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The role of auditory information on perceptual-motor processes has gained increased
interest in sports and psychology research in recent years. Numerous neurobiological
and behavioral studies have demonstrated the close interaction between auditory and
motor areas of the brain, and the importance of auditory information for movement
execution, control, and learning. In applied research, artificially produced acoustic
information and real-time auditory information have been implemented in sports
and rehabilitation to improve motor performance in athletes, healthy individuals, and
patients affected by neurological or movement disorders. However, this research is
scattered both across time and scientific disciplines. The aim of this paper is to
provide an overview about the interaction between movement and sound and review
the current literature regarding the effect of natural movement sounds, movement
sonification, and rhythmic auditory information in sports and motor rehabilitation. The
focus here is threefold: firstly, we provide an overview of empirical studies using
natural movement sounds and movement sonification in sports. Secondly, we review
recent clinical and applied studies using rhythmic auditory information and sonification
in rehabilitation, addressing in particular studies on Parkinson’s disease and stroke.
Thirdly, we summarize current evidence regarding the cognitive mechanisms and
neural correlates underlying the processing of auditory information during movement
execution and its mental representation. The current state of knowledge here reviewed
provides evidence of the feasibility and effectiveness of the application of auditory
information to improve movement execution, control, and (re)learning in sports and
motor rehabilitation. Findings also corroborate the critical role of auditory information in
auditory-motor coupling during motor (re)learning and performance, suggesting that this
area of clinical and applied research has a large potential that is yet to be fully explored.

Keywords: acoustic feedback, movement sonification, rhythmic auditory stimulation, sports, motor rehabilitation,
Parkinson’s disease, stroke

INTRODUCTION

In the last decades, research in the fields of sport, neuroscience, and psychology, has sought
to better understand the role of sounds on perceptual-motor processes from multiple angles of
investigation. In applied research, there has been a great interest in how auditory information affect
the production of complex movements and how it may be used in sports training and movement

Frontiers in Psychology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 244

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.00244
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.00244
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.00244&domain=pdf&date_stamp=2019-02-12
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00244/full
http://loop.frontiersin.org/people/480117/overview
http://loop.frontiersin.org/people/120010/overview
http://loop.frontiersin.org/people/505267/overview
http://loop.frontiersin.org/people/106516/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00244 February 8, 2019 Time: 19:37 # 2

Schaffert et al. Auditory Information in Sports and Rehabilitation

rehabilitation to improve motor performance in athletes, healthy
individuals, and patients affected by neurological or movement
disorders (e.g., Dubus and Bresin, 2013; Sigrist et al., 2013;
Murgia et al., 2015; Pizzera and Hohmann, 2015; Sors et al., 2015;
Thaut et al., 2015; Ghai and Ghai, 2018; Ghai et al., 2018a,b).
However, this body of research is scattered both across time
and scientific disciplines. Therefore, the aim of this paper is to
provide an overview about the interaction between movement
and sound and review the current literature regarding the effect
of acoustic information to improve movement execution, control,
and (re)learning in sports and motor rehabilitation.

The first section of the paper (Key topic 1) focuses on sports
movements and presents an overview of studies investigating the
effect of natural movement sounds and sonification in athlete
performance enhancement. Natural movement sounds refer to
real-time and naturally occurring acoustic information in the
form of auditory reafferences, such as the sound resulting from
the contact phase of the feet meeting the ground or the physical
impact of limbs or equipment with air/ground/water/ball
(Kennel et al., 2015; Pizzera and Hohmann, 2015). Natural
auditory signals provide a large amount of information about
movements that are readily available to the listener (Gaver,
1993a,b) and may be used in sport training to inform or
enhance task-intrinsic feedback (Dubus and Bresin, 2013; Sigrist
et al., 2013; Sors et al., 2015). Another line of research is
dedicated to the development of perceptual strategies based on
auditory information to assist movement execution and control
through sonification. Sonification involves the transformation
of kinematic and dynamic movement parameters into non-
speech artificially produced sounds in order to improve motor
perception and performance (Effenberg, 2005).

The second section (Key topic 2) addresses the use of
sounds in motor rehabilitation. Firstly, we focus on rehabilitation
methods that administer auditory rhythmic cues to improve
motor function in Parkinson’s disease (PD) and post-stroke, such
as Rhythmic Auditory Stimulation (RAS) (Thaut and Hoemberg,
2014; Murgia et al., 2015). Secondly, we consider studies
investigating the application of movement sonification (i.e.,
real-time artificially produced sounds or musical sonification)
to assist in the rehabilitation of motor functions in PD and
stroke. Note that musical sonification differs methodologically
from music-supported therapy, where the former is a relatively
novel approach that uses measuring systems (e.g., inertial
sensors) to map different movement parameters using musical
components, and the latter involves repetitive exercises using
musical instruments to retrain motor functions, thus not
providing continuous real-time movement feedback (see for
review, De Dreu et al., 2012; Zhang et al., 2016; Sihvonen et al.,
2017). Studies addressing background music or applying music
as auditory feedback are beyond the scope of this review.

In the third section (Key topic 3), we provide an overview
of current evidence regarding the neural mechanisms involved
in auditory-motor coupling. Particularly, we describe brain
regions involved in auditory-motor coupling and address the role
of mechanisms such as auditory-motor entrainment, auditory
mirror neurons, and sensorimotor integration. By organizing
and providing a critical appraisal of the current research, we

attempt to develop a framework for future applied and clinical
research on the effects of auditory information for motor control
and (re)learning.

METHODS

Search Strategy
The systematic searches included numerous electronic literature
databases (e.g., MEDLINE, EMBASE) and trial registers, as well
as hand-searching of major journals, abstract books, conference
proceedings and reference lists of retrieved publications. Also,
potentially relevant texts known to the reviewers were included.

Study Selection
The search and screening process for relevant literature is shown
in Figure 1. The titles of all retrieved publications were checked,
duplicates were removed, and those publications related to other
fields of research were excluded. The initial screening resulted
in 345 remaining publications, which were further screened for
eligibility based on the following criteria: (a) the work must
be published in full in English language, (b) must be based on
original data, and (c) must be related to the field of auditory
information within the context of sport or sport-related activities,
and rehabilitation. Publication abstracts and full texts were used
to perform a thorough check of these criteria. After this step, 222
publications were identified and included in this paper, of which
131 papers are clinical or applied studies investigating the effect
of auditory information in sports and motor rehabilitation.

RESULTS

Key Topic 1: Natural Movement Sounds
and Movement Sonification in Sports
Natural Movement Sounds
The role of natural movement sounds in auditory action-
perception coupling has been studied in sports domains and
daily physical activity as part of more general research. Among
the topics investigated, studies have examined the influence of
natural movement sounds on movement execution (Agostini
et al., 2004; Kennel et al., 2015), sense of agency (self vs. other)
(Murgia et al., 2012a; Kennel et al., 2014a,b), action anticipation
(Cesari et al., 2014; Allerdissen et al., 2017; Camponogara et al.,
2017; Sors et al., 2017, 2018a,b; Cañal-Bruland et al., 2018), and
motor learning (Pizzera et al., 2017).

Natural movement sounds carry rich auditory information
that has direct physical correspondence to their referent
event(s), providing crucial information that may be used to
inform or enhance task-intrinsic feedback (Dubus and Bresin,
2013; Sigrist et al., 2013; Sors et al., 2015). One of the
direct effects of the presence of natural movement sounds is
improving athletes’ movement execution, as shown in a study
investigating hammer throwing (Agostini et al., 2004). The
role of auditory information on movement execution has also
been investigated by manipulating the amount or the temporal
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FIGURE 1 | Overview of the search and screening process for the relevant literature.

features of feedback provided to athletes. It has been shown,
for instance, that deprivation of auditory feedback hindered
the performance of experienced tennis players by decreasing
receiving service precision (Takeuchi, 1993). Kennel et al. (2015)
examined whether the sounds of the steps during running
would influence hurdling performance and found that temporally
delayed auditory feedback decreased athletes’ performance by
slowing down the time to complete the track and affecting the
motion sequence during the first trials where the manipulation
was presented. However, there were no differences in movement
execution when comparing normal real-time auditory feedback
condition and white noise.

Natural movement sounds also provide fundamental
information about agency and facilitate the discrimination
of one’s own from another person’s movement. The role of
specific sound features on the sense of agency has been recently
investigated in sports such as golf (Murgia et al., 2012a) and
hurdling (Kennel et al., 2014a,b). Murgia et al. (2012a) found
that expert golfers could identify the recorded sounds of their
own golf swings from those of other athletes based on the
temporal features of the movement sound, such as the overall
action duration (i.e., how long the swing movement lasted from
beginning to end) and the rhythmic patterns of the backswing

and downswing movement. Kennel et al. (2014a,b) also found
that athletes could distinguish between their own hurdling
movements from those of others’ on the basis of the auditory
information, using a variety of sound characteristics (e.g.,
hurdling step structure, amplitude of the sounds) to build a
holistic representation of their own and others’ movements.

Research has also shown that athletes are able to extract
relevant information from the sounds generated by their own
or others’ movements to predict and anticipate actions based
on changes in the environment or the opponents’ behaviors.
It has been demonstrated, for example, that expert basketball
players can detect the movement intentions of an opponent
and prediction their running direction based on the sounds
generated by the opponent’s movements (Camponogara et al.,
2017). Cesari et al. (2014) found that the ability to precisely
anticipate and reproduce a skateboarding jump based only on
movement sounds was superior for experienced athletes than for
non-experts. Specifically, only experts were able to modify their
underfoot force and apply muscle synergies that were essentially
similar to those used during a real jump on a skateboard
only by hearing the movement sounds. Similarly, studies have
also demonstrated that auditory information generated by
movements may be used to predict a attack movement in
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fencing (Allerdissen et al., 2017), the shot power in soccer (Sors
et al., 2017, 2018a), and the length of volleyball serves (Sors
et al., 2018b). These behavioral data collectively indicate that
the auditory-motor coupling generated during extensive training
significantly interacts with athletes’ internal motor simulation
as experienced athletes are not only able to extract highly
specific information from action-related sounds but also use this
information to anticipate another person’s movements based on
action prediction mechanisms.

The short- and long-term effects of acoustic reafference to
improve movement control and learning of complex movements
has been recently investigated. Pizzera et al. (2017) tested a
training protocol where natural step sounds produced during
hurdling were recorded and presented before each trial with
modulated tempo in relation to baseline: faster tempo, slower
tempo, or normal tempo. Results showed that the presentation
of the auditory information increased overall performance
for all groups at short-term, enhancing running time and
movement technique. When considering the long-term effects,
findings suggested that only the groups that received acoustic
information with modulated tempo (faster or slower) further
increased performance at a 10-week retention test, whereas the
performance of the group who trained with normal auditory
feedback declined. These results indicate that, while acoustic
information during training have immediate effects on athletes’
performance, repeated training with modified temporal acoustic
information may be more effective and contribute to the
development of a richer internal representation of the movement.

Movement Sonification
Sonification, as the transfer of movement data into non-speech
audio signals, refers to the mapping of physiological and
physical data onto psychoacoustic parameters (i.e., loudness,
pitch, timbre, harmony and rhythm) in order to provide on-
and/or offline access to biomechanical information otherwise not
available (for an overview see Effenberg et al., 2011, 2016; Dubus
and Bresin, 2013; Sigrist et al., 2013; Kos et al., 2015; Pizzera
and Hohmann, 2015). Movement sonification thus aims to
assist movement control, execution, and planning by improving
self-awareness of physiological processes underlying movement
execution and optimizing movement regulation and control
(Effenberg, 2005).

The potential use of real-time movement sonification
has motivated researchers to investigate the effectiveness of
sonification as additional real-time acoustic information in sport
training to enhance athletic performance in a wide range of sports
(see Supplementary Table 1), including: running (Eriksson and
Bresin, 2010; Bolíbar and Bresin, 2012; Boyd and Godbout,
2012; Sanderson and Hunt, 2016), aerobics (Hermann and Zehe,
2011), rowing (Dubus and Bresin, 2010; Schaffert and Mattes,
2011; Wolf et al., 2011; Cesarini et al., 2014b), swimming
(Hermann et al., 2012; Cesarini et al., 2014a), sailing (Tarnas
and Schaffert, 2017), cycling (Sigrist et al., 2016; Schaffert et al.,
2017), speed skating (Godbout and Boyd, 2010; Stienstra et al.,
2011; Boyd et al., 2012; Godbout et al., 2014), skiing (Kirby, 2009;
Hasegawa et al., 2012), golf (Kleiman-Weiner and Berger, 2006;
Nylander et al., 2014), juggling (Bovermann et al., 2007), German

wheel (Hummel et al., 2010), squat jumps (Newbold et al.,
2017), motorsport (Powell and Lumsden, 2015), recreational
sports (Barrass et al., 2010), postural control (Avissar et al.,
2013), slackline (Anlauff et al., 2013), handball (Höner et al.,
2004), basketball (Ramezanzade et al., 2014), elastic trampoline
(Pugliese and Takala, 2015), and manual wheelchair training and
operation (Almqvist Gref et al., 2016).

Investigations examining the use of sonification in elite
or high-performance sports have demonstrated that the
presentation of artificially generated sounds optimize movement
control and execution (e.g., stability, velocity, pattern and
force symmetry) in sports such as swimming (Chollet et al.,
1988, 1992), rowing (Schaffert et al., 2010, 2011; Schaffert
and Mattes, 2011, 2015b, 2016), and cycling (Sigrist et al.,
2016; Schaffert et al., 2017). For instance, Chollet et al. (1988,
1992) examined the effects of the presentation of concurrent
auditory signals of hydrodynamic pressure exerted by the
athlete’s hand during the propulsive action in crawl swimming.
Movement data were transformed into auditory signals of equal
amplitude and mapped on to pitch so that higher pressure was
displayed as a higher pitch. The study results indicated that
real-time sonification allowed swimmers to maintain stroke
velocity improving movement stability and control (Chollet
et al., 1988, 1992). Schaffert and colleagues investigated the
influence of acoustic feedback in elite rowing (Schaffert et al.,
2010, 2011; Schaffert and Mattes, 2011, 2015b, 2016) and
elite para-rowing (Schaffert and Mattes, 2015a). For that, we
measured the propulsive boat acceleration trace and converted
this information into pitch changes so that athletes perceived
an increase in pitch the more the boat accelerated. These
studies repeatedly found that movement sonification led to
faster boat speeds, increased distances traveled per stroke,
and improved crew synchronization compared to training
without additional auditory information (Schaffert et al., 2010,
2011; Schaffert and Mattes, 2011, 2015a,b, 2016). In cycling,
Schaffert et al. (2017) demonstrated that the continuous real-time
auditory information allowed cyclists to perceive fluctuations
in forces applied on the pedals and consequently adapt muscle
activation to maintain a consistent movement execution pattern
and symmetry.

Real-time auditory signals may also enhance athletes’ self-
awareness during movement execution by providing auditory
feedback otherwise not available. This has been shown in studies
evaluating the effect of sonification on exerted muscle power
in resistance training and weightlifting (Murgia et al., 2012b;
Yang and Hunt, 2013, 2015), precision rifle shooting (Konttinen
et al., 2004) and inter-limb coordination in gymnastics (Baudry
et al., 2006). Yang and Hunt (2013, 2015) examined the potential
of real-time sonification to improve the quality of resistance
training. Muscular activity (biceps curl) was measured with
electromyographic sensors and sonified in relation to the biceps
contractions and extensions so that the more effort was exerted
the brighter the tone of the sound. The results showed that the
auditory information provided concomitant with the movement
helped athletes to maintain the pacing of their movement
and improve exercise metrics with greater average repetition
range and total effort. Murgia et al. (2012b) also showed that
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high-intensity sounds presented during the bench-press phase of
weightlifting facilitated exerted mean muscle power compared
with no sonification. Konttinen et al. (2004) investigated the
effects of augmented auditory feedback on precision rifle
shooting. The auditory signal informed shooters about rifle
alignment by mapping the distance between their aiming point
and target center. The study results showed improved shooting
performance in the post- and retention tests (after 10 and
40 days) compared to a control group, suggesting that the
auditory feedback enhanced shooters’ ability to detect errors in
body alignment and modify their movements to improve rifle
stability and shooting precision. The presentation of auditory
information not usually available to athletes’ also improved inter-
limb coordination in gymnastics. Baudry et al. (2006) examined
the effects of auditory concurrent feedback on body segmental
alignment and inter-limb coordination on experienced male
gymnasts during the performance of a circle on a pommel horse.
A two-part device (with one piece placed on the upper back and
the other – a spring – placed on the knee’s backside, both linked
with a cable) informed gymnasts about the bent position of the
body with an auditory signal. Positive effects on body segmental
alignment were found after 2 weeks of training, with gymnasts in
the experimental group improving their percentage of maximum
body segmental alignment whereas no gains in body alignment
were observed for the control group.

Sonification has also been applied during sports training
to inform athletes about performance error/deviation in real-
time. Collectively, studies in sports training such as handball
(Höner et al., 2004), sailing (Tarnas and Schaffert, 2017), speed
skating (Godbout and Boyd, 2010; Godbout et al., 2014), and
basketball (Ramezanzade et al., 2014) indicate that the availability
of real-time auditory feedback enhances online error-correction
mechanisms during movement execution and facilitate the
learning of a new motor skill. In speed skating, for instance,
Godbout and Boyd (2010) provided corrective sonic feedback to
an elite athlete with difficulties to perform the cross-over stride
movement. The skating stride was matched to a model skater and
the differences were sonified. Based on this sonification model it
was possible to provide warning cues, timing, and body position
information in real-time, allowing the athlete to make corrections
and adjustments during movement execution. Sonification
modeling was also tested to improve jump shot in basketball
with 20 novice participants (Ramezanzade et al., 2014). For that,
one group received visual information from a professional player
(model) as well as additional auditory information derived from
the angular speed of the elbow joint of the player, whereas
the second group only received visual information from the
player. The findings indicated that the group who received
audiovisual information outperformed the group that received
only visual information in both the acquisition and retention
tests, suggesting that auditory information may facilitate the
acquisition and retention of a new motor skill.

Research indeed suggests that real-time auditory feedback
supports the learning and retention of new motor skills.
Studies collectively indicate that the acquisition of a new
skill or movement technique (e.g., swimming stroke technique,
precision shooting, inter-limb coordination in gymnastics,

rowing technique, and basketball jump shots) is facilitated when
auditory information is provided during the acquisition of a
new motor skill (e.g., Chollet et al., 1992; Konttinen et al., 2004;
Baudry et al., 2006; Ramezanzade et al., 2014; Schaffert and
Mattes, 2014). Moreover, with ongoing training, the sonification
of the movement is integrated into an internal representation
of that skill, thus enhancing the efficacy of motor learning
(Effenberg et al., 2016).

Key Topic 2: Rhythmic Auditory
Stimulation and Movement Sonification
in Rehabilitation
Rhythmic Auditory Stimulation (RAS)
Rehabilitation programs use rhythmic auditory cues as a means to
enhance auditory-motor synchronization and promote sustained
functional changes to movement (e.g., Thaut, 2005; Thaut and
Hoemberg, 2014; Murgia et al., 2015). In particular, rhythm-
based techniques use rhythmic patterns to prime the motor
system by providing continuous time references that generate
expectations for when auditory events will occur or when
a movement needs to be performed. The foreknowledge of
the duration of the cues allows movement anticipation and
motor preparation, hence increasing the quality and precision
of the motor responses (Thaut et al., 2015). Specifically, RAS
is a rehabilitation technique that involves the utilization of
rhythmic cues (metronome or rhythmically accentuated music
with embedded metronome clicks) to facilitate rehabilitation of
intrinsically rhythmical movements (Thaut et al., 1999; Thaut
and Hoemberg, 2014). RAS can be used as an immediate
entrainment stimulus providing rhythmic cues during movement
or as a facilitating stimulus for training to achieve more
functional movement patterns. This technique typically uses
simple metronome beats matched to the patient’s baseline gait,
but walking cadence can also be facilitated by using metronome
beats embedded in musical patterns that are 5–10% faster
than baseline (Thaut et al., 1996). Alternative versions of
RAS include metronome sounds embedded in expert-selected
(McIntosh et al., 1997) or patient-selected music (Thaut et al.,
1996). In these studies, it was proposed that the musical texture
would provide additional timing information compared with
metronome alone, thus facilitating detection, anticipation, and
synchronization to the beat (Thaut et al., 1997). A modification
of RAS can also be found in the literature as Rhythmic Auditory
Cueing (RAC), which is defined as the application of repetitive
isochronous beats. Although the terminology may differ in
different disciplines, the basic underlying principle of these
techniques is the same.

There is robust evidence of the effectiveness of RAS to improve
movement in PD patients (reviewed in Rubinstein et al., 2002;
Lim et al., 2005; Rochester et al., 2010; Thaut and Abiru, 2010;
Spaulding et al., 2013; Wittwer et al., 2013; Rocha et al., 2014;
Schaefer, 2014; Murgia et al., 2015; Thaut et al., 2015; Ghai et al.,
2018b), stroke (for review, Thaut and Abiru, 2010; Yoo and Kim,
2016), traumatic brain injury (e.g., Hurt et al., 1998), multiple
sclerosis (e.g., Conklyn et al., 2010; Shahraki et al., 2017; reviewed
in Ghai and Ghai, 2018), and cerebral palsy (e.g., Kwak, 2007;
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Kim et al., 2011; Baram and Lenger, 2012; Kwak and Kim, 2013;
Ghai et al., 2018a for an overview). As the scope of this paper
does not allow for a thorough description of all relevant clinical
literature using RAS on motor rehabilitation, here we provide a
brief overview of representative clinical studies using RAS in PD
and post-stroke.

Parkinson’s disease
Gait disturbances such as shuffling, freezing of gait, instability
(asymmetry and variability between steps) and general
difficulties in walking movements and posture are among
the most apparent symptoms of PD (Bloem et al., 2004;
Rodger and Craig, 2016). Typically, PD patients with impaired
gait have difficulty in regulating stride length (Morris et al.,
1996) and tend to walk with reduced velocity and increased
cadence or step rate (Knutsson, 1972). One probable origin
of gait impairment in PD is deficient internal motor timing
mechanisms due to basal ganglia dysfunction. Studies
have also suggested that the irregular timing of walking
pace may be associated with disturbances of coordinated
rhythmic locomotion (Ebersbach et al., 1999; Thaut et al.,
2001; Skodda et al., 2010) and sensorimotor synchronization
(Bieńkiewicz and Craig, 2015, 2016).

Thaut et al. (1996) first described the effect of rhythmic
entrainment on gait patterns in PD by demonstrating that
patients who underwent 30 min of daily home-based gait training
with RAS significantly improved their gait velocity, stride length,
and step cadence after 3 weeks of intervention in relation to
controls. These findings were later confirmed by several studies
(e.g., McIntosh et al., 1997; Freedland et al., 2002; Del Olmo et al.,
2006; Nieuwboer et al., 2007; Arias and Cudeiro, 2008, 2010;
Hove et al., 2012; Song et al., 2015; Pau et al., 2016). Studies have
also found that RAS training can have positive carry-over effects
on movement from a few minutes to up to 4 weeks (McIntosh
et al., 1997, McIntosh et al., 1998; Nieuwboer et al., 2009).
Other beneficial outcomes include increase in the symmetry of
muscle activation in upper and lower limbs (Malcolm et al., 2009;
Bailey et al., 2018), and reduction of timing variability (Miller
et al., 1996), resulting in more stable walking (Thaut et al., 1999;
Hausdorff et al., 2007; Hove et al., 2012). A recent study also
found positive effects of RAS for the facilitation of gait relearning
(Uchitomi et al., 2013). Additionally, there are indications that
RAS is superior in maintaining gait performance during dual-
tasks due to low cognitive attentional load (Baker et al., 2008).
This robust body of literature has been recently summarized
and analyzed in systematic and meta-analysis studies, which
concluded that rhythmic auditory information is generally an
effective therapeutic tool for treating gait disturbances in PD (see
Spaulding et al., 2013; Schaefer, 2014; Ghai et al., 2018b).

Although the application of rhythmic auditory information
in gait training is well-established, the use of rhythm-based
interventions to improve PD symptoms such as freezing of gait
and risk of falls is still under investigation. In relation to freezing
of gait, Willems et al. (2006) found no beneficial effects of RAS on
freezing of gait in patients with less severe symptoms, but Delval
et al. (2014) and Plotnik et al. (2014) reported positive effects of
RAS on gait initiation and freezing of gait in PD patients. A recent

review (Ginis et al., 2017) also concluded that cue-augmented
training can reduce the severity of freezing in PD patients, but
limitations in long-term consolidation and transfer of the effects
to untrained tasks need to be considered in this population. RAS
has been also recently applied to reduce falls or risk of falls
in healthy elderly (Hurt-Thaut, 2014) and PD patients (Thaut
et al., 2018). These studies collectively found that RAS training
significantly reduced the number of falls in healthy individuals
and PD patients by modifying key kinematics in gait control, thus
suggesting that RAS may be beneficial to address the risk of falls.

A recent line of research has focused on whether specific
parameters of the acoustic cues can influence the results
of rhythm-based interventions for PD by comparing, for
instance, differences between music and isochronous sounds
(i.e., metronome) with interactive cueing systems that adapt
to the patient’s gait (see review in Ashoori et al., 2015; Hove
and Keller, 2015). For instance, Murgia et al. (2018) compared
whether the nature of the stimulus presented would influence
the effectiveness of RAS by providing ecological footstep sounds
as auditory information. For that, one group of PD patients
completed 5 weeks of supervised rehabilitation training that
included walking while listening to ecological footsteps sounds,
whereas the second group of patients walked listening to
artificial stimuli (e.g., metronome). The overall conclusion of
the study was that biological motion sounds such as footsteps
are as effective as the metronome, but exploratory analyses
of biomechanical measures suggested that there may be some
differences in improvement linked to the type of auditory stimuli.
Similarly, Dotov et al. (2017) tested biological variability in
auditory stimulus vs. isochronous cues and found superiority
of biologically variable auditory cues in fostering natural gait
variability in PD patients; however, the authors limited their
analysis to only immediate and likely transient effects of cueing.
Young et al. (2016) found that action-relevance was a more
dominant factor in facilitating improvements in gait parameters
than acoustic continuity. Finally, Baram et al. (2016) examined
the effectiveness of a device that provided a clicking sound
generated in response to every step taken by the patient and
found that closed-loop auditory feedback produced better results
than open-loop auditory cues (e.g., metronome) in relation to gait
speed. It is important to note, however, that the use of closed-loop
auditory feedback information stands in contrast to metronome-
based approaches in relation to a critical component, that is,
the use of external auditory cues as predictable feedforward
information transmitted by the steady rhythmic information.

Negative effects of RAS were reported when auditory cues
were presented at rates much slower (e.g., 20%) or much
higher than the patient’s preferred gait (Del Olmo and Cudeiro,
2005; Nombela et al., 2013). Arias and Cudeiro (2008) and
Dalla Bella et al. (2017) also suggested that RAS efficacy may
depend on individual characteristics, including severity of disease
symptoms and impaired ability to synchronize to the beat.
However, there are indications that beat perception may be of
lesser importance due to evidence of the primacy of period
entrainment over phase/beat entrainment during small tempo
perturbations (e.g., Thaut et al., 1998a,b; Roberts et al., 2000;
Thaut and Kenyon, 2003).
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Overall, research using RAS and rhythmically enhanced-
music show consistent evidence of the improvement of motor
function in PD. Moreover, recent studies have extended the
application of RAS to other non-motor functions (for review,
see Thaut and Abiru, 2010). For instance, studies have indicated
that RAS training enhances patients’ performance in both motor
timing (movement synchronization, tapping) and in perceptual
timing tasks (duration discrimination, beat detection in music),
supporting the hypothesis that RAS engages brain networks
involved in both perceptual and motor timing (Benoit et al., 2014;
Dalla Bella et al., 2015).

Stroke
Motor impairment is one the most widely recognized
consequences of stroke, which include reduced movement
coordination, decreased postural control, and decreased
upper-limb function (Langhorne et al., 2009). Such significant
impairments in locomotive function can lead to limitations in
independent mobility, thus strongly affecting patients’ quality of
life (Michael et al., 2005).

There is strong evidence that RAS can be effectively applied
for timely motor control during gait training for stroke patients
(Thaut et al., 1993, 1997, 2007; Hayden et al., 2009; for review
see Thaut and Abiru, 2010; Hollands et al., 2012; Thaut and
McIntosh, 2014; Nascimento et al., 2015; Yoo and Kim, 2016).
Thaut et al. (1993) found that patients who walked with RAS
matched to their baseline gait cadence showed decreased stride
time variability and more balanced muscular activation pattern
between the paretic and non-paretic limbs. Recent studies also
indicate significant effects of RAS on standing balance (Suh
et al., 2014), and gait coordination and symmetry during normal
overground walking (Prassas et al., 1997; Roerdink et al., 2011;
Lee et al., 2012; Yang et al., 2016) and treadmill training (Roerdink
et al., 2007; Park et al., 2015; Yoon and Kang, 2016; Mainka
et al., 2018). Immediate effects of RAS training with tempo
changes were also found on gait kinematics (Cha et al., 2014)
and in relation to the lesion site (Kobinata et al., 2016). Finally,
there is growing support for the use of RAS in gait training
during the chronic phase of stroke to improve walking speed
and functional mobility (e.g., Shin et al., 2015; Ko et al., 2016;
Wright et al., 2016, 2017).

Studies have also reported significant improvements in upper
limb function after training with RAS (e.g., Whitall et al., 2000;
Thaut et al., 2002a,b; Luft et al., 2004; Jeong and Kim, 2007;
Malcolm et al., 2009; Chen et al., 2016). For instance, Malcolm
et al. (2009) reported a significant decrease in compensatory
reaching movements after a 2-week RAS training program,
which consisted of patients moving between at least two
targets by touching the digits of their affected hand to the
assigned targets in synchrony with the auditory rhythmic stimuli.
Another line of interventions has used RAC to prime and
facilitate bilateral arm training, also known as BATRAC (for
review Wolf et al., 2014; Choo et al., 2015). As an example
of BATRAC training, in Whitall et al. (2000) participants
pushed and pulled bilaterally two independent bar handles in
synchrony or alternation with rhythmic auditory cues. The
authors found significant improvement in isometric strength,

range of motion, and functional motor performance of the paretic
arm after 6 weeks of intervention and also at an 8-week follow-
up assessment. Additionally, there are indications that music-
supported training using musical instruments can improve motor
recovery of arm movements after stroke by inducing auditory-
sensorimotor co-representation of movements (e.g., Thaut et al.,
2002a,b; Schneider et al., 2007, 2010; Rodríguez-Fornells et al.,
2012; Altenmüller et al., 2009; Altenmüller and Schlaug, 2013;
Amengual et al., 2013; for a review on music-support training,
see Zhang et al., 2016).

Movement Sonification
Technology-assisted therapy and rehabilitation seek to help
patients in regaining the ability to independently perform daily
activities and to facilitate their reintegration into social and
domestic life by using advances in smart technologies or robotics
(for reviews on robotic-assisted therapy, see Lum et al., 2002;
Prange et al., 2006; Kwakkel et al., 2008; Marchal-Crespo and
Reinkensmeyer, 2009; Secoli et al., 2011; Pennycott et al., 2012;
Rosati et al., 2013).

One of the first applications of sonification in a rehabilitation
context was developed by Pauletto and Hunt (2006, 2009).
They sonified muscular activity using the temporal patterns in
electromyography (EMG) by converting electrical impulses from
muscles into auditory information. The goal of this sonification
approach was to assist therapists to audibly analyze the complex
signals originating from multiple EMG-sensors during physical
activity. Several sonification methods and system prototypes
have been developed in recent years (e.g., Chiari et al., 2005;
Dozza et al., 2005, 2007; Vogt et al., 2010; Tissberger and
Wersenyi, 2011; Matsubara et al., 2012; Franco et al., 2013; Torres
et al., 2013; Ghai et al., 2018c; see Supplementary Table 2 for
details). A growing body of recent research generally agrees
that sonification is a promising feedback tool for patients and
therapists, complementing existing analytical components in
therapy (such as visual displays) (for an overview, see Huang
et al., 2006; Dubus and Bresin, 2013). The following sections
present an overview of current investigations in sonification for
movement rehabilitation in PD and stroke.

Parkinson’s disease
There has been growing interest in the application of sonification
systems in neurologic rehabilitation focusing on improving gait
in PD patients (e.g., Batavia et al., 2001; Miyake, 2009; Torres
et al., 2013; Contreras Lopez et al., 2014; Young et al., 2014;
Horsak et al., 2016; Schedel et al., 2016; see Supplementary
Table 2 for details). A sonification system that has received
significant attention in recent years is the use of instrumented
footwear (Bresin et al., 2010; Fischer et al., 2017; see review in
Maculewicz et al., 2016). These systems comprise of interactive
shoes with embedded sensors that collect gait information
(e.g., cadence, velocity, stride length), which are then used to
trigger auditory cueing stimuli to inform both the therapist
and the patient about the user’s current state. Recently, Gorgas
et al. (2017) tested the effect of an instrumented shoe-insole-
device for real-time sonification of gait (SONIGait; see also
Horsak et al., 2016). This sonification system mapped individual
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walking characteristics on to musical notes in order to provide
gait spatiotemporal information. Results indicated that a 5-min
practice phase with sonification increased gait velocity and
cadence, opening the possibility for further testing of this real-
time sonification device in large controlled trials. Rodger et al.
(2014) tested two sonification systems using synthesized walking
sounds to guide and improve gait coordination in PD. The first
approach used computer-generated sounds of footsteps on gravel
in order to convey ecological information regarding step lengths
and duration, whereas the second approach involved real-time
sonification of the swing-phase of gait by using motion-capture
and audio processing software. Study results suggested that both
methods had an effect on step length variability but did not
alter step duration variability, suggesting that the presentation of
auditory information within the patient’s normal step duration
range had an effect only on spatial characteristics of gait rather
than temporal parameters.

A recent innovative line of motor learning based interventions
have combined action observation and sonification to improve
freezing of gait (see Gilat et al., 2018 for review). For instance,
Mezzarobba et al. (2018) presented videos showing an actor
performing gait-related gestures while simultaneously presenting
the sonification generated by the kinematics of each gesture.
Patients were then asked to imitate the movements shown. This
training protocol was completed twice a week for a total of
8 weeks by a group of 12 patients, whereas the control group
practiced the motor gestures by means of visual (stripes on the
floor) or auditory cues (metronome). Assessments conducted
after the intervention and 3 months after the treatment
suggested that the multisensory treatment significantly reduced
the number of episodes and duration of freezing facilitating
the priming effect generated by action observation, whereas no
significant difference was observed for all mobility indices in
the control group.

Stroke
External real-time auditory feedback has been extensively applied
in upper-limb rehabilitation post-stroke (e.g., Maulucci and
Eckhouse, 2001; Chen et al., 2006; Wallis et al., 2007; Dailly
et al., 2012; Immoos et al., 2013; Bruckner et al., 2014;
Fujii et al., 2016; reviewed in Ghai, 2018; see Supplementary
Table 2 for details). For instance, Chen et al. (2006) and
Wallis et al. (2007) tested a real-time multimodal sonification
system which provided visual and auditory information in
order to motivate arm reaching training for stroke patients.
Specifically, arm movements triggered musical feedback that
provided information about movement smoothness/jerkiness
and speed of reach such that the acceleration of the motion
during reaching and returning changed the musical intervals
and harmonic progressions presented. Test results with three
stroke patients reported in Wallis et al. (2007) suggested the
feasibility of such sonification systems, opening new avenues for
the application of this system in large-scale studies.

Scholz et al. (2015, 2016) investigated the effectiveness of
a musical sonification therapy protocol to train gross motor
function of upper extremities. For that, patients’ arm movements
were sonified in real-time using two inertial sensors placed at

the wrist and upper-arm of the affected side. The 3D-movement
data were transformed into sounds so that upward movements
resulted in an ascending C major scale, vertical movements
into changes in brightness/timbre of the sounds, and sagittal
movements into changes in loudness. The final goal of the
training was to teach patients to play simple melodies by moving
their arm in a 3D-sonification space. Patients received an average
of 10 days of musical sonification therapy or a sham sonification
training that did not include auditory feedback. The study results
indicated that patients in the music group improved in measures
of motor function relating to the smoothness of reaching but
no significant changes were observed in other arm-function
measures. Additionally, findings suggested a reduction of joint
pain in a subgroup of patients who presented lower pain scores
prior to the commencement of the musical sonification therapy.

Schmitz et al. (2014) tested an expanded concept for
sonification in upper-limb stroke rehabilitation which included
a mobile sonification system that provided 4D information
about arm positions and trajectories as captured by inertial
sensors. Specifically, hand position was mapped onto four
acoustic parameters: arm velocity was mapped onto amplitude;
elevation angle onto frequencies between 133.3 and 266.6 Hz;
radial arm amplitude changed the impression of sound
brightness; and azimuth angle determined the interaural intensity
difference. Test results with seven patients indicated the potential
application of this sonification system in larger clinical trials
(see Schmitz et al., 2018).

Robertson et al. (2009) investigated the effect of sonification
on upper limb movements after stroke. Patients performed a
reaching task that involved reciprocal pointing to 9 targets
while a sensor fixed to the hand processed online kinematic
data and modulated the auditory feedback presented during
movement. The study reported that the sonification had a positive
effect on movement performance such as movement smoothness
and trajectory curvature for patients with right hemisphere
damage, while it worsened the performance of patients with left
hemisphere damage. This result thus suggests that responses to
auditory feedback may differ when the side of the lesion after
stroke is taken into consideration.

Key Topic 3: Cognitive Mechanisms and
Neural Correlates Underlying
Auditory-Motor Coupling
There is robust evidence from multiple lines of inquiry that
auditory information has a profound effect on the motor system.
Physiological and neuroimaging research has demonstrated
that one of the factors underlying this strong interaction is the
widely distributed neuroanatomical network connecting the
auditory and motor systems at the spinal cord, subcortical and
cortical levels (Nayagam et al., 2011; Theunissen and Elie, 2014;
Bizley, 2017). For instance, studies investigating reflexive motor
responses to sound have described neural pathways formed
by descending (efferent) fiber tracts originating in the ventral
cochlear nucleus that project bilaterally to sensorimotor
tracts in the spinal cord via reticulospinal connections
(Rossignol and Melvill Jones, 1976; Huffman and Henson,
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1990; Delwaide and Schepens, 1995; Marinovic et al., 2014;
Marinovic and Tresilian, 2016). Neuroimaging research has
also identified rich neuroanatomical interconnectivity between
several distant cortical and subcortical brain areas, including the
cerebellum, basal ganglia, thalamus, supplementary motor area
(SMA) and pre-SMA, premotor cortex, and the auditory cortex
(for review, see Teki et al., 2012; Chauvigné et al., 2014; Merchant
et al., 2015; Lusk et al., 2016; Petter et al., 2016; Braun Janzen and
Thaut, 2018; Koshimori and Thaut, 2018). Specifically, cortico-
cerebellar networks have been shown to be predominantly
engaged in movement synchronization to externally cued stimuli
(Buhusi and Meck, 2005; Brown et al., 2006; Del Olmo et al.,
2007; Thaut et al., 2008, 2009; Witt et al., 2008; Manto et al., 2012;
Chauvigné et al., 2014), whereas basal ganglia-thalamo-cortical
networks seem particularly involved in beat-based timing and
self-paced or internally driven rhythmic movements (Halsband
et al., 1993; Cunnington et al., 1996; Rao et al., 1997; Grahn and
Rowe, 2009, 2013). Furthermore, recently emerging evidence
also indicate that auditory and motor areas have direct routes of
communication at cortical level via the arcuate fascicle, a white
matter fiber tract with direct projections from the auditory cortex
to motor areas, including primary motor cortex and premotor
cortex (Fernández-Miranda et al., 2015; Wang et al., 2016).

Another crucial aspect is that the functional and structural
architecture of the auditory system is built to rapidly detect
temporal patterns of periodicity in acoustic signals. There
is considerable evidence that the temporal resolution of the
auditory system is superior to other sensory modalities (e.g., Repp
and Penel, 2002, 2004; Grondin and McAuley, 2009; Shelton
and Kumar, 2010; Grahn et al., 2011; Stauffer et al., 2012;
Ammirante et al., 2016). Recent electrophysiological research
has demonstrated that the temporal information of acoustic
signals is highly preserved at all levels of the auditory processing
stream and elicit a periodic neural response at the exact same
frequency of the stimuli (for review, see Nozaradan, 2014).
Moreover, listening to auditory rhythmic stimuli primes the
motor system, increasing the neural efficiency of the motor
cortex through a process of auditory-motor entrainment (Crasta
et al., 2018). That is, the firing rates of auditory neurons
triggered by auditory rhythmic information, such as the beat
of the music or a metronome, entrains the firing patterns
of neurons in the motor cortex. The oscillatory coupling of
neural impulses in the cortical loop between auditory and
motor regions generates temporal predictions that are crucial
for the perception of, and entrainment to, auditory rhythms
(Large and Snyder, 2009; Fujioka et al., 2012; Large et al.,
2015; Merchant et al., 2015; Ross et al., 2016, 2017; Morillon
and Baillet, 2017). Therefore, the continuous time reference of
the rhythmic auditory cues provides predictable feedforward
information that allows movement anticipation and motor
preparation (Thaut et al., 2015). Additionally, it has been shown
that external rhythmic auditory input also changes the pattern of
muscle activation through changes in corticospinal excitability
(Thaut et al., 1992, 1999; Miller et al., 1996; Wilson and
Davey, 2002; Stupacher et al., 2013), modulates beta (β) brain
oscillations (Fujioka et al., 2012; Merchant et al., 2015; Ross
et al., 2016, 2017), and promotes neural-plasticity (Luft et al.,

2004). Collectively, these findings provide strong evidence of the
neurobiological mechanisms underlying the effects of RAS on
motor planning and execution.

The use of real-time movement information extends the
benefits of discrete rhythmic auditory stimuli by adding an
auditory component to the movement cycle either with natural
movement sounds or movement sonification (Effenberg, 2005;
Sigrist et al., 2013; Effenberg et al., 2016; Bevilacqua et al.,
2016; Dyer et al., 2017a). Robust evidence suggests that merely
listening to action-related sounds activates the neural processes
necessary to produce those sounds (e.g., Aziz-Zadeh et al., 2004;
Lewis et al., 2005; Pizzamiglio et al., 2005; Aziz-Zadeh et al.,
2006; Gazzola et al., 2006; Caetano et al., 2007; Pazzaglia et al.,
2008; Alaerts et al., 2009; Engel et al., 2009; Ticini et al., 2012;
reviewed in Aglioti and Pazzaglia, 2010). Kohler et al. (2002)
provided the first empirical evidence that premotor neurons in
monkeys respond to the sound of a familiar action, expanding
the notion that movements and their perceptual consequences are
intrinsically coupled in the brain (Fadiga et al., 1995; Rizzolatti
and Craighero, 2004; Schütz-Bosbach and Prinz, 2007; Rizzolatti
and Sinigaglia, 2010). In humans, research shows that acoustic
information are sufficient to evoke accurate representations of
complex movements (Repp and Knoblich, 2004; van der Zwan
et al., 2009; Lewis et al., 2011; Murgia et al., 2012a; Sevdalis
and Keller, 2014; Kennel et al., 2014a; reviewed in Pizzera
and Hohmann, 2015), activating superior and medial posterior
temporal regions involved in human motion recognition (Bidet-
Caulet et al., 2005; Baumann and Greenlee, 2006; Saarela and
Hari, 2008; Scheef et al., 2009; Schmitz et al., 2013). Importantly,
motor resonance is associated with and strengthened by one’s
experience and familiarity with the actions observed/perceived, as
demonstrated by studies comparing expert and novice responses
to specific sports- or dance-related sounds (e.g., Agostini et al.,
2004; Hohmann et al., 2011; Tomeo et al., 2012; Woods et al.,
2014; Murgia et al., 2017). Further evidence of the role of
learning and expertise has been provided by research showing
that a network comprising areas such as dorsolateral and inferior
frontal cortex (including Broca’s area), superior temporal gyrus,
and motor areas including supplementary motor and premotor
areas, is engaged when experienced musicians listen to well-
rehearsed music (Haueisen and Knösche, 2001; Bangert et al.,
2006; D’Ausilio et al., 2006; Harris and De Jong, 2014; see
also Proverbio et al., 2014) or watch silent video recordings
of known music pieces (Lotze et al., 2003; Hasegawa et al.,
2004; Baumann et al., 2007; Bianco et al., 2016; reviewed in
Maes et al., 2014; Novembre and Keller, 2014). Activation
of this network was also found when non-musicians listened
to a music piece they had learned to play after a short
period of training (Lahav et al., 2007; see also Bangert and
Altenmüller, 2003). These findings thus suggest that strong
auditory-motor associations are developed during sound-making
experiences, providing support for the use of real-time auditory
feedback to enhance sensorimotor representations and facilitate
movement (re)-acquisition.

It is also thought that the continuous availability of
information provided by mapping different dynamic
or kinematic movement parameters onto distinct sound
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components (e.g., pitch, loudness, rhythm, timbre) improves
movement quality and motor (re)learning through the
integration of multiple congruent perceptual streams (Scholz
et al., 2015; Effenberg and Schmitz, 2018; Ghai et al., 2018c),
resulting in a richer and more effective internal representation
of the movement (Shams and Seitz, 2008; Wolpert et al., 2011;
Schmitz et al., 2013; Effenberg et al., 2016). Furthermore,
the availability of real-time auditory feedback also enhances
online error-correction mechanisms (Dyer et al., 2015; Hossner
et al., 2015; Sigrist et al., 2015; van Vugt and Tillmann, 2015),
increases cognitive-emotional functioning (Van Vugt et al., 2014;
Altenmüller and Schlaug, 2015; Sihvonen et al., 2017), and may
supplement perceptual deficits (Tinazzi et al., 2002; van Vugt and
Tillmann, 2015; Danna and Velay, 2017; Ghai et al., 2018c).

DISCUSSION

The studies here reviewed examined the relationship between
sound and movement in the context of sports training and
movement rehabilitation. Our narrative synthesis focused
specifically on the literature regarding the effect of natural
movement sounds, movement sonification, and rhythmic
auditory information. The current state of knowledge here
summarized provides promising evidence of the effect
of auditory information on sporting performance and
motor (re)learning.

The availability of auditory information in the form of
natural sounds occurring as a byproduct of a movement or
as additional real-time acoustic feedback driven by movement
dynamic or kinematic parameters has significant implications
for motor execution and control of skilled performances. The
large body of research here reviewed indicates that auditory
information provides crucial information about agency (Murgia
et al., 2012a; Kennel et al., 2014a,b), movement control and
timing (e.g., Chollet et al., 1988, 1992; Schaffert and Mattes,
2011, 2016; Sigrist et al., 2016; Schaffert et al., 2017), movement
execution (e.g., Agostini et al., 2004; Konttinen et al., 2004;
Baudry et al., 2006; Murgia et al., 2012b; Yang and Hunt, 2013,
2015; Kennel et al., 2015), and performance error/deviation
(e.g., Höner et al., 2004; Godbout and Boyd, 2010; Wolf et al.,
2011; Godbout et al., 2014; Ramezanzade et al., 2014; Tarnas
and Schaffert, 2017). Behavioral data also suggest that the
auditory-motor coupling generated during extensive training
significantly interacts with athletes’ internal motor simulation
(Murgia et al., 2012a; Kennel et al., 2014a,b; Pizzera et al.,
2017), as shown by studies demonstrating that skilled athletes
are able to extract highly specific information from action-
related sounds (e.g., Roberts et al., 2005) and predict another
person’s movements based on action prediction mechanisms
(e.g., Cesari et al., 2014; Camponogara et al., 2017; Allerdissen
et al., 2017). These findings corroborate a robust body of
neuroimaging and neurophysiological studies indicating that the
mirror neuron system and a widely distributed neuroanatomical
network is involved in the processing of action sounds (e.g.,
Fadiga et al., 1995; Kohler et al., 2002; Aziz-Zadeh et al.,
2004, 2006; Bidet-Caulet et al., 2005; Lewis et al., 2005;

Pizzamiglio et al., 2005; Pazzaglia et al., 2008; Ticini et al., 2012;
Schmitz et al., 2013).

Studies also demonstrated positive effects of auditory
information on motor (re)learning in sports and rehabilitation.
Research findings revealed that real-time auditory feedback
facilitates learning and improves retention of new motor skills
(e.g., Chollet et al., 1992; Konttinen et al., 2004; Baudry et al.,
2006; Ramezanzade et al., 2014; Schaffert and Mattes, 2014;
Pizzera et al., 2017). There is growing support for the application
of movement sonification to increase upper-limb functions after
stroke (e.g., Wallis et al., 2007; Immoos et al., 2013; Schmitz
et al., 2014, 2018; Scholz et al., 2015, 2016; Ghai, 2018), and to
improve gait in PD patients using, for instance, instrumented
footwear (e.g., Batavia et al., 2001; Rodger et al., 2014; Horsak
et al., 2016; Maculewicz et al., 2016; Gorgas et al., 2017).
These sonification approaches rely on the transformation of
dynamic and kinematic movement parameters onto distinct
sound components (e.g., pitch, loudness, rhythm, timbre) to
increase cross-modal stimulation (Scholz et al., 2015, 2016; Ghai
et al., 2018c) and sensorimotor representation of the movement
to be (re)learned (Shams and Seitz, 2008; Schmitz et al., 2013;
Effenberg et al., 2016).

On the other hand, another line of clinical studies summarized
in this review focuses primarily on the rhythmic patterns of
sound, making use of metronome or beat-enhanced music to
facilitate rehabilitation of intrinsically rhythmical movements
(Thaut, 2005; Thaut and Hoemberg, 2014; Murgia et al., 2015;
Ghai et al., 2018b). This robust body of research evidence
indicates that RAS has immediate effects on gait velocity, step
cadence, and stride length (e.g., Thaut et al., 1996; McIntosh
et al., 1997; Freedland et al., 2002; Nieuwboer et al., 2007;
Arias and Cudeiro, 2008, 2010; Hove et al., 2012; Song et al.,
2015; Pau et al., 2016), reducing gait variability (Miller et al.,
1996) and improving walking stability in PD (Thaut et al., 1999;
Hausdorff et al., 2007; Hove et al., 2012) and stroke (Thaut et al.,
1993, 1997, 2007; Hayden et al., 2009; for review see Thaut and
Abiru, 2010; Hollands et al., 2012; Thaut and McIntosh, 2014;
Nascimento et al., 2015; Yoo and Kim, 2016). Studies have also
demonstrated that auditory cueing significantly improves upper-
limb function after stroke by reducing movement variability and
reliance on compensatory movements (e.g., Whitall et al., 2000;
Thaut et al., 2002a,b; Luft et al., 2004; Jeong and Kim, 2007;
Malcolm et al., 2009; Chen et al., 2016). It has been proposed that
the continuous time reference provided by the rhythmic auditory
cues facilitates movement retraining by priming the motor
system, allowing movement anticipation and motor preparation
(Thaut et al., 2015), and potentially bypassing damaged areas
through the activation of alternative pathways (Hoemberg, 2005;
Dalla Bella et al., 2017; Braunlich et al., 2018).

We also identified a small number of studies that
evaluated other variables influencing the effect of auditory
information on motor performance, such as physiological
arousal and motivation (Murgia et al., 2012b; Bood et al.,
2013; Immoos et al., 2013; Pugliese and Takala, 2015; Scholz
et al., 2016; Sanderson and Hunt, 2016; Newbold et al., 2017).
Murgia et al. (2012b) found that athletes’ maintained peak
performance and reduced performance variability in trials
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where high-intensity sounds were presented during the pressing
phase of weightlifting exercises, and Bood et al. (2013)
reported changes in psychophysical and physiological outcome
measures due to the motivational aspects of the stimuli
during running. Novel therapeutic approaches, such as musical
sonification (Scholz et al., 2016), also considered the motivational
aspects of adding real-time auditory feedback to stimulate
patients and improve treatment compliance, thus opening new
avenues to systematically examine the role of physiological
arousal, motivation, reward, and mood in larger clinical
trials. The potential use of interactive sonification systems
in sports and rehabilitation has motivated researchers and
engineers to develop applications and system prototypes for
exercise and physical activity, rehabilitation, and entertainment
(e.g., Barrass et al., 2010; Lécuyer et al., 2011; Franco
et al., 2013; Bruckner et al., 2014; Contreras Lopez et al.,
2014; Pugliese and Takala, 2015; Newbold et al., 2017; see
Supplementary Material). These studies explore a wide range
of devices and applications where the playful character of
music or the competitive component of sports has inspired
new technology-enabled forms of play (e.g., exertion or
computer games) and therapy. Future applications of this
technology in sports, recreation, and rehabilitation are yet to be
fully explored.

The large body of literature here reviewed clearly shows an
emerging area of clinical and applied research. However, there
are important research gaps that need to be addressed in future
research. Firstly, there is a clear need to better understand
what auditory components and amount of information are most
relevant in motor training and rehabilitation. This is not trivial,
particularly in sonification applications, as research suggests
that an overload of auditory information has detrimental effects
on task performance (e.g., Wolf et al., 2011) and that task-
irrelevant auditory stimuli are strong distractors (Parmentier,
2014). The use of meaningful auditory information is, therefore,
determinant for the user’s experience (Effenberg et al., 2016; Dyer
et al., 2017b) and needs to be considered in a clear framework
for sonification mapping derived from a better understanding
of the processes underlying motor learning/control from a
basic research perspective (Dyer et al., 2015). Research in the
field of auditory information processing has great potential to
promote active crosstalk between basic and applied research,
with findings generated in the laboratory providing insights
for the application in real-life situations, that being in sports
training or therapy and rehabilitation, and vice-versa. Secondly,
we have identified few studies using natural movement sounds
or sonification in elite or high-performance sports. A challenge

for future investigations is to evaluate novel applications in
ecologically valid and real-life situations that closely resemble
the athlete’s movement technique and training conditions in
order to better identify what type of information is most
relevant and improve equipment setup, thus acquiring more
reliable results. This depends directly on the development of
procedures that are feasible for the systematic use in daily
training. In addition, future research should also consider the
way in which auditory information is presented to athletes and
patients (loudspeaker vs. earplugs) in order to avoid, for instance,
perceptual overload, and to ensure that the feedback information
is properly delivered. From the clinical perspective, although
there is growing attention on the application of sonification
systems to improve motor function in PD and post-stroke,
we have identified a relatively small number of controlled
trials, revealing the need to further examine the effectiveness
and feasibility of sonification methods and devices in larger
controlled clinical studies.

CONCLUSION

This review examined the relationship between sound and
movement in the context of sports training and movement
rehabilitation. The findings here summarized provide evidence
of the effect of natural movement sounds, movement sonification,
and rhythmic auditory information on sporting performance and
motor (re)learning. This emerging area of clinical and applied
research demonstrates large underutilized potential, warranting
further investigation of the promising application of auditory
feedback information in sports and rehabilitation.
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Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., and Mazziotta, J.
(2004). Left hemisphere motor facilitation in response to manual action
sounds. Eur. J. Neurosci. 19, 2609–2612. doi: 10.1111/j.0953-816X.2004.
03348.x

Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., and Iacoboni, M. (2006). Congruent
embodied representations for visually presented actions and linguistic phrases
describing actions. Curr. Biol. 16, 1818–1823. doi: 10.1016/j.cub.2006.07.060

Bailey, C. A., Corona, F., Murgia, M., Pili, R., Pau, M., and Côté, J. N.
(2018). Electromyographical gait characteristics in Parkinson’s disease: effects
of combined physical therapy and rhythmic auditory stimulation. Front. Neurol.
9:211. doi: 10.3389/fneur.2018.00211

Baker, K., Rochester, L., and Nieuwboer, A. (2008). The effect of cues on gait
variability-reducing the attentional cost of walking in people with Parkinson’s
disease. Parkinsonism. Relat. Disord. 14, 314–320. doi: 10.1016/j.parkreldis.
2007.09.008

Bangert, M., and Altenmüller, E. O. (2003). Mapping perception to action in piano
practice: a longitudinal DC-EEG study. BMC Neurosci. 4:26. doi: 10.1186/1471-
2202-4-26

Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al.
(2006). Shared networks for auditory and motor processing in professional
pianists: Evidence from fMRI conjunction. Neuroimage 30, 917–926. doi: 10.
1016/j.neuroimage.2005.10.044

Baram, Y., Aharon-Peretz, J., Badarny, S., Susel, Z., and Schlesinger, I. (2016).
Closed-loop auditory feedback for the improvement of gait in patients with
Parkinson’s disease. J. Neurol. Sci. 363, 104–106. doi: 10.1016/j.jns.2016.02.021

Baram, Y., and Lenger, R. (2012). Gait improvement in patients with cerebral palsy
by visual and auditory feedback. Neuromodulation 15, 48–52. doi: 10.1111/j.
1525-1403.2011.00412.x

Barrass, S., Schaffert, N., and Barrass, T. (2010). “Probing preferences between six
designs of interactive sonifications for recreational sports, health and fitness,” in
Proceedings of the ISon 2010, 3rd Interactive Sonification Workshop (Stockholm:
Interactive-Sonification), 23–29.

Batavia, M., Gianutsos, J. G., Vaccaro, A., and Gold, J. T. (2001). A do-it-yourself
membrane-activated auditory feedback device for weight bearing and gait
training: a case report. Arch. Phys. Med. Rehabil. 82, 541–545. doi: 10.1053/
apmr.2001.21931

Baudry, L., Leroy, D., Thouvarecq, R., and Chollet, D. (2006). Auditory concurrent
feedback benefits on the circle performed in gymnastics. J. Sports Sci. 24,
149–156. doi: 10.1080/02640410500130979

Baumann, O., and Greenlee, M. W. (2006). Neural correlates of coherent
audiovisual motion perception. Cereb. Cortex 17, 1433–1443. doi: 10.1093/
cercor/bhl055

Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., and Jancke, L. (2007).
A network for audio-motor coordination in skilled pianists and non-musicians.
Brain Res. 1161, 65–78. doi: 10.1016/j.brainres.2007.05.045

Benoit, C. E., Dalla Bella, S., Farrugia, N., Obrig, H., and Kotz, S. A. (2014). Non-
gait related benefits of auditory cueing in Parkinson’s disease. Procedia Soc.
Behav. Sci. 126, 210–211. doi: 10.1016/j.sbspro.2014.02.378

Bevilacqua, F., Boyer, E. O., Françoise, J., Houix, O., Susini, P., Roby-Brami, A.,
et al. (2016). Sensori-motor learning with movement sonification: perspectives
from recent interdisciplinary studies. Front. Neurosci. 10:385. doi: 10.3389/
fnins.2016.00385

Bianco, R., Novembre, G., Keller, P. E. E., Kim, S.-G. G., Scharf, F., Friederici,
A. D. D., et al. (2016). Neural networks for harmonic structure in music
perception and action. Neuroimage 142, 454–464. doi: 10.1016/j.neuroimage.
2016.08.025

Bidet-Caulet, A., Voisin, J., Bertrand, O., and Fonlupt, P. (2005). Listening to a
walking human activates the temporal biological motion area. Neuroimage 28,
132–139. doi: 10.1016/j.neuroimage.2005.06.018
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