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Item context effects refer to the impact of features of a test on an examinee’s item

responses. These effects cannot be explained by the abilities measured by the test.

Investigations typically focus on only a single type of item context effects, such as

item position effects, or mode effects, thereby ignoring the fact that different item

context effects might operate simultaneously. In this study, two different types of context

effects were modeled simultaneously drawing on data from an item calibration study

of a multidimensional computerized test (N = 1,632) assessing student competencies

in mathematics, science, and reading. We present a generalized linear mixed model

(GLMM) parameterization of the multidimensional Rasch model including item position

effects (distinguishing between within-block position effects and block position effects),

domain order effects, and the interactions between them. Results show that both types

of context effects played a role, and that the moderating effect of domain orders was very

strong. The findings have direct consequences for planning and applying mixed domain

assessment designs.

Keywords: item position effects, item context effects, domain order effects, multidimensional item response

theory, generalized linear mixed models

INTRODUCTION

Psychological tests including achievement test aim at inferring person’s unobservable
characteristics from their observed response behavior to a set of stimuli, e.g., test items. If
different forms of a particular test exist, it is commonly assumed that the persons’ response
behavior to the items is independent of the choice of the test form. Violations of this assumption
are referred to as item context effects, i.e., the test forms are an unintended source of variability
in item and test scores. Ignoring this construct-irrelevant variance can lead to biased inference
about person’s characteristic measured by the test as well as item characteristics (e.g., item difficulty
and item discrimination), and test characteristics (e.g., reliability and validity). Defining item
context effects as systematic effects of the test form on the persons’ response behavior suggests
that potentially many different item context effects exist depending on the properties that differ
between the test forms. Well-known item context effects are item position effects, test mode effects
and domain-order effects.
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Item position effects refer to systematic changes of item
characteristics represented by item parameter estimates
depending on its position within a test (Mollenkopf, 1950; Leary
and Dorans, 1985; Yousfi and Böhme, 2012). In test for assessing
multiple constructs or domains (e.g., multiple latent traits), the
order in which the domains are measured by the items of the
test can affect the persons’ response behavior. This specific type
of order effects are referred to as domain order effects. Sytematic
differences in the persons’ item responses to computerized tests
compared to traditional paper-and-pecil tests are denoted by test
mode effects.

Empirical findings suggest that item context effects are
quite common. For example, item position effects on item
difficulty appear to play a role in virtually all moderate to long
achievement tests. Most empirical results indicate that items
become increasingly difficult when put toward the end of a test
(e.g., Hohensinn et al., 2008; Meyers et al., 2009; Hartig and
Buchholz, 2012; Albano, 2013; Debeer and Janssen, 2013; Frey
et al., 2017).Domain order effects are well-documented in the area
of attitude measurement [e.g., Harrison and Mclaughlin (1993)],
and also appear to play a role in achievement tests (Mazzeo and
Von Davier, 2009). Similarly, test mode effects are a common area
of research. A meta-analysis by Mead and Drasgow (1993) found
no test mode effects for power tests but substantial test mode
effects for speeded cognitive ability tests.

Most empirical studies focus on just one type of item context
effects. However, different types of item context effects are likely
to operate simultaneously and may interact with each other.
The (position) effect of putting on an item toward the end of a
test might depend on the kind of items presented beforehand.
Hence, such effects appear to be exaggerated in booklet designs
(Shoemaker, 1973; Frey et al., 2009) commonly employed in
large-scale assessments (LSA) of student achievement. Many
LSAs use booklet designs in which items appear in different
positions within different booklets and are preceded and followed
by different items from potentially different domains (e.g.,
reading and mathematics). An even more extreme case is multi-
dimensional computerized adaptive testing (MCAT; Segall, 1996,
2000; Frey and Seitz, 2009). In contrast to booklet designs, the
test form does not exist prior to the test in MCAT. Rather, the
individually selected set of items depends on the test taker’s
ongoing response behavior in the assessment.

Item context effects violate the assumption of standard item
response theory (IRT) models commonly employed for scoring
items and persons. In particular, it is assumed that item and
person parameters are invariant across test forms and are stable
across the course of the testing session. Erroneously assuming
the absence of position and domain order effects is likely to
result in biased item and person parameter estimates and can,
therefore, threaten the validity of test score interpretations and
uses. For example, if mathematics items become more difficult
when presented after science items compared to reading items
in a multidimensional achievement test, the variation in the item
difficulties needs to be taken into account when estimating the
persons’ mathematics competencies. Otherwise, spurious mean
differences in the mathematics competencies result between the
test takers depending on the test forms. Existing IRT models can

be adopted to account for position and domain order effects as
well as their interactions. Doing so enables researchers to assess
and to statistically control for such effects and also allows for fair
comparisons of test scores across test forms. The choice ofmodels
depends on the specific item context effects that are considered.
If the number of test forms or test modes is small to moderate
multiple group IRT models or multi-facet IRT models can be
used. Explanatory IRT models based on generalized linear mixed
models (GLMM) are very flexible in modeling multiple item
context effects.

The aims of this article are 2-fold. First, we show how different
types of item context effects can be analyzed simultaneously
using generalized linear mixed models (GLMM; McCulloch
et al., 2008; Stroup, 2012). Our proposed model builds upon
a multidimensional Rasch model defined by content domains
(mathematics, science, and reading) extended for the impact of
item positions and domain orders, as well as their interactions.
We exemplify how such a model can be theoretically derived
step-by-step depending on the peculiarities of the item and
test design. Second, we examine item position effects and
domain order effects in a test consisting of typical test material
employed in LSAs of student achievement. Therefore, the model
can directly be used as a template in other studies with the
same conceptual test design. The data stems from a large
calibration study of three computerized adaptive tests assessing
mathematics, science, and reading, employing a booklet design
ideally suited for this purpose. This is, the first application
considering both types of context effects simultaneously.

This paper is organized as follows. We start with a brief
review of the theoretical aspects of context effects and clarify the
terminology used in the later parts of the paper. Subsequently,
we present a short overview of existing model-based methods
for surveying item context effects, including the GLMM used in
this study. In the method section, the study design, the sample,
and the data will be introduced. Based on the booklet design
presented, we then formulate a series of models with increasing
complexity accounting for context effects. After presenting the
results of the different models, we close with a discussion of our
findings and the implications of our study.

THEORETICAL BACKGROUND

Context Effects: Position and Domain
Order Effects
Following Yousfi and Böhme (2012), we use the term item context
effects as the generic term, with item position effects and domain
order effects as special instances thereof. In this paper, we refer to
item position effects as differences in the distribution of the item
score Yj of an item j depending on the position in which the item
is presented in the test or the booklet. In multidimensional tests
measuring multiple dimensions such as achievement domains,
domain order effects may occur. Domain order effects refer to
distributional differences in item scores of one or more items of
a domain d depending on the order in which all domains are
measured by the test. Item position effects and domain order
effects may occur simultaneously and interact with each other.
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In particular, the size of item position effects may differ across
domains, which means that the domain functions as a moderator
of the item position effect. The domain order can also moderate
item position effects, i.e., the item position effects in items of
the same domain can vary depending on the domain that was
previously presented.

Note that, in tests where items of the same domain are
presented in succession, a block structure results, meaning that
items belonging to the same domain are typically grouped
together to form one block within the test. Hence, most mixed
domain assessment designs, such as used in PISA (OECD, 2009,
2014) or TIMSS (Olson et al., 2008), might be considered as
being composed of multiple blocks of items belonging to the
same domain. In such tests individuals might first work on
a block of items assessing, reading, then on a block of items
assessing mathematics, and so on. Hence, in such a design
it is useful to distinguish between the position of the block
in which an item is presented and the position of the same
item in the test. Although the block position and the item
position are necessarily interdependent, separating these two
factors facilitates analyses of multiple item context effects. For
example, item position effects can be moderated by the block
position. That is, a positive linear item position effect (practice
effect) may occur when mathematic items are presented at the
beginning of the test (Leary and Dorans, 1985; Nagy et al.,
2018a), whereas a negative item position effect (fatigue effect)
may occur if the same items are presented at the end of the
test (Leary and Dorans, 1985; Ackerman and Kanter, 2009).
In this article, we confine ourselves to investigating effects of
the item position, the block position, and the domain order, as
well as interactions between these factors. Note that, depending
on the test design, additional item contexts could be identified
(e.g., mode of presentation; computer-based vs. paper-based;
Kröhne and Martens, 2011).

Conceptualizing Item Context Effects
Context effects can be defined in a more formal way by
considering the idea of conditional independence of item
responses. The position of an item j in a test or the position of
the block of domain d, as well as the order of domains in a test,
are characteristics of a test. In order to generally define context
effects, we can represent these factors as random variables Wh.
Let W = W1,. . . ,WZ be the vector of all potential item context
factors. Furthermore, let Y = Y1,. . . ,YJ be the items constituting
the measurement model M0 of a potentially multidimensional
latent variable θ0. Let φ0 the vector of model parameters of
M0 including the item parameters. The subscript zero indicates
that context effects are not considered in M0. Hence, item and
person parameters are assumed to be invariant across test forms.
The absence of item context effects can then be defined as the
conditional stochastic independence

Y ⊥W |
(

θ0;ϕ0

)

(1)

Item context effects exist if conditional independence—as
expressed by Equation 1—does not hold. Whenever, the
assumption of conditional independence is violated, context

effects should be explicitly incorporated in the IRTmodel (Yousfi
and Böhme, 2012). This leads to a model different from M0 as
item and/or person parameters are allowed to be different across
test forms depending onW.

Model-Based Approaches for Item Context
Effects
Different approaches have been proposed for dealing with
item context effects. Specific IRT models have been derived to
account for a particular context effect. Especially item position
effects received attention in educational LSA (Hohensinn
et al., 2008, 2011; Hartig and Buchholz, 2012; Debeer and
Janssen, 2013). Using terminology borrowed from multilevel
modeling, existing models can be divided into two major
classes: Fixed and random effects models (Bosker and Snijders,
2011). In fixed effects models, item context effects are
represented by additional, invariant model parameters. For
example, the Linear Logistic Test Model (LLTM; Fischer,
1973, 1995) has been adapted to analyze item position effects
(Hohensinn et al., 2008, 2011).

In random effects models, item context effects can be
represented as random variables. These models are of major
importance if context effects are assumed to vary across items
and/or persons. Wang and Wilson (2005) proposed the use of
random effects facet models to account for local dependencies,
as implied by context and position effects. Multidimensional IRT
(MIRT) models with fixed and random item position effects have
been proposed by Debeer and Janssen (2013).

Because of their flexibility, GLMMs (McCulloch et al., 2008;
Stroup, 2012) recently also became popular in psychometrics. In
this framework, item and/or person parameters are represented
as random effects underlying the observed item responses.
Explanatory IRT models are a class of GLMMs including
additional covariates in modeling item responses (Kamata, 2001;
Rijmen et al., 2003; De Boeck and Wilson, 2004; Janssen et al.,
2004; Van den Noortgate and De Boeck, 2005). Accordingly,
the GLMM framework can be used to model fixed and
random item context effects by including context variables, such
as the item position, as additional predictors in the model
(Hartig and Buchholz, 2012; Debeer and Janssen, 2013). Many
models specified in the GLMM framework can be translated
into equivalent models in the MIRT framework, and vice
versa. Due to its flexibility, the GLMM framework allows for
modeling the impact of multiple context characteristics and their
possible interactions.

THE PRESENT STUDY

Our study focused on item position and domain order effects
on subjects’ item responses in a mixed domain design consisting
of test material typically employed in recent LSAs of student
achievement. In this study, we used data from a study whose
test design allows assessing both kinds of context effects and
their interactions. Our main question was whether item position
effects were moderated by the order of domains measured in
the different test booklets. From a substantive perspective our
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results are informative for researchers planning assessments in
which multiple domains are assessed. The existence of domain
order effects operating in addition to position effects might be an
important issue to be considered in large scale studies of student
achievement. Typical assessments with different test forms seek
to control potential position effects by design (i.e., balancing;
Frey et al., 2009). However, when domain order effects exist
in addition to position effects the commonly used designs may
fall short in achieving this goal. Additionally, domain orders are
often perfectly confounded with item (block) positions, meaning
that position and domain order effects cannot be separated
unambiguously. For example, the PISA data-base has been used
to study item position effects (e.g., Hartig and Buchholz, 2012;
Debeer and Janssen, 2013; Nagy et al., 2018a), although position
and domain order effects cannot be thoroughly separated from
each other.

A second goal of this article is to exemplify the use of GLMMs
for the simultaneous analysis of item position and domain order
effects. We will present a sequence of multidimensional IRT
models specified in the GLMM framework. A step by step
derivation of the models will be provided taking the assessment
design into account. As we will show in the remainder of
the article the GLMM framework provides great flexibility for
modeling the impact of features of the assessment design on
individuals’ item responses that are not easily implemented in the
classical MIRT framework.

Methods
Sample
The data set consisted of 49,128 responses gathered in a
calibration study for three tests measuring student achievement
in the domains of mathematics, science, and reading within a
research project (for more information see Ziegler et al., 2016;
Spoden et al., 2018). The study was carried out in accordance
with the recommendations of the German Research Foundation
(DFG) with written informed consent from all subjects. The
fulfillment of these recommendations was approved by the three
German Federal States of Thuringia, Lower Saxony, and Hessia,
in which data were collected. All subjects participated voluntarily
and gave written informed consent in accordance with the
Declaration of Helsinki. The sample consisted of N = 1,632
students (46% female) being in vocational education and training
in Germany which is organized. The majority of test takers (66%)
were in their third year of vocational training. The mean age
was M = 21.36 (SD = 3.03). Eighty-Seven Percent of the test
takers had German citizenship. Since the analysis of potential
domain order effects is central in our study, we only included
test takers who answered items from at least two domains and
discarded those who provided item responses in only one of
the three domains. Therefore, we used 48,986 responses from
N = 1,598 test takers in the further statistical analyses. Test
takers completed, on average, 31 items (25th quantile = 31, 50th
quantile, and 75th quantile= 33).

Booklet Design and Assessment Procedure
Achievement was assessed by an item pool consisting of 339
items (133 mathematics, 133 science, and 73 reading items). The

distribution of the items to the test takers was accomplished
with a two-level booklet design. At the first level, domain-
specific blocks of items were balanced (Table 1). The blocks
for mathematics, science, and reading contained 12, 12, and
9 items respectively. In each of the 18 cells of level one, a
Youden Square Design (YSD) was constructed using the freely
available software Youden (Frey and Annageldyev, 2015). YSDs
are balanced incomplete block designs that are frequently used
as booklet designs in LSAs such as PISA. The YSD used in
this study assured that all items appeared with equal frequency
in the complete set of test booklets, that each item appeared
in each position in a test booklet with equal frequency, and
that each pair of items appeared together in a test booklet with
equal frequency.

The booklet design implied that each mathematics and
science item was presented in the positions 1 to 33. As only 9
reading items were included in a booklet, reading items were
presented in the positions 1–9, 13–21, and 25–33. Between 123
and 199 responses were observed for each item (mathematics:
M = 133.39, range = 125–143; science: M = 133.69,
range = 123–144; reading: M = 188.10, range = 168–199).
On average, 4.04 responses were observed for each mathematics
items in each position. 4.05 responses to each science item and
6.97 responses to each reading item were, on average, obtained in
each position.

The tests were administered as an online computer-based test.
Each testing session started with a 10-min-long standardized
instruction. The test takers were informed about the domains
being assessed, but participants did not know the order of the
domains in their individually assigned test form. The test forms
were randomly assigned to the students, who had, in total, 60min
to complete the test.

IRT Models for Item Position and Domain Order

Effects
The data were analyzed by a series of GLMMs, assuming that
both persons and items were random (De Boeck, 2008). Items
were considered as random because of the large number of
items available (339 items), making the estimation of separate
item parameters impractical. Considering items and persons
to be random results in a crossed-random structure (Locker
et al., 2007; Baayen et al., 2008). The responses are nested
within items and persons. The person side was modeled by
three correlated random effects referring to the domain specific
ability variables mathematics (θM), science (θS), and reading
(θR). The ability vector θ was assumed to follow a multivariate
normal distribution MVN(0,6) with the mean E(θ) = 0 and
the unrestricted covariance matrix Σ . On the item side, we
assumed three independent random effects ζM , ζS, and ζR, which
were assumed to be normally distributed with zero mean and
Var(ζd) each.

In developing the full model, we began with M0, the
three-dimensional random Rasch model (De Boeck, 2008), not
accounting for context effects. This model can be written as a
random slope model for the indicator variables IM , IS, and IR,
which indicate whether the response Yijd refers to a mathematics,
science, or reading item. The level-1 model equation of the
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TABLE 1 | The six domain orders used in the test booklets (Youden squares).

Booklet

Block position 1 2 3 4 5 6

1 Reading Reading Science Science Mathematics Mathematics

2 Mathematics Science Reading Mathematics Science Reading

3 Science Mathematics Mathematics Reading Reading Science

logit of person i who answered item j of domain d can be
written as

l
(

Yijd

)

= βijMIM + βijSIS + βijRIR (2)

The level-2 model equation of the random slope of domain d is

βijd = γd + θid + ζjd (3)

where γd is the fixed effect for domain d. As E(θ) = 0, γd can be
interpreted as the mean domain-specific item easiness.

Item position effects are the most frequently investigated type
of item context effects. Such effects are incorporated into model
M1. We entered the position p of item j of domain d presented
to person i as a covariate denoted by Xijpd. To simplify the
notification, we simply writeXp in the remainder.Xp is the level-1
covariate, so that Equation 1 extends to

l
(

Yijpd

)

= βijMIM + βijSIS + βijRIR + λdXp (4)

To facilitate the interpretation of model parameters, Xpmight be
standardized. In our case, we set Xp = (p−17)/32. As a result, the
coefficient λd was the expected change in the logit of a randomly
drawn person solving a randomly selected item of domain dwhen
this item is presented at position 33 instead of the first position
in the test. In the model suggested, we assumed the existence of
domain specific item position effects by allowing the regression
coefficient λd to vary across the domains, so that

λd = κMIM + κSIS + κRIR (5)

In Equation 5, κd is the mean logit change in a randomly selected
item out of domain d if it were presented in the last instead of the
first position of the test.

The model M1 is an explanatory IRT model with the item
position as a level-1 predictor. The main restriction of this
model is that the item position effect has a linear form, and
that the item position effect is a fixed effect which does not
have different values for different items and/or persons. Both
restrictions can be relaxed in the GLMM framework. Nonlinear
forms of item position effects can be examined by adding higher-
order polynomials of the position variable Xp(e.g., X

2
p and X3

p).
Random item position effects across persons and across items can
be taken into account by defining a random coefficient λijd that
can vary across persons and items. In the present study we also
employed these extended parameterizations of M1 by checking
for nonlinear trends, and for random effects on the person and

item side. However, as we found no evidence for random effects,
we do not investigate this issue any further.

As M1 only accounts for item position effects, the model
was extended to include domain order effects, leading to a
new model (M2). M2 not only assumed position and domain
order effects, but also allowed for interactions between the two
effects. For example, a position effect in science items may
be stronger or weaker depending on whether mathematics or
reading items were assigned previously. Following this idea, we
took the domain order (as an additional predictor) into account
in M2.

In the booklet design employed in this article, item position
and domain order are not independent from one another. If, for
example, a mathematics item was presented in a test booklet of
the domain order mathematics (M), science (S), and reading (R),
then the item was necessarily presented in one of the positions
1–12. Hence, conditioning on the domain order restricts the
range of possible positions in which items of a particular domain
can be presented. Therefore, the block structure of the test needs
to be taken into account.

We included variables Bijdb which indicate that an item j of
domain d was presented to person i in block position b of the
test. To keep notation simple, we use the short form Bb in the
remainder of the article. The first item block position served as
the reference block, so that two additional indicator variables B2
and B3 were included that jointly indicate a response to an item of
the first block (B2 = 0, B3 = 0), the second block (B2 = 1, B3 = 0),
or the third block (B2 = 0, B3 = 1).

In order to yield a model with parameters that can be
interpreted unequivocally, the item positions’ were within-block
standardized in M2 as Xpb =

(

2pb − Pb − 1
)

/2 (Pb − 1), where
Pb stands for number of items in block b, and pb refers to the
within-block item position of item j. That is, the variable Xpb

always has a value of −0.5 when an item j was presented in the
first position of block b, whereas a value of 0.5 indicates that the
item was presented at the last position of block b. Due to the
within-block standardization of the item position variable, the
logistic regression coefficients attached to Xpb stand for the logit
change if a randomly chosen item in domain d is presented in the
last instead of in the first position of block b.

So far, the model equation of model M2 can be written as:

l
(

Yijdpbt

)

= βijMIM + βijSIS + βijSIS + αd2tB2 + αd3tB3

+ λdbtXpb, (6)

where αd2t and αd3t stand for the effects of the block positions
indicated by B2 and B3, and λdbt stands for the within-block
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position effect. Note that these parameters are indexed by a newly
introduced index t standing for the domain order T. Hence,
block position effects can have different values depending on the
domain d and the domain order t, whereas the size of the within-
block item position effects might also depend on the block b
besides the domain d, and the domain order T.

Formally, αdbt is defined as a function f (D,T) of the domain
D = d and the domain order of a test booklet, denoted by T = t.
Hence, the effect of a block b is allowed to have different values
for each combination of d and t (e.g., the effect of b = 2 might
be weakest in the science domain when assessed after a reading
block). Similarly, λdbt is defined as a function f (D,B,T) of the
domain, the block position and the domain order. So, the item
position effects may vary depending on the domain D = d, the
position of the block B= b, and the domain order T = t.

In the present investigation, the variable T has six values,
referring to the six possible orders of the three domains;
mathematics (M), science (S), and reading (R). In our final
model, we used six indictor variables TMSR, TMRS, TSMR, TSRM ,
TRMS, and TRSM . The order of subscripts represents the domain
order in a test booklet. It is important to note that, in the
present case, each combination of a domain d and a block
position b is only consistent with two domain orders. If, for
example, science was presented in the second item block, it
was necessarily administered in a test with either the domain
order M-S-R or R-S-M. This means that a block position effect
and a within-block item position effect in a given domain
and block (i.e., a specific combination of d and b) can only
have two different values that depend on the possible domain
orders. Furthermore, as it appears reasonable that individuals
are not affected by forthcoming parts of the test, the impact
of domain order effects could be constrained for the first
block position b = 1. For example, the within-block item
position effects in mathematics assessed in the first item block
position should not be affected by the domains assessed in the
subsequent block.

Given the aforementioned restrictions on the impact of
domain orders, and assuming the existence of linear item
position effects within item blocks, the full reduced-form model
equation of M2 recurring on domain order indicators is given as:

l
(

Yijdpb

)

= γM1IM + γS1IS + γR1IR

+γ
(S)
M2IMB2 + γ

(×)
M2 TRMSIMB2 + γ

(M)
S2 ISB2

+γ
(×)
S2 TRSMISB2 + γ

(M)
R2 IRB2 + γ

(×)
R2 TSRMIRB2

+γ
(SR)
M3 IMB3 + γ

(×)
M3 TRSMIMB3 + γ

(MR)
S3 ISB3

+γ
(×)
S3 TRMSISB3 + γ

(MS)
R3 IRB3 + γ

(×)
R3 TSMRIRB3

+κM1B1IMXpb + κS1B1ISXpb + κR1B1IRXpb

+κ
(S)
M2B2IMXpb + κ

(×)
M2 TRMSB2IMXpb

+κ
(SR)
M3 B3IMXpb + κ

(×)
M3 TRSMB3IMXpb

+κ
(M)
S2 B2ISXpb + κ

(×)
S2 TRSMB2ISXpb + κ

(MR)
S3 B3ISXpb

+κ
(×)
S3 TRMSB3ISXpb

+κ
(M)
R2 B2IRXpb + κ

(×)
R2 TSRMB2IRXpb + κ

(MS)
R3 IRXpb

+κ
(×)
R3 TSMRB3IRXpb

+θiMIM + ζjMIM + θiSIS + ζjSIS + θiRIR + ζjRIR

(7)

The stepwise derivation of this model is presented in
Appendix A. Here, it should be noted that all effects of the
item block position are represented by the parameters γdb,
where the first subscript d indicates the domain of the item, and
the second subscript b indicates the block in which the item
was presented. The superscripts indicate the domains of items
that were presented previously and the order of the domains.

For example, γ
(M)
S2 indicates the average effect of presenting

science items in block two (b = 2), following mathematics

items presented in the first block (b = 1). Similarly, γ
(SR)
M3 is the

average logit change when mathematics items are presented
in the third item block of a test with the domain order S-R-M
instead of the first item block. Differences in block position
effects and within-block item position effects are marked by
“×”. For example, only two possible domain orders—M-S-R and
R-S-M—exist when science items are presented in the second
item block. We chose the domain order M-S-R as the reference
for block position effects in the science items of block two.

Therefore, γ
(×)
S2 is the difference γ

(R)
S2 − γ

(M)
S2 and represents

the interaction effect between domain order and block position
within items of the same domain.

The domain-specific within-block item position effects in the

item blocks one, two and three refer to the parameters κd1, κ
(.)
d2
,

and κ
(..)
d3

. The superscripts of κ
(.)
d2

and κ
(..)
d3

indicate the domains of
previously presented items and their order. Differences between
within-block item position effects in items of the same domain
presented in the same item block are marked by (×). For

example, κ
(S)
M2 is the average logit change when a randomly chosen

mathematics item is presented in the last position of item block

two in a test that started with science items. However, κ
(×)
M2 is

the difference κ
(R)
M2 − κ

(S)
M2 between the item position effect of

mathematics items of block two in a test with the domain order
R-M-S instead of S-M-R. Hence, parameters κ

(×)
db

represent the
interaction of the domain, the block position, the domain order,
and the within-block item position. The translation of the γ -
and κ-parameters of Equation 7 into the α- and λ-parameters of
Equation 6 is summarized in Table 2.

The most complex model (M2) presented here was
developed based on the booklet design employed in the
present study (Table 1). However, the setup provided here can
be accommodated to fit other booklet specifications, thereby
providing a general model for studying within-block position
effects, block position effects, domain order effects, and their
interactions.

Model Estimation and Hypothesis Testing
All models presented here can be fitted in R using the
glmer-function of the lme4-package (Bates et al., 2014) with
ML estimation, thereby allowing model comparisons by the
likelihood ratio (LR) test. We also used the Akaike’s information
criterion (AIC) and the Bayesian information criterion (BIC)
for model comparison. Additional hypotheses, which could be
formulated as linear and non-linear functions of parameters
of fitted models, were tested by means of the Delta method
(Oehlert, 1992). In our analyses we used the deltamethod function
implemented in the R-package car (Fox and Weisberg, 2011).
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TABLE 2 | Decomposition of block position effects αdbt and within-block item

position effects λdbt as a function of domain order specific effects (Equation 6).

Block position b = 1 Block position b = 2 Block position b = 3

BLOCK POSITION EFFECTS αdbt

αM2(SMR) = γ
(S)
M2 αM3(SRM) = γ

(SR)
M3

αM2(RMS) = γ
(S)
M2 + γ

(×)
M2 αM3(RSM) = γ

(SR)
M3 + γ

(×)
M3

αS2(MSR) = γ
(M)
S2

αS3(MRS) = γ
(MR)
S3

αS2(RSM) = γ
(M)
S2

+ γ
(×)
S2

αS3(RMS) = γ
(MR)
S3

+ γ
(×)
S3

αR2(MRS) = γ
(M)
R2 αR3(MSR) = γ

(MS)
R3

αR2(SRM) = γ
(M)
R2 + γ

(×)
R2 αR3(SMR) = γ

(MS)
R3 + γ

(×)
R3

WITHIN-BLOCK ITEM POSITION EFFECTS λdbt

λM1(MSR) = κM1 λM2(SMR) = κ
(S)
M2 λM3(SRM) = κ

(SR)
M3

λM1(MRS) = κM1 λM2(RMS) = κ
(S)
M2 + κ

(×)
M2 λM3(RSM) = κ

(SR)
M3 + κ

(×)
M3

λS1(SMR) = κS1 λS2(MSR) = κ
(M)
S2

λS3(MRS) = κ
(MR)
S3

λS1(SRM) = κS1 λS2(RSM) = κ
(M)
S2

+ κ
(×)
S2

λS3(RMS) = κ
(MR)
S3

+ κ
(×)
S3

λR1(RMS) = κR1 λR2(MRS) = κ
(M)
R2 λR3(MSR) = κ

(MS)
R3

λR1(RSM) = κR1 λR2(SRM) = κ
(M)
R2 + κ

(×)
R2 λR3(SMR) = κ

(MS)
R3 + κ

(×)
R3

Block position effects for b = 1 are not available because b = 1 serves as the reference

position for defining block position effects for b > 1.

Results
Model Comparisons
In this section, we present the results of the models M0, M1,
and M2 that were used to test increasingly complex hypotheses
about item position and domain order effects. The results are
presented for each model separately, starting with the three-
dimensional Rasch model with random item- and person-effects
(M0). No context effects were taken into account in M0, which
mainly serves for comparison. The standard deviations of the
three latent person variables ranged from 0.710 in science
to 0.867 in mathematics (Table 3). The latent abilities were
strongly correlated with each other (0.832–0.907; see Table 3).
The estimated standard deviations of the three random item
effects ranged from 1.075 in reading to 1.316 in mathematics.
The coefficients γ̂M= 0.098 (SE = 0.117, p = 0.408), γ̂S=

0.503 (SE = 0.114, p < 0.001), and γ̂R = 0.334 (SE = 0.129,
p = 0.010) can be interpreted as differences between the means
of person’s latent proficiency variables θd and the item difficulties
of items belonging to domain d. Thus, the mean trait level in
science was 0.503 logits higher than the mean item difficulty
of science items. The same holds true for reading items. No
mean difference was found between trait and item difficulties
in mathematics.

Model M1 allows for estimating and testing the interaction
between item position and the domain to study differences in
position effects across the three domains mathematics, science,
and reading. Before we fitted the multidimensional model M1
to the data, we first applied unidimensional models separately to
each domain in order to find the functional form best suited for
describing the item position effects. Possible nonlinear position
effects were explored by including quadratic and cubic terms into
the models. Based on LR tests, models with linear position effects
were preferred for science [χ2(2)= 2.806, p= 0.246] and reading

TABLE 3 | Estimated standard deviations and correlations of random effects of

the different models.

Model Domain Items Persons

SD(ζdj ) SD(θdi ) Correlations

Mathematics Science

M0 Mathematics 1.316 0.866

Science 1.268 0.710 0.907

Reading 1.075 0.799 0.832 0.839

M1 Mathematics 1.316 0.859

Science 1.269 0.697 0.909

Reading 1.077 0.799 0.847 0.854

M2r Mathematics 1.315 0.836

Science 1.268 0.680 0.913

Reading 1.077 0.770 0.848 0.854

[χ2(2) = 2.142, p = 0.343]. For mathematics, a model including
a nonlinear position effect was superior in terms of model fit
[χ2(2) = 12.560, p = 0.002]. Linear position effects found for
science (κ̂S = −0.487, p < 0.001) and reading (κ̂R = −0.224,
p = 0.009) were negative. Hence, logits decreased on average by
0.487 (science) and 0.224 (reading), when an item’s position in
the test changed from the first to the last position in the test. In
mathematics, only the coefficient of the quadratic item position
term was significantly negative (κ̂M(qu.)= −0.986, p < 0.001),
whereas coefficients of the linear and the cubic term did not
differ significantly from zero [linear: κ̂M(lin.)= 0.056, p= 0.745;
cubic: κ̂M(cub.) = −0.351, p = 0.692]. Hence, correct responses
to mathematics items were, on average, more likely when
presented in the middle instead of the beginning or the end of
the test.

The multidimensional model M1 thus included linear
item position effects for reading and science that were
allowed to be different in magnitude, and a quadratic
item position effect for mathematics. An LR test was
applied to test the domain-by-item position interaction
effect, providing a statistically significant interaction effect
[χ2(2) = 12.650, p = 0.002]. This interaction effect is
illustrated in Figure 1, which shows the observed mean
proportions of correct responses averaged over all items,
depending on the item position and the domain. We did
not extend M1 for random item position effects across
persons and items, because our data did not support
their existence1.

In M2, the item position was broken down into the block
position in which items of the same domain were administered
in the test and the within-block item position. Table 4 shows the
estimates of model M2. The resulting pattern revealed significant
block position and block position-by-domain order interaction
effects (see Table 4, upper three panels, fixed effects referring
to block position 1, 2 or 3). With the exception of a single

1Existence of random item position effects across items and persons were tested in

all three domains by means of LR Tests. Random item position effects were either

not significant or perfectly correlated with other random effects in the model. The

later indicates overparameterization of the GLMM (Baayen et al., 2008).
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FIGURE 1 | Proportions of correct responses averaged over all items of a domain depending on the item position within the test.

parameter estimate, all within-block item position effects and
corresponding interaction effects were not significantly different
from zero (see Table 4, lower panel, fixed effects of within-
block item position effects). Indeed, a reduced version of model
M2 (i.e., M2r) without within-block position effects did not
result in a significantly worsened model fit [χ2(15) = 18.097,
p = 0.258]. Model M2r include only the block-position, the
domain order and the interaction of these two item context
factors. However, this model fitted significantly better to the
data than model M1 [χ2(9) = 94.186, p < 0.001]. We
also found that ignoring the interaction between the block-
position and the domain order significantly worsened model fit
[χ2(6)= 88.174, p < 0.001].

Table 5 shows the AIC and BIC values of the fitted models.
The Model M0 has the highest and Model M2r the lowest
AIC. Due to stronger penalty of model complexity the highest
BIC value was found for Model M2. Model M1 shows the
lowest BIC values. Nevertheless, we finally accepted M2r as the
appropriate model to account for item context effects in our data,
because of the substantial logit differences within single domains
depending on the domain order. These results contradict the
assumption of simple linear item position effects in Model M1.
The final model M2r reveals that the response behavior is affected
by the block position, the domain order and the interaction
effects of both context factors, and that the items’ absolute
positions in the test have a rather small effect that appears
to be negligible.

As parameters of logistic regressions with different
fixed parts cannot be compared across models (Mood,
2010), we present the estimates of the fixed effects of
both models, M2 and M2r in Table 4. The estimated
standard deviations and correlations of the random effects
of M0, M1, and M2r are presented in Table 32. Due

2Estimated standard deviations and correlations of the random effects obtained by

Models M2 and M2r are nearly identical. Therefore, results of Model M2 are not

included in Table 5.

its complexity, we examine the results of Model M2r in
more detail.

Examination of Position Effects Moderated
by Domain Order
The results of our analyses are best illustrated by considering the
item means, depending on the test form, the block position, and
the within-block item position (Figure 2). Mathematics items
were, on average, answered correctly more often when presented
in the middle of the test instead of at the beginning. However,
this effect differs across domain-orders and was stronger when

science items preceded mathematics items (S-M-R; γ̂
(S)
M2 = 0.415,

SE = 0.085, p < 0.001). Compared to this result, the logits

were significantly lower (R-M-S; γ̂
(×)
M2 = −0.266, SE = 0.088,

p = 0.003) but still significant when reading was administered

first (R-M-S; γ̂
(S)
M2 + γ̂

(×)
M2 = 0.148, SE = 0.148, p = 0.022).

The results of Model M1 implied decreasing probabilities of
correct responses to mathematics items presented in the end
of the test. However, as Model M2r revealed this finding
was mainly driven by the comparably low rates of correct
responses to mathematics items of students working on the
test order R-S-M. Their mean logit was even lower compared
to students who answered mathematics in the beginning of

the test (γ̂
(SR)
M3 + γ̂

(×)
M3 = −0.180, SE = 0.080, p = 0.013). In

contrast, logits continued to be higher in the third position,
compared to the first block position, when the three domains

were presented in the order S-R-M (γ̂
(SR)
M3 = 0.338, SE = 0.084,

p < 0.001). Results for science visualized in Figure 2 provide a
quite consistent picture of lower logits in later block positions.
Nevertheless, the block position effects were also moderated by
the domain order. Logits of science items in block position
b = 2 following mathematics items were on average significantly

smaller (γ̂
(M)
S2 = −0.196, SE = 0.076, p = 0.010) and even

more negative when science was assessed after working on

reading items (γ̂
(×)
S2 =-0.268, SE = 0.089, p = 0.002). The

domain order continued to moderate the block position effect
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TABLE 4 | Estimated fixed effects of Models M2 and M2r.

Term Param. Estimate (SE)

Model M2 Model M2r

Est SE p Est SE p

FIXED EFFECTS REFERRING TO BLOCK POSITION 1

IM γM −0.018 0.125 0.882 −0.019 0.125 0.877

IS γS 0.752*** 0.120 < 0.001 0.751*** 0.120 < 0.001

IR γR 0.402** 0.133 0.003 0.401** 0.133 0.003

FIXED EFFECTS REFERRING TO BLOCK POSITION 2

IM × B2 γ
(S)
M2 0.415*** 0.085 < 0.001 0.415*** 0.085 < 0.001

IS × B2 γ
(M)
S2

−0.197** 0.076 0.010 −0.196* 0.076 0.003

IR × B2 γ
(M)
R2 −0.429*** 0.078 < 0.001 −0.428*** 0.078 < 0.001

IM × B2 × TRMS γ
(×)
M2 −0.268** 0.089 0.002 −0.265** 0.088 < 0.001

IS × B2 × TRSM γ
(×)
S2

−0.166* 0.082 0.042 −0.165* 0.082 0.010

IR × B2 × TSRM γ
(×)
R2 0.723*** 0.094 < 0.001 0.723*** 0.094 0.044

FIXED EFFECTS REFERRING TO BLOCK POSITION 3

IM × B3 γ
(SR)
M3 0.338*** 0.084 < 0.001 0.344*** 0.084 < 0.001

IS × B3 γ
(MR)
S3

−0.564*** 0.074 < 0.001 −0.561*** 0.074 0.002

IR × B3 γ
(MS)
R3 −0.249** 0.082 0.002 −0.246** 0.082 < 0.001

IM × B3 × TRSM γ
(×)
M3 −0.518*** 0.092 < 0.001 −0.521*** 0.092 < 0.001

IS × B3 × TRMS γ
(×)
S3

0.246** 0.079 0.002 0.246** 0.079 0.003

IR × B3 × TSMR γ
(×)
R3 0.132 0.102 0.197 0.131 0.102 0.201

FIXED EFFECTS OF WITHIN-BLOCK ITEM POSITION EFFECTS

IM × B1 × Xp κM1 0.097 0.099 0.329

IS × B1 × Xp κS1 0.083 0.104 0.426

IR × B1 × Xp κR1 0.075 0.093 0.421

IM × B2 × Xp κ
(S)
M2 0.232 0.15 0.121

IS × B2 × Xp κ
(M)
S2

0.023 0.149 0.876

IR × B2 × Xpb κ
(M)
R2 −0.009 0.15 0.952

IM × B2 × TRMS × Xpb κ
(×)
M2 −0.391* 0.191 0.041

IS × B2 × TRSM × Xpb κ
(×)
S2

−0.242 0.198 0.220

IR × B2 × TSRM × Xpb κ
(×)
R2 −0.225 0.217 0.298

IM × B3 × Xpb κ
(SR)
M3 −0.209 0.152 0.168

IS × B3 × Xpb κ
(MR)
S3

−0.149 0.144 0.303

IR × B3 × Xpb κ
(MS)
R3 −0.294 0.165 0.075

IM × B3 × TRSM × Xpb κ
(×)
M3 0.107 0.205 0.602

IS × B3 × TRMS × Xpb κ
(×)
S3

0.076 0.195 0.697

IR × B3 × TSMR × Xpb κ
(×)
R3 0.199 0.242 0.410

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 | AIC and BIC of the different models.

M0 M1 M2 M2r

AIC 55585.62 55539.15 55474.87 55462.97

BIC 55691.21 55671.14 55818.04 55674.15

in third block position relative to the first (γ̂
(×)
S3 = 0.246,

SE= 0.079, p= 0.002).
Block position effects in reading items were most strongly

moderated by the domain order. In line with results of Model
M1, results of M2r confirmed an average decrease in logits

in reading items when presented in the second item block

following mathematic items (γ̂
(M)
R2 = −0.428, SE = 0.078,

p < 0.001). However, M2r also revealed an average increase
in logits of reading items at block position two, when science
items were presented first ( 0.295, SE = 0.080, p < 0.001).
When reading was assessed in the third instead of the first
block of the test, the mean logit was also significantly lower

(γ̂
(MS)
R3 = −0.246, SE = 0.082, p = 0.003), but this decline

differed not significantly across the domain orders (γ̂
(×)
R3 = 0.132,

SE= 0.102, p= 0.197).
Taken together, the empirical results illustrate that multiple

item context effects can interact in a complex way. Such
interaction effects may remain undetected if analyses
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FIGURE 2 | Proportions of correct responses across all items of a domain depending on the item position within the test and the domain order.

focus on just one of several item context effects. This can
result in biased item and person parameter estimates and
may lead to invalid explanations and interpretations of
such effects.

DISCUSSION

Items are always presented in a context. Differences in item score
distributions which depend on the context in which a particular
item is presented are denoted as context effects. In recent years,
such effects have received more attention suggesting that they
may be the rule rather than the exception (Leary and Dorans,
1985; Brennan, 1992). However, most recent studies have focused
on one specific kind of item context effects, namely item position
effects (Meyers et al., 2009).

The aims followed in the present article were 2-fold. First,
we investigated potential interactions between item context
effects by considering the effects of the domain order and
the item positions simultaneously. Second, we presented the
GLMM framework (McCulloch et al., 2008) as a flexible approach
for studying multiple context effects. The models proposed in
this article were derived considering the peculiarities of the
booklet design underlying our data. Therefore, its suitability
in other applications must be carefully checked. However, we

demonstrated how a (multidimensional) IRT model can be

derived that takes several interacting and interdepend item
context effects into account. The detailed model derivations may

serve as guiding examples for other applications. In general, we
followed the basic idea of explanatory IRT models and specified

GLMMs with the item context factors as additional covariates.
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The main result of the empirical analyses in this study is that
two context effects, namely the item position and the domain
order effects, may interact substantially. In many achievement
tests, it was found that items showed a tendency to become
more difficult when presented in later positions of the test. At
first glance, this finding was also confirmed in our analyses,
when we exclusively focused on item position effects. However,
including the domain order as an additional item context factor
revealed a much more complex pattern. Items can become easier
as well as more difficult depending on the domains presented
in the beginning of the test. These results are also theoretically
challenging, as they are hardly consistent with widely accepted
explanations of item position effects as fatigue or practice effects.
In fact, in some cases, domain order effects appeared to be much
stronger than position effects. For example, the difference in the
mean logits of reading items presented in the second item block
between tests of the domain order S-R-M and M-R-S was 0.723.
As the standard deviation of the latent reading proficiency was
s(θR) = 0.77, this effect corresponds to a standardized effect of
Cohen’s d = 0.940.

Note that these logit differences between groups of test takers
with different versions of test are only interpretable as domain
order effects because of the randomized assignment of the test
forms. In nonrandomized test designs (e.g., with self-selected
test versions) the same logit differences could also reflect true
mean differences in the distributions of the latent variables (i.e.,
the person parameters) between groups with different domain
order preferences. In practical applications of complex test and
item designs, the analyses of item context effects should be part
of the quality assurance, just like analyses of differential item
functioning (DIF), item DRIFT or other approaches to check
model assumptions. Our findings suggest that reliable analyses
of item context effects require (a) strong test and items designs,
including randomized assignment of test forms, and (b) to take
potential dependencies and interactions between multiple item
context effects into account by analyzing them simultaneously.

Despite the substantial item context effects, the distributions
of random item and random person effects are very similar across
the models M0, M1, M2, and M2r. The estimated variances of
item and person parameters as well as the estimated correlation
structures of the three domain-specific latent proficiencies hardly
differ across models (see Table 5). Considering the substantial
item context effects found in our data example, with effect
sizes close to one, this finding reveals that variances and
correlations of random effects can be insensitive to such effects.
Hence, stability of estimated variance-covariance structures
across models does not imply that item context effects are
negligible. Note that these findings are not sufficient to rule out
potentially biased correlations with external variables of interest.
In general, item context effects induce construct irrelevant
variance and may lead to flawed correlation coefficients. This
issue has been demonstrated in the case of item position effects
(Nagy et al., 2018a,b).

Practical Implications
Our study clearly indicates that the domain order can
substantially affect the response behavior in mixed domain

booklet designs in achievement tests. This result is worrisome,
as designs of this kind are quite common in many LSAs of
student achievement. In these assessments, a lot of effort is made
to account for position effects by using booklet designs with
balanced block positions. However, in most designs, domain
orders are not balanced, and are sometimes even perfectly
confounded with block positions. As a consequence, the impact
of position effects and domain order effects on test results cannot
be separated (Brennan, 1992).

Our results strongly indicate that domain order effects
are an issue of concern when assessing student achievement.
Careful development of booklet designs would not only enable
researchers to quantify the impact of domain orders on
individuals’ item responses, but also to derive more purified
ability estimates. In most cases, item context effects are expected
to be a nuisance rather than a benefit. The models used
here may not only be used to statistically control for item
context effects but to obtain person parameter estimates adjusted
for item context effects. GLMMs allow for the computation
of the empirical Bayes estimates of individual proficiency
levels. Due to the specification of the fixed part of the more
complex models M1 and M2 with the first item block as
the reference block, all person parameters were estimated as
though all three domains were administered at the beginning
of the test. However, further work is needed to learn more
about the benefits and limitations of employing such complex
scoring procedures.

Note that taking the alternative route of employing only
one fixed order of domains to all subjects in a study is not a
solution to the problem. Domain order effects, as well as position
effects, are as likely to occur but, in contrast to systematically
rotated booklet designs, it is not possible to quantify and control
them (Brennan, 1992). This argument also applies to the typical
procedure of applying different tests in a fixed order to all
individuals participating in a study. A sequence of tests assessing
different domains is similar to a sequence of item blocks assessing
different domains. Taken together, much more work is needed
in order to gain a fuller understanding of the unwarranted side
effects of exposing individuals to sequences of domain-specific
tests or test parts.

Limitations and Further Research
As in any other empirical study, this study is affected by
limitations which call for further research. The present design
does not enable an estimation of a “pure” position effect on
the basis of test takers working on only one domain. Although
not strictly necessary for examining the moderating role of
domain order effects, estimates of “purified” position effects
might serve as a useful benchmark for evaluating the size of
domain order effects.

Although the modeling approach proposed turned out to be
complex, the resulting models might still appear to be overly
simplified. For example, the GLMM framework is restricted to
one-parameter IRT models. It would be interesting to implement
the proposed models in different frameworks, allowing for
more complex measurement models, such as the two or three-
parameter IRT model. A further point that might be criticized is
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that ourmodeling approach did not include random item context
effects. Such effects can, in principle, be estimated in the GLMM
framework when simpler models are envisaged. However, we did
estimate item position models (M1), including random effects
on the person and item side. However, as the results indicated
that the models were overparameterized, we did not pursue these
models any further in this article (results available from the
first author).

The results of our study cannot be generalized automatically
to other multidimensional tests that are used for assessing
different theoretical constructs. The analyses of multiple
context effects and interactions between them have never
or rarely been tested systematically. This is an area of
further research.

This paper was not intended to provide a theoretical
explanation of the various item context effects we found
empirically: In the existing literature, fatigue effects, practice
effects, and backfire effects (Leary and Dorans, 1985; Tourangeau
and Rasinski, 1988; Ackerman and Kanter, 2009; Nagy et al.,
2018a) are discussed as underlying mechanisms of item
context effects. The contemporary considerations of several
context effects may support or challenge such interpretations.
Given the accumulation of evidence about the impact of
context effects on individuals’ test behavior, more investigations
are needed in which these phenomena are investigated
from a substantive perspective to elucidate the underlying
psychological mechanisms.
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