with
ability Eθi is given by the multi-dimensional version of the partial
credit model (M-2PPC; Yao and Schwarz, 2006) :

Pijk = P(xij = k− 1 | Eθi, Eβj) =
e(k−1) Eβ2j⊙EθTi −

∑k
t=1 βδt j

∑Kj

m=1 e
((m−1) Eβ2j⊙EθTi −

∑m
t=1 βδt j)

,

(2)
where xij = 0, · · · ,Kj − 1 is the response of examinee i to

item j. Eβ2j = (β2j1, · · · ,β2jD) is a vector of dimension D for
item discrimination parameters. βδkj for k = 1, 2, . . . ,Kj are the
threshold parameters or Alpha parameters, βδ1j = 0, andKj is the
number of response categories for the jth item. The parameters
for the jth item are Eβj = ( Eβ2j,βδ2j, . . . ,βδKj j

).

Testlet-effect-2PPC/3PL model is a constrained M-2PPC/3PL
model. This model essentially puts a constraint on the
discrimination parameter within each testlet or cluster of inter-
related items in a form of a constant. The discrimination
parameter varies across testlets to account for the testlet effect.
Suppose there are D− 1 testlets for a test. Then the model can be
D dimensional IRTmodel, and the discrimination parameters are

Eβ2j = (β2j1,β2j1γ1,β2j1γ2, · · · ,β2j1γD−1) (3)

where γ = (γ1, · · · , γD−1) are the variances of the testlet-
effect parameters for the D − 1 testlets. Within each testlet,
the ratio of the item general discrimination (β2j1) and the item
testlet-effect discrimination is a constant, namely testlet-effect
parameter γk, where k ∈ {1, · · · ,D − 1}. The other item
parameters (item difficulty/guessing or threshold) remain the
same as the general MIRT model. For a testlet-effect model based
on a common stimulus, each item belongs to only one testlet, i.e.,
the discrimination parameters for item j is (β2j1,β2j1γδj ), where
δj ∈ {1, 2, · · · ,D−1}. As in Li et al. (2006) or DeMars (2006), the
formulas presented here are consistent with those found in the
existing testlet models by Wainer et al. (2007). For item j in kth
testlet-effect,

Eβ2j ⊙ EθTi = β2j1θi1 + β2j1γkθik, (4)
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and γkθik ∼ N(0, γ 2
k
).

Unidimensional model is a special case of the
multidimensional model where the dimension D is 1.

SIMULATION STUDY

Themodels introduced above were used for the simulation study.
Item parameters introduced are unknown at the beginning;
generally, a try out or a field test is conducted to collect
responses from test-takers and the item parameters would then
be estimated by an existing software. For CAT, item parameters in
the pool should be known. Two set of item parameters are derived
as described below using the real responses from test-takers
taking paper and pencil format test.

Item Pool
Two sets of item pools were derived from BMIRT (Yao, 2003),
based on real data listening assessments; there were 100 items
with 38 testlets and 16 single items with 5000 examinees. Most
of the testlets had two items, with some having 3 or 4 items.
There were 16 items that were independent from each other
and from others. The testlet-effect model of 39 dimensions and
the unidimensional IRT models were applied to the data. The
38 estimated testlet-effect parameters varied from 0.05 to 0.7.
Item Pool One had 100 testlte-effect item parameters. Item Pool
Two had 100 UIRT item parameters. The two models fit the
data equally well. The correlations between the estimates for
the two models for the discrimination, difficulty, and guessing
parameters were 0.97, 0.99, and 0.91, respectively; the first
discrimination was used for the testlet-effect model. The AICs
were 501917 and 527192 for the UIRT model and the testlet
model, respectively. The chi-square difference between the two
models was 1.78, which was considered as not significant.

Pool One had 100 items with item parameters of 39
dimensions following the testlet-effect model and was used for
T model selection method. Pool Two had 100 items with item
parameters of the unidimensional 3PL model and was used for
U model selection. Pool Two was also used for the P model
selection method.

The Priority Index for Item Exposure
Control
The multidimensional priority index (MPI, Cheng and Chang,
2009; Yao, 2013) for each item j is defined by

MPIj =

D
∏

l=1

f
cjl
jl
, (5)

where the constraint matrix C = (cjl)J×D, indicating the loading
information for item j on domain l, is defined as the following:

cjl =

{

1 if item j load on domain l
0 otherwise

}

For the jth item, let rj denote its exposure rate. For each selection
step, let nj be the number of examinees that have already selected

item j. The index for the item exposure control is defined by (van
der Linden and Veldkamp, 2004, 2007; Yao, 2013)

fjl = max{
rj −

nj
N

rj
, 0}, (6)

where N is the total number of examinees. This index will make
sure that no item is selected with exposure rate larger than
the predefined rate Er = (r1, · · · , rJ). At the beginning of item
selection, the weight or the probability of being selected for the
item is high. If the item is administrated, then the weight or the
probability for the item is smaller, until it reaches 0, then this item
will not be selected anymore.

For the testlet-effect model and the passage selection model,
there were only 54(38 + 16) passages or items in the pool. Thus,
for 2,000 examinees, item exposure rate of 0.2 would result in
no items being selected if all the item priority index were 0 after
reaching exposure rate. Therefore, a modification was made after
all items had reached exposure rate; the probability was reset for
each item in the pool; although a higher exposure rate could be
applied to avoid this problem.

Three methods were used for item exposure control in this
study: no item exposure control and exposure rate of 0.2 and 1
using the Priority Index.

True Abilities
For this simulation, 2,000 examinees (true abilities) were sampled
from the standard multivariate normal distribution of dimension
39; these examinees were used for the T model. For the P and the
U model, the first/general ability was used.

CAT Item Selection Methods
For all item selection methods, the first item or passage was
randomly selected from the top 20, and the second item or
passage was randomly selected from the top 10. There were
three types of models for the item selection methods: the testlet-
effect model, the unidimensional passage based model, and the
unidimensional IRT based model. Maximum information was
used as the criteria for all methods. MAP ability estimates were
used to update ability after each item or passage selection. Testlet
lengths of 10, 20, and 30 were specified. For the testlet-effect
model and the passage selectionmodels, if all items in the selected
testlet or passage were administered, then the actual number of
items selected for each examine might have been slightly higher
than 10, 20 or 30, because the last selected passage may have had
multiple items. Therefore, three methods for selecting items with
passages were proposed in this study (for both T and P methods):
(1) M1: select all items in the passage until the fixed test length
is reached; (2) M2: select all items in the selected passages except
the last selected passage—the items in the passage are partially
or all selected until the fixed test length is reached; (3) M3: select
partial items in the passage and stop the selection if the fixed test
length is reached. So for method M1, the test length might have
been longer than the fixed test length, but methods M2 and M3
had the fixed test length.

The item selection procedures are briefly described below. For
all the procedures, the initial abilities are set to θl = 0 for l =
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1, · · · ,D. For j = 2, · · · , J, suppose j−1 items have been selected.
To select the next jth item, suppose the updated ability is Eθ j−1. For
each of the procedures, the steps proposed are repeated. Please
note that the procedures are for both Bayesian and non-Bayesian;
for Bayesian, add 6−1 to the information.

Steps for the T Methods
1. For each passage Mp in the pool (including single items),

compute the information at the ability level Eθ j−1,

IMp (Eθ
j−1) =

∑

m∈Mp

(Pm1 − β3m)
2(1− Pm1)

Pm1(1− βmj)2
Eβ2m ⊗ Eβ2m

wherem ∈ Mp is for all the items in the testlet or passageMp.
2. Select the passage Mp such that IMp [0][0] has a maximum

value (among all the passages in the pool); it is the element
in the top right of the information matrix and it measures the
precision of the primary ability.

3. Rank order the items in the passageMp by their informations
and select the top np items where np = mp or np =
Math.min(3,mp/2 + 1) for selection method M1 and M3
respectively, where mp is the number of items in passage Mp.
For selection method M2, np = mp for all except the last
selected passage. The process stop if the test length reached
the maximum for method M2 and M3.

4. Update ability Eθ j based on the selected j− 1+ np items.

Steps for the P Methods

For the P method, unidimensional IRT is used. The above steps
were similarly applied; the number of dimensions is 1.

Steps for the U Methods

U model is a special case when the number of dimensions is 1;
the information function is a scalar. The steps are below:

1. For each item m in the pool, compute the information the
ability level Eθ j−1,

Imj (Eθ
j−1) =

(Pm1 − β3m)
2(1− Pm1)

Pm1(1− βmj)2
Eβ2m ⊗ Eβ2m

2. Select item j = m such that Imj (
Eθ j−1) has a maximum value

(among all the items in the pool).
3. Update ability Eθ j based on the selected j items.

For ability update and final estimates, there are five basic
estimationmethods that are used in IRT: (a)maximum likelihood
estimation (MLE; Lord, 1980, 1984), (b) Maximum a posterior
(MAP; Samejima, 1980), (c) Owen’s sequential Bayesian (OSB;
Owen, 1975), (d) expected a-posteriori (EAP; Bock, 1981), (e)
marginal maximum likelihood (MML; Bock, 1981), and (f)
weighted maximum likelihood (Warm, 1989). Owen method has
been widely used in the process of updating ability after each
item selection in unidimensional CAT; the final ability estimate
is still non Owen method such as MAP or MLE; the item order
affects Owen estimates. Owen method in updating ability is fast
and accurate, as it uses only the response for the current selected
item and previous ability update. The extension of Owen method

in updating the vector ability to the MIRT model would be so
much faster than any other methods. However, no research has
been conducted.

Studies have been conducted comparing the performance of
MAP, weighted MLE, and MLE in unidimensional IRT (Wang
and Wang, 2001; Penfield and Bergeron, 2005; Sun et al., 2012).
The comparison was extended to the MIRT model in Yao
(2018); it was for a fixed length paper and pencil test. It was
found that Bayesian method MAP had larger BIAS but smaller
SE (standard error) and RMSE. WMLE and MLE had similar
results with WMLE performing slightly better than MLE; both
had smaller BIAS but larger RMSE and SE compared to MAP.
WMLE used the largest computer time in estimating ability and
MAP used the smallest computing time. For the simulated data
in this research, WMLE for ability update and estimates would
require much longer computer time. Therefore, MAP estimation
method was used.

Evaluation Criteria
Reliability, BIAS, and SE (standard error) for the abilities
were computed average over replications. They were defined as
follows: let ftrue be the value of a function obtained from true
parameter and fl be the value of a function obtained from the
estimated parameter from sample l. Here the function f can
represent ability parameters. RMSE was calculated by RMSE =
√

1
n

∑n
l=1(fl − ftrue)2, where n is the number of replications. BIAS

was defined by BIAS =| ftrue − f |, where f = 1
n

∑n
l=1 fl was

the final estimate. Standard error SE was calculated by SE =
√

1
n

∑n
l=1(fl − f )2. Standard error of measurement for content

domain l was calculated by SEMl =
√

EαlI
−1EαT

l
, where Eαl =

(0, · · · , 1, 0, · · · ) has 1 in the lth element. For Bayesian method,
replace I−1 with (I + 6−1)−1. Here I is the information for the
test at the estimated abilities. The reliability is the square of the
correlations between the estimates and the true values.

Item usage and test overlap rate were computed to evaluate
the item pool usage. Test overlap rate is the expected number of
common items encountered by two randomly selected examinees
divided by the expected test length. It can be derived below:

Overlap =

∑T
j=1 countj(countj − 1)

J(N(N − 1))
. (7)

If the exposure rate of an item is bigger than 0.2, then it is defined
as overexposed. If the exposure rate of an item is smaller than
0.02, then it is defined as underexposed.

RESULTS

Figures 1–3 shows the reliability, BIAS, empirical SE, and SEM
for test length of 10, 20, and 30 for all 9 procedures for the general
ability (the first dimension) for methods M1-M3, respectively.
The U methods had the smallest SE; the standard errors under
the IRT model were overly optimistic. This finding is consistent
with previous research (Yen, 1984; Sireci et al., 1991; Wainer and
Thissen, 1996; Wainer et al., 2007; Murphy et al., 2010). The U
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FIGURE 1 | Reliability, BIAS, empirical SE, and SEM for test length of 10, 20, and 30 for all 9 procedures for selection method M1.

FIGURE 2 | Reliability, BIAS, empirical SE, and SEM for test length of 10, 20, and 30 for all 9 procedures for selection method M2.

models tend to overestimate the precision of the theta estimates
when the dependency of items is ignored. For M1, the T model is
the best in reliability, BIAS, and SEM; the T and P models may
have longer test length than U for M1. However, for M2 and
M3, T and P had the same test fixed test length as U. For both
M2 and M3, the T model also had the best reliability, BIAS, and

SEM. The P model had the smallest reliability and larger BIAS
and SEM compared to the T; the dependency of items for the P
model was ignored. The P model performed the worst. For the
T model, compared to M2, M3 had slightly higher reliability and
smaller SE, although the difference was not significant. For M2
and M3, the results for the T and P for the three item exposure
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FIGURE 3 | Reliability, BIAS, empirical SE, and SEM for test length of 10, 20, and 30 for all 9 procedures for selection method M3: Note about the x-axis for the 9

procedures: 1, Testlet model; 2, Testlet model with 0.2 as item exposure rate using PI; 3, Testlet model with 1.0 as item exposure rate using PI; 4, Passage model; 5,

Passage model with 0.2 as item exposure rate using PI; 6, Passage model with 1.0 as item exposure rate using PI; 7, UIRT model; 8, UIRT model with 0.2 as item

exposure rate using PI; 9, UIRT model with 1.0 as item exposure rate using PI.

FIGURE 4 | BIAS against true ability for three item selection methods T, P, and U, with no item exposure control for test length of 30 for method M2.

control were similar; this was not surprising, as there were only
38 passages and 16 single items in the pool to be selected. For the
U model, the item exposure control had an effect, as there were
100 items to be selected in the pool.

Figure 4 shows the BIAS against true ability for the three item
selection methods T, P, and U, with no item exposure control for
test length of 30 forM2. It can be seen that T had smaller BIAS for
most of the abilities than the P and U models. To see the bias in
detail, the 2,000 true abilities were classified into four categories
with their means for each category computed; the means for the
true ability, BIAS and SEM for each category were computed.
Table 1 displays the results. For all four categories, the T model
had the smallest BIAS and SEM. Table 2 shows the percentage

of misclassification rate for the three models T, P, and U. The
second column is the category based on the true ability values
and the last column is the percentage of misclassification based
on the estimated values from the models; for the four cut points
in Table 1, there were 5 categories. The three models had similar
misclassification rates for categories 2, 3, and 4, but there were
differences for categories 1 and 5, with T performing the best.
Please also note that the T model had the smallest SEM (standard
error of measurement).

Figure 5 plots the item usage rate for the 100 items (x-axis)
for the three methods T, P, and U for conditions of item exposure
rate of 0.2 and 1, and of no exposure control for M2. For
item exposure rate of 0.2, all items were being selected and the
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TABLE 1 | True ability, BIAS, and SEM for T, P, and U methods for test length of 30 with no item exposure control.

Methods Category True Ability BIAS SEM

T 1 −1.3088 0.2398 0.1058

P 1 −1.3088 0.3859 0.3173

U 1 −1.3088 0.2351 0.3097

T 2 −0.3321 0.2174 0.0978

P 2 −0.3321 0.3338 0.3182

U 2 −0.3321 0.1908 0.2992

T 3 0.3089 0.2040 0.0926

P 3 0.3089 0.3437 0.3169

U 3 0.3089 0.1837 0.2921

T 4 1.2652 0.2098 0.1019

P 4 1.2652 0.4016 0.3185

U 4 1.2652 0.2154 0.2897

TABLE 2 | Misclassification rate for T, P, and U methods for test length of 30 with

no item exposure control.

Methods Category Percentage

T 1 2.8

P 1 3.7

U 1 3

T 2 24.55

P 2 24.45

U 2 25.15

T 3 25.25

P 3 25.25

U 3 25.25

T 4 27.55

P 4 27.55

U 4 27.55

T 5 1.1

P 5 2.4

U 5 2.6

maximum exposure rate for items was under 30% for the U
model. There were some items that were never selected including
testlets with 2 or 3 items within; the maximum exposure rate
for items was under 60%, and 85% for the T and P models,
respectively. Passage with 4 items within had a higher selected
rate, although there were some passages with 3 items within that
had a smaller usage rate. For the P model, there were more items,
compared to the T and U models, that had 0 or small item usage.

Figure 6 shows the number of selected items, the number of
over exposed items, the number of under exposed items, and the
item overlap rate for all three test lengths and 9 procedures for
M2. Over exposed items were those that had an exposure rate
higher of than 0.2; under exposed items were those that had an
exposure rate of smaller than 0.02. Overall, the P model had a
narrow range of items that were selected. The U model had the
smallest overlap rate followed closely by the T model. The T
model had a similar item overlap rate as the U model when there
was no item exposure control. For test length of 20, the T model
and the U model with no item exposure control had similar item

usage. Therefore, it is expected that with larger number of testlet
items in a pool, the T model should have as good usage of items
as the U model.

DISCUSSION

This simulation study compared three models in CAT item
selection with passages: (a) the testlet-effect model (T); (b) the
passage model(P); and (c) the unidimensional IRT model (U).
It was found that TRT (P) and IRT (U) performed similarly in
Murphy et al. (2010); however, in this study, the T and Pmethods
were more closer to each other than to the U in reliability and
BIAS; the P method here was the same method as the TRT. Both
P and U methods tended to overestimate the precision of the
theta estimates, as the dependency of items was ignored; both had
smaller SE, larger BIAS and SEM. The Tmodel, where the testlet-
effect was considered, had the best reliability and the smallest
BIAS and SEM. Moreover, the item pool usage for T models
could be as good as the U models when there were more testlet
items in a pool. Specific or a required number of single items
could be selected; this would be helpful when there are not many
testlet items. Even though 0 number of required single items were
specified in this study, the software can be adopted to handle any
input number and is free for the public to use.

Real data was used in deriving the item pools for the models.
The UIRT model and the testlet-effect model fit the real data
equally well so the comparison between different CAT item
selection methods from different models make sense. In real
practice, if the UIRT model fits the model the best, then
the testlet-effect is not strong, and the UIRT model should
be used. Many testing companies still use the U model—for
example, the CAT ASVABmilitary test for content PC(Paragraph
Comprehension). The U model is studied here as the baseline. If
the testlet-effect model fits the data the best, then it is expected
that the testlet-effect model for CAT(T) would be much better
than the UIRT model (U) or the passage (P) model. Future
study varying the degree of testlet-effect and comparing the
performance of T andU and othermethods should be conducted;
for example, treating items in a testlet as a polytomously
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FIGURE 5 | Item usage rate for the three methods T, P, and U for conditions of item exposure rate of 0.2, 1, and no exposure control for test length of 30 for selection

method M2.

scored items modeled by the multidimensional generalized two-
parameter partial credit model (Yao and Schwarz, 2006).

For this study, the number of passages in the pool was small,
therefore, different item exposure controls for both T and P
yielded similar results. For pools with larger numbers of passages,
the relative performances of T, P, and U would be similar to this
study in the case where there is no item exposure control. Overall,
the T model is recommended.

Fixed length test was used in this study for the U model and
also for the T and P models for M2 and M3. For the passage
selection method, partial items or all items in the pool could be
selected. Three methods (M1, M2, and M3) were proposed for
the T model; other selection criteria can be studied.

This research used only maximum information method
(MFI) in selecting items. Other methods such as minimum
expected posterior variance (van der Linden and Pashley, 2000),
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FIGURE 6 | Number of selected items, number of over exposed items, number of under exposed items, and Item overlap rate for all three test lengths and 9

procedures for selection method M2.

Kullback-leibler information (Chang and Ying, 1996), and
Volume (Segall, 1996) methods could be studied and compared
for T, P, and U models. Similar observations should be expected;
however, they might require longer computer time. For CAT
using the testlet-effect model, the number of dimensions is the
number of testlet plus 1. Therefore, if the number of testlet or
cluster in the item pool is larger, then the number of dimensions
is larger; other item selection methods besides MFI would be
impossible. If the number of testlet or cluster in the item pool is
small, then the number of dimensions is small. Most of the items
in the pool would be single items. Thus, the relative performance
of item selection criteria would be similar to the results as in
Yao (2012, 2013).

Other models that consider testlet-effect and content domain
information simultaneously can be proposed and studied.
Suppose there are K testlets and D + 1 content domains, with
the first dimension as the general dimension measuring general
ability, and the rest of the D dimensions are content specific
dimensions. Then the model can be D + 1 dimensional IRT

model, and the discrimination parameters are

Eβ2j = (β2j1,β2j1γ1,β2j1γ2, · · · ,β2j1γK) (8)

where γ1, · · · , γK are testlet-effect parameters for the K testlet.
Within each testlet, the ratio of the item general discrimination
(β2j1) and the item testlet-effect discriminations is a constant,
namely testlet-effect parameter γk, where k ∈ {1, · · · ,K}.
The other item parameters (item difficulty/guessing or alphas)
remain the same as the general MIRT model. The number
of dimensions and the number of testlets can be different.
When the number of dimensions is the number of testlets+1,
then it is the regular testlet model that was studied in
this paper.
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