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The automatic assessment of music performance has become an area of increasing

interest due to the growing number of technology-enhanced music learning systems.

In most of these systems, the assessment of musical performance is based on

pitch and onset accuracy, but very few pay attention to other important aspects of

performance, such as sound quality or timbre. This is particularly true in violin education,

where the quality of timbre plays a significant role in the assessment of musical

performances. However, obtaining quantifiable criteria for the assessment of timbre

quality is challenging, as it relies on consensus among the subjective interpretations of

experts. We present an approach to assess the quality of timbre in violin performances

using machine learning techniques. We collected audio recordings of several tone

qualities and performed perceptual tests to find correlations among different timbre

dimensions. We processed the audio recordings to extract acoustic features for

training tone-quality models. Correlations among the extracted features were analyzed

and feature information for discriminating different timbre qualities were investigated.

A real-time feedback system designed for pedagogical use was implemented in

which users can train their own timbre models to assess and receive feedback on

their performances.

Keywords: automatic assessment of music, machine learning, violin performance, tone quality, music

performance

1. INTRODUCTION

In recent years, several computational systems have been developed with the aim of enhancing
music education and instrument tuition. In these systems automatic assessment of musical
performance plays a central role. However, human assessment is often subjective, thus making the
implementation of an automatic assessment system a significant challenge. In music education,
assessment relies on consensus of highly trained experts who produce subjective interpretations of
performance (Thompson and Williamon, 2003; McPherson and Schubert, 2004). Even reducing
musical performance to its simplest component part (i.e., a single tone) still poses a challenge
(Zdzinski, 1991). From a technical perspective, the tone quality of a performed sound is
a result of numerous acoustic properties including pitch, loudness, and harmonic content
(Terasawa et al., 2005; Eerola et al., 2012; Elliott et al., 2013). In contrast, the language used
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by musicians to describe tone can be highly personal without
clear correspondence with the psychoacoustic properties they
describe and can be affected by changes in pitch and dynamics
(Melara and Marks, 1990). In this paper we consider timbre and
tone as the same attribute of sound.

Attempting to obtain reliable models for the assessment of
music performance involve several challenges. On one hand,
most of the computational systems for music education rely
only on pitch and timing accuracy assessment, leaving aside
other relevant aspects of musical interpretation, such as timbre
quality. On the other hand, a high degree of subjectiveness exists
regarding the definition of high-level semantic labels for tone
quality among music experts, which complicates significantly
the generation of timbre models consistent with the experts’
semantic labels. This is particularly evident in instruments
such as the violin, where the quality of tone is a particularly
relevant aspect in the overall quality of a musical performance
(Hodgson, 1934; Galamian, 1962).

In this paper we present a machine learning approach
for the automatic assessment of tone quality in violin music
performance. Our aim is firstly to study the correlations between
expert-defined tone quality semantic labels found in the literature
and the features extracted from the audio signal; secondly,
to generate machine learning models to classify different tone
quality dimensions of violin sounds based on audio features;
and thirdly to incorporate the obtained models in a technology-
enhanced violin learning system to provide real-time feedback of
such tonal dimensions. We recorded audio examples of expert-
defined tone qualities performed by a professional violinist and
collected violin recordings and tone labels from the Good Sounds
Dataset (Romani Picas et al., 2015). We performed perceptual
tests using expert-defined tone labels and studied the perceptual
correlations among the labels. We extracted high and low-level
features from the audio recordings, including both global and
frame based descriptors. We applied automatic feature selection
methods and machine learning techniques to obtain tone quality
computational models based on the selected descriptors. Finally,
the obtained tone quality models were used to implement a
real-time visual feedback system for tone quality assessment in
which, in addition to the experts tone labels, users are able to
train their own tone models by recording examples of their
own tone quality labels and obtain real-time visual feedback on
the quality of those tone labels. The fact that the system allows
tone quality labels to be defined by the users is a key aspect
of the system aiming to address the problem arising from the
subjectivity of the terms used by musicians to describe timbre
in music.

2. SYSTEMS FOR AUTOMATIC
ASSESSMENT OF MUSIC PERFORMANCE

2.1. Automatic Accompaniment Systems
and Score Followers
Most of the systems for automatic music performance assessment
are based on audio signal processing technologies widely used
in music information retrieval (Dittmar et al., 2012). However,

while not explicitly providing assessment information or grading,
some systems simply provide automatic accompaniment to
enrich the practicing and performance of soloist music. Such
is the case of Music Plus One (Raphael, 2010), a system for
musical accompaniment in which orchestral music follows the
soloist timing variations by means of a Hidden Markov Model.
Antescofo (Cont, 2008) is a score following system which allows
the recognition of the player position and tempo in a score.
It can be used in soloist-accompaniment scenarios as well as a
compositional tool in which electronic events can be triggered
from events in the soloist performance.

2.2. Systems for Automatic Assessment
Based on Pitch and Onset Detection
Most of the systems that provide assessment of a performed
musical piece are based on pitch and onset accuracy assessment.
Pitch and onset detection are two low-level music information
retrieval audio descriptors for which a number of algorithms
and methods are publicly available in different programming
languages and libraries. Song2see (Cano et al., 2011) is a gaming
software for music learning and practicing. It makes use of pitch
detection and source separation to allow a user to play music with
traditional instruments (guitar, bass piano, saxophone, flute, and
voice). The system uses its own score rendering format in order
to provide a visualization of the current time position over the
score. The system returns a score based on the correctness of
performed notes. Other commercial systems such as Yousician1

and Smart Music2 are able to provide real-time feedback of
music performance. SmartMusic is developed by MakeMusic,
which provides tools to practice band and orchestral music parts.
Among features to enhance student/teacher remote interaction
and tuition follow up and feedback, the system is able to provide
real-time feedback on pitch and timing accuracy providing a
score after recorded takes.

2.3. Systems for Automatic
Characterization of Music Performance
Several systems have been developed aimed at characterizing
other musical performance aspects beyond pitch and onset
detection, such as timbre or articulation. Even though these
systems do not aim to provide an explicit score/grading of
the performance, the information retrieved by this type of
system may be used for that purpose. In the context of
expressive music performance, the automatic characterization of
dynamics and articulation from low-level audio features has been
studied (Maestre and Gómez, 2005). In Percival (2013), Support
Vector Machine (SVM) models are trained to evaluate a violin
synthesizer. However, the aim of the system is not automatic
evaluation of real violin sounds but to fit the bowing parameters
(e.g., force) in the physical model synthesizer by incorporating
a training loop of the system with the inputs given by
a listener.

Other approaches emphasize the automatic assessment
of tone quality in trumpet sounds using machine learning

1www.yousician.com
2www.smartmusic.com
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techniques (Knight et al., 2011). Good-Sounds (Romani Picas
et al., 2015) makes use of machine learning techniques to
identify good and poor quality notes in trumpet, clarinet and
flute performance. The modeling strategy is based on training
data consisting of low and high-level audio features, extracted
from recorded good and bad musical note examples. Giraldo
et al. (2017a,b) proposed a system to assess automatically
the quality of timbre in violin sounds using machine
learning techniques.

2.4. Characterization of Tone
Several studies have attempted to characterize timbre (tone)
quality and its implications on the quality of music performance.
Saitis et al. (2017) studied how musicians conceptualize aspects
of sound quality and performance in violin music by means
of interviews with performers, where associations among
perceptual evaluations and physical description were addressed.
The relation of the dynamic behavior of the violin and perceived
quality has been investigated by several studies trying to
identify such verbal attributes. Dünnwald (1991) suggests four
quality regions in the violin based on its frequency response.
Similar studies characterize frequency ranges for violin tone and
projection (Hutchins, 1989), as well as ranges for tonal attributes
such as soft/harsh and dark/bright (Schleske, 2002). Violin sound
projection was studied by Loos (1995) in terms of the perceived
nearness of sound. Štěpánek and Otčenášek (1999) reported on
associations among several tone qualities such as sharp/narrow
with high/low spectral centroid values and rustle with temporal
energy changes. Similarly, Lukasik (2005) suggested associations
among spectral centroid with bright/dark, and tristimulus
1 and 3 with deep/full and flat/empty, respectively. Saitis
et al. (2015) reported on associations among spectral centroid,
tristimulus 2 and 3 with sound richness. Hermes et al.
(2016) reported high correlations among harmonic centroid
and clarity.

Several studies have investigated the verbal description
and/or components of tone and timbre quality. Research
aiming to obtain representative timbre spaces have been
conducted in the past by means of perceptual similarity
experiments (Grey, 1977; Grey and Gordon, 1978; Iverson
and Krumhansl, 1993; McAdams et al., 1995; Lakatos, 2000).
Studies aiming to find semantic labels for characterizing
timbre and its acoustical correlates have been performed by
searching adjectives used consistently to describe acoustical tonal
features, as well by performing surveys on the verbalization
of the description of several timbre stimuli (Moravec and
Štepánek, 2003; Nykänen and Johansson, 2003; Lukasik, 2005;
Disley et al., 2006; Sarkar et al., 2007).

2.5. Signal Processing Perspectives
From the computational perspective timbre has been studied
in terms of its relation to the audio descriptors that can be
mathematically computed from the digital audio signal. In
general, machine learning techniques are used to find patterns
that permit the recognition of different timbre qualities from the
descriptors extracted from the audio signal (De Poli et al., 1993;
Toiviainen et al., 1995; De Poli and Prandoni, 1997; Loureiro

et al., 2004). Alluri and Toiviainen (2010) devised subjective
rating scales to quantify perceptual qualities of timbre to correlate
them later with features extracted from the audio signal. Knight
et al. (2011) studied tone quality in brass instrument performance
based on subjective ratings of good/bad timbre among sounds
with the same pitch and loudness played by the same instrument.
Support Vector Machines (SVM) were used to discriminate
good and bad sounds based on different score thresholds and
groupings. Romani Picas et al. (2015) studied overall goodness of
flute, clarinet, and trumpet sounds. The quality of a performed
sound was defined based on its dynamic pitch and timbre
stability, timbre richness, and attack clarity. Based on recordings
of good and bad examples of each of the aforementioned sound
qualities, machine learning models were obtained to classify
performed sounds in real-time.

3. MATERIALS AND METHODS

The methodology used in this study is depicted in Figure 1

and can be subdivided into three main blocks: data acquisition,
offline machine learning modeling, and user-defined machine
learning modeling. First, we obtained definitions of tone qualities
from music experts and recorded examples of each of them.
Second, we collected data on the perception of the defined
qualities from listeners. Additionally, we made use of machine
learning techniques to obtain models to predict the tone quality
dimensions from recorded sounds. The obtained models were
later used in the system as pre-defined models. Using automatic
feature selection tools we obtained a subset of features that
best predicted the tonal qualities. Finally, we used the obtained
set of features to perform a user-defined machine learning
modeling approach, in which a user can train tone quality
models with his/her own set of tonal quality sound examples
to obtain visual feedback on the assessment on the quality of
new performed sounds.

3.1. Data Acquisition
3.1.1. Semantic Definition of Tone Qualities
Tone qualities for evaluation were chosen using the semantic
differential method, in which each tone is measured against
bipolar scales with opposing extremes (e.g., loud-soft; Zacharakis
et al., 2014, 2015). While alternative methods employing
a magnitude estimation of each individual item have been
employed with some success (e.g., Kendall and Carterette, 1993),
an opposing semantic differentials approach was chosen to
reduce the number of evaluations required by the participants
and following discussion with expert violinists of their use
in pedagogical practice. A bipolar conceptualization of tonal
space has been used in previous studies (e.g., Lichte, 1941;
von Bismarck, 1974a,b; Pratt and Doak, 1976; Moravec and
Štepánek, 2003) highlighting in particular the features of
brightness, roughness, and fullness. Such studies have often
employed artificially-generated tones or made cross-instrument
comparisons; while the present research examined the perception
of violin tones, an idiosyncratic list of 10 opposing semantic pairs
was created through discussion with English-speaking expert
violinists and a review of the existing literature (see Table 1). A
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FIGURE 1 | Overall framework for automatic tone assessment using machine

learning.

TABLE 1 | Tonal semantic dimensions defined by music experts.

Dark Bright

Cold Warm

Harsh Sweet

Dry Resonant

Light Heavy

Grainy Pure

Coarse Smooth

Closed Open

Restricted Free

Narrow Broad

total of 20 tonal dimensions, grouped in 10 opposite pairs, were
considered and are presented in Table 1.

3.1.2. Recorded Material
The recorded material used in this study consisted of recorded
examples of violin tones. Two sets of recordings were considered:
first, the publicly available data set of recorded sounds from the
Good-Sounds project (Romani Picas et al., 2015), which included
a set of recorded violin sounds with good and bad examples
of five of the sound quality dimensions (see section 2.5). This
data set was initially used for machine learning modeling in the
preliminary studies presented by Giraldo et al. (2017a,b) and as
baseline for the perceptual tests. Second, we obtained recorded
examples of the aforementioned expert-defined tonal semantic
dimensions (see section 3.1.1) from a professional violinist3. The
examples were recorded using fingered notes on each of the four
strings, in both first and fifth position, using each finger (one
to four), and repeating each note using up/down bow strokes.
Sixteen notes per tonal dimension were recorded for a total of
320 notes.

3Data deposited at https://github.com/chechojazz/TelmiToneStudyData

3.1.3. Perceptual Tests
An online survey on the perception of the tonal qualities
considered was performed following a similar approach used
by Alluri and Toiviainen (2010). On one hand, our aim was
to investigate the semantic associations of listeners and the
defined tonal dimensions based on measurements of inter-
user and inter-dimension correlations. On the other, we were
interested in comparing the performance of the models with
the discriminative perceptual abilities of human listeners by
obtaining a confusion matrix of how accurate each tonal
dimension was differentiated. Finally, we were interested
in investigating the correlations among the expert-defined
tone quality dimensions and the scales for goodness defined
by Romani Picas et al. (2015).

The survey was implemented using the Flask framework,
where data were collected over an SQL server platform, in an
online web-based questionnaire. A total of 22 sound samples
were used where the violinist consecutively performed four
different notes, repeating each one using up and down strokes
(one on each string/finger) across the violin tesitura (see section
3.1.2), always using the same four notes for each of the defined
tonal quality dimensions.

Participants: There were 20 respondents (28% female) with a
mean age of 36.49 years (SD = 5.71, range = 29–51). They had
a mean musical experience of 11.8 years (SD = 7.9, range = 1–
25 years), with representation from professional (23%), student
(19%), and amateur (55%) groups and 100% having taken formal
lessons on their primary instrument for a mean 5.15 years (SD =
3.6, range = 1–10). The cohort was represented 8 nationalities,
with a significant proportion being Spanish (63%). The range
of primary instruments included violin (36%) and guitar (35%)
with the remaining (29%) comprising a mix of percussion, vocal,
and other instruments. One third (34%) of the cohort reported
classical as their primary genre, with the remaining comprising
jazz, folk, pop, and other. The survey opened with an information
sheet outlining the topic and purpose of the study and instructing
respondents that, by beginning the survey, they were providing
informed consent. Ethical approval for the study, including
consenting procedures, was granted by the Conservatoires UK
Research Ethics Committee following the guidelines of the British
Psychological Society.

Procedure: Respondents were prompted with an initial
page with written instructions followed by a form to collect
demographic information and musical background information.
A form was then presented containing a sound player with
the corresponding sound sample and a list of the tone quality
dimensions (seeTable 1) as well as the semantic tonal dimensions
defined by Romani Picas et al. (2015), in which a grid of
radio buttons were presented in between each bipolar opposite
where the participant could provide a score. The sound player
permitted the listeners to play the audio excerpt as many times
as they wished. After listening to a sound example, participants
were instructed to rate each of the expert-defined tone quality
dimensions on a seven-point Likert scale. The sound samples
were randomly presented to each user. Two randomly chosen
sound examples were selected to be repeated during the test in
order to assess user consistency.
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3.2. Machine Learning Modeling: Offline
Approach
This stage of the study was carried out initially in an offline
setting. Initial preprocessing of the data was carried out
by eliminating outliers and extreme values (which might be
produced by peaks or artifacts in the audio signal and/or errors
in pitch/harmonic peak detection). Data filtering was performed
using an interquartile range (IQR) filter with an extreme value
factor set to three times the IQR and an outlier value factor of 1.5
times the IQR.

3.2.1. Feature Extraction
Audio descriptors help to characterize an excerpt of an audio
signal (or an audio frame) in terms of its spectral, temporal,
and spectro-temporal properties. Audio descriptors are divided
into global and instantaneous descriptors. The former refer to
those in which the whole signal is used for its computation (e.g.,
attack duration), the latter are computed at a frame-level for each
frame at a time. For each of the audio excerpts, we extracted
frame-based low-level audio descriptors (see Peeters, 2004 for
an overview) using the Essentia library (Bogdanov et al., 2013).
Low-level audio descriptors included pitch, spectral (e.g., spectral
centroid, spectral kurtosis, MFCCs, etc.), and energy descriptors
(e.g., RMS). A total set of 95 audio features were considered, from
which 35 were frame-based and the remaining were global.

3.2.2. Feature Selection
Only spectral frame-based low level descriptors were considered
given the nature of the implementation, taking into consideration
the review of the state-of-the-art in timbre quality and audio
description associations (see section 2). On one hand, real-
time feedback requires fast descriptor computation and thus
frame based descriptors are a natural choice. On the other,
spectral descriptors are obtained from the information contained
in the spectrogram of the audio wave, which has a direct
relation with timbre. Global descriptors were considered as well
by computing the mean and the standard deviation of the
frame-based descriptors over a sliding window of 600 ms. The
computation of these aim to encode information on the stability
of the studied timbre qualities of a performed note over time.

Automatic feature selection using filter methods was used to
obtain the subset of features most relevant for classification. Filter
methods use a proxy measure (e.g., information gain) to score
features, where these are filtered and ranked by information gain
values. We used the methods provided by the Weka library (Hall
et al., 2009). The list of the descriptors considered for this study
with corresponding descriptions is presented in Table 2.

3.2.3. Modeling
After extracting audio descriptors from the recorded audio
samples, several machine learning models were trained and
compared. The machine learning algorithms taken into
consideration were: Linear Regression, Support Vector Machines
(SVM) with radial kernel, and Artificial Neural Networks
(ANN) with one hidden layer (half the size of the input nodes).
Offline tests were performed using the Weka machine learning
library (Hall et al., 2009). In particular, for SVM we applied the

TABLE 2 | List of audio features.

Feature Info gain

Pitch Fundamental frequency in Hz

Energy Mean Square Root over a 600 ms window

Tristimulus1 Relation of the first fundamental harmonic over the total of

harmonic peaks

Tristimulus2 Relation of the second plus the third harmonic peak over the total

of harmonic peaks

Tristimulus3 Relation of the remaining harmonic peaks after the third over the

total of harmonic peaks

specCent The spectral center of gravity of the spectrum

specSpread The spectral standard deviation

specSkew Measure of the asymmetry of the spectrum around its mean value

specKurt Measure of the flatness of the spectrum around its mean value

specSlope Computed from the slope of the linear regression over the spectral

amplitude values

specDecr Averages the set of slopes of the lowest frequencies

specRolloff Defined as the frequency below which 95% of the signal energy is

contained

specFlat Ratio between the geometric and the arithmetic mean of the

spectrum

specCrest Ratio between the maximum arithmetic mean and the arithmetic

mean of the spectrum

MFCC Mel frequency cepstral coefficients

Sequential Minimal Optimization (SMO) algorithm for training
a support vector classifier, which uses a “one vs. all” approach for
multi-class classification problems.

Classification experiments were carried out over the expert-
defined tone qualities subset. Our aims were to obtain
classification models for the defined paired labels for tone quality
and to obtain a subset of the audio features that best predicted
each of the aforementioned tonal qualities. We considered two
main approaches for the modeling process:

1. Multi-class classification to predict each of the 20 tone labels.
2. Binary classification to obtain models to classify contrary pairs

of the expert-defined labels (e.g., dark-bright, cold-warm,
etc.).

Several sub-groupings were considered to test the consistency of
the obtained models across several scenarios as follows:

1. By pitch range: The aforementioned modeling strategies
were carried out on instances grouped by pitch range. We
considered a distribution of low, medium, and high registers.
This subdivision was done by octaves over the violin register,
i.e., the first octave (from G2 to G3) was considered “low,”
second octave (from G3 to G4) was considered “medium,” and
notes above G4 were considered “high” register.

2. By position: The modeling strategies took into consideration
whether notes were played in the 1st or 5th position of the
violin. This distribution resulted from how the recordings
were played by the violinist. (Other positions could have been
considered, but these will be left as a possible extension for
future work.)
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3. By finger: The modeling strategies were used in subsets
defined by the finger used to play a particular note.

3.3. Machine Learning: User-Defined
Approach
The subjective nature of timbre/tone perception and label
semantics produces several complications for obtaining a
predictive model to generalize to different performers and
different performance conditions (e.g., instrument qualities,
acoustic conditions of the room, quality of the audio capture
hardware, etc.). As a result, the motivation of a user-defined
machine learning approach was to offer a tool able to
classify audio samples in real-time based on training examples
given by a user, where semantic labels of tone quality can
be user-customized.

3.3.1. Real-Time Feature Computation
Based on the results of feature selection from the offline approach
(see section 3.2.2), for this approach we considered the features
presented in Table 2. Features were computed on a frame basis
in real-time, where global descriptors (i.e., mean and standard
deviation) were computed on a 600 ms historic sliding window.

3.3.2. Modeling
For the user-defined modeling approach we used the same three
machine learning methods mentioned in section 3.2, where the
ANN was set as default based on the offline machine learning
analysis (see section 4.3). The system permits the storage of
the recorded data of the computed features along with their
respective user-defined labels as well as the generated models.
A detailed explanation on the real-time implementation is
presented in the results section 4.4.

4. RESULTS

4.1. Tone Survey
Consistency among participants’ ratings was assessed using
Cronbach’s coefficient (alpha) and is presented in Table 3. An
acceptable degree of reliability was obtained (alpha > 0.80;
Mcgraw and Wong, 1996) for all the sound examples. Table 4
shows the mean correlation among dimensions (i.e., inter-
dimension correlation). Similarly, Table 5 shows the correlations
among the proposed tonal qualities and the ones used by
Romani Picas et al. (2015). Higher correlations (i.e., CC >

0.8) were obtained between grainy/pure with coarse/smooth,
and restricted/free with narrow/broad, which indicated that
these groups of tonal dimensions could be perceived as having
the same perceptual quality. Average correlations between 0.6
and 0.7 among similar labels was also found for closed/open,
restricted/free, and narrow/broad.

Previous results showed high correlations among similar
opposite scales: e.g., narrow/broad and restricted/free (see
Table 4). Similarly, low inter-subject correlation was found
among listeners. This might have been a consequence of the
rating system used, where each sound (recorded with one
tonal attribute) was rated in all 10 opposite scales by listeners.
Therefore, we compared the ratings obtained for each sound

TABLE 3 | Inter-subject correlations and Cronbach’s alpha for the tone quality

dimensions perceptual study.

Recorded tone quality Mean inter-subject r Cronbach’s alpha

Bright 0.25 0.7

Dark 0.29 0.7

Cold 0.30 0.7

Warm 0.27 0.8

Harsh 0.28 0.6

Sweet 0.25 0.8

Dry 0.28 0.8

Resonant 0.28 0.8

Light 0.29 0.7

Heavy 0.31 0.8

Grainy 0.27 0.9

Pure 0.29 0.8

Coarse 0.34 0.8

Smooth 0.27 0.6

Open 0.24 0.9

Closed 0.25 0.9

Restricted 0.24 0.9

Free 0.27 0.9

Narrow 0.35 0.9

Broad 0.27 0.8

on its particular tonal quality. In Figure 2 we present a
confusion matrix which was obtained by averaging the ratings
(normalized from 0 to 1) obtained for each sound on its
corresponding tonal quality. Higher values over the diagonals
of each set of squares indicate that listeners rated correctly
the intended tonal quality on the recording (e.g., light/heavy),
whereas squares with more homogeneous values indicate
listeners were not able to discriminate the intended tonal quality
(e.g., dry/resonant).

Listeners reported having perceived that some of the
adjectives (dark/bright, cold/warm, dry/resonant, closed/open,
light/heavy, grainy/pure) correlated with the quality of
violin/microphone used for recordings. A future approach
would obtain recordings on the same set of tone qualities by
different performers/instruments. Listeners also indicated that
other adjectives such as restricted/free and narrow/broad
were perceived with relation to the dynamics of the
performance. Similarly, some mentioned that dimensions
such as broad/narrow and open/close were related to the level
of vibrato. Closer study of these aspects will be regarded in
future work.

4.2. Feature Selection
The improvement in accuracy in training the tone quality
models over different feature subsets, ranging from 1 feature
to all features (incrementally adding features based on their
information gain rank) was addressed (see Figure 3). The whole
set of recorded examples was considered. Learning curves over
the number of instances were obtained to assess the performance
of the models over incremental feature subsets (depicted in
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TABLE 4 | Inter-dimension correlations for the tone quality dimensions perceptual study.

Dark/ Cold/ Harsh/ Dry/ Light/ Grainy/ Coarse/ Closed/ Restricted/ Narrow/

bright warm sweet resonant heavy pure smooth open free broad

Dark/bright 1.00

Cold/warm −0.12 1.00

Harsh/sweet 0.28 0.50 1.00

Dry/resonant 0.14 0.41 0.70 1.00

Light/heavy −0.48 0.08 −0.35 −0.26 1.00

Grainy/pure 0.34 0.30 0.79 0.55 −0.38 1.00

Coarse/smooth 0.26 0.21 0.68 0.47 −0.36 0.87 1.00

Closed/open 0.37 0.29 0.62 0.59 −0.25 0.62 0.51 1.00

Restricted/free 0.39 0.26 0.63 0.55 −0.23 0.69 0.67 0.67 1.00

Narrow/broad 0.29 0.32 0.68 0.60 −0.13 0.66 0.63 0.68 0.81 1.00

TABLE 5 | Inter-dimension correlations for expert-defined tone quality dimensions

vs. Good Sounds scales.

Overall/ Pitch/ Timbre/ Dynamic/ Attack/ Timbre/

rating stability stability stability clarity richness

Dark/bright 0.16 0.13 0.17 0.10 0.17 0.19

Cold/warm 0.32 0.22 0.19 0.18 0.33 0.37

Harsh/sweet 0.71 0.49 0.64 0.39 0.60 0.70

Dry/resonant 0.51 0.39 0.43 0.21 0.44 0.49

Light/heavy −0.24 −0.22 −0.28 −0.14 −0.13 −0.18

Grainy/pure 0.75 0.52 0.72 0.49 0.57 0.71

Coarse/smooth 0.75 0.53 0.71 0.52 0.47 0.74

Closed/open 0.52 0.44 0.49 0.27 0.56 0.53

Restricted/free 0.58 0.47 0.55 0.41 0.43 0.66

Narrow/broad 0.58 0.44 0.56 0.38 0.52 0.70

Figure 4). It can be seen in Figure 4 that the addition of each
feature evenly increased the model’s accuracy. Therefore, the
complete set of features presented in Table 2 was used in the
following sections for the modeling stage.

4.3. Machine Learning Analysis: Offline
The results of the different scenarios and sub-groupings taken
into consideration are summarized in Table 6 (multi-class),
Table 7 (by register), and Table 8 (by position). The evaluation
measure used for the models in this section was a Correctly
Classified Instances percentage (CCI%) obtained by 10-fold
cross validation. The paired t-test (p < 0.05) showed significant
improvement over the baseline in all of the scenarios considered.
Similarly, no relevant differences in the accuracy of prediction
of the models were observed across the studied scenarios. In
Figure 5 we present the confusion matrix for the multi-label
classification task for the ANN model. Higher values across
the diagonal indicate that the model is able to discriminate the
considered classes.

4.4. Implementation of a Real-Time
Machine Learning Framework
The implementation of the real-time tone quality feedback
system is embedded in SkyNote, a general system for automatic

FIGURE 2 | Confusion matrix of the obtained ratings of the listener over the

considered recorded tonal qualities.

assessment of violin performance developed within the scope of
the TELMI project (Ramirez et al., 2018). SkyNote computes
in real time the frame-based relevant audio descriptors and
sends them to the tone quality feedback system through
packed lists of OSC messages. The tone-quality system receives
these messages and induces and applies the machine learning
models. The machine learning component of the system was
implemented in C++, based on the OpenFrameworks toolkit
(for OSC) and the OpenCV library for machine learning and
data processing. It was structured in three different components:
data reception/sending, data processing, and machine learning
modeling. Data is transmitted through OSC ports between the
SkyNote and the tone-quality systems. When received, messages
are cataloged into control data, class data, and audio data.
Control data is used to control the tone-quality system (e.g.,
train/run the models, save/load data, etc.). Class data refers
to the semantic tone quality label associated to the sound
being performed. The label might be one defined by the
music experts (default mode), or might be a user-defined label.
Finally, audio data refers to the descriptors extracted from the
audio performed.
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FIGURE 3 | Feature selection: Rankings based on information gain.

FIGURE 4 | Learning Curves showing the increase of features organized by

information gain.

TABLE 6 | Multi-class classification accuracies measured as CCI% for Train (T)

and 10-fold cross validation (CV).

Grouping Type Base line Lin. Reg. SVM ANN

(T/CV) (T/CV) (T/CV)

By register Low 6.41 47.26/52.81 84.02/85.66 88.34/91.6

Mid 6.59 48.10/53.57 88.54/85.89 87.09/89.57

High 6.78 47.84/52.08 86.66/86.39 85.03/91.31

By position Pos. I 6.66 53.27/51.87 89.28/86.34 79.15/77.67

Pos. V 6.13 49.56/48.51 89.57/86.12 77.88/74.64

By finger 1st. 6.45 48.78/52.37 87.7/85.08 88.67/91.14

2nd. 6.44 49.76/52.65 86.94/87.50 88.16/90.12

3rd. 6.76 48.81/51.82 88.9/87.56 86.38/90.65

4th. 6.64 49.77/52.87 88.81/85.53 87.58/92.91

4.4.1. Evaluation
We performed experiments to study if the selected features
contained enough information to classify used-defined
tonal qualities. We evaluated the system classification
accuracy of different (but related) semantic labels, e.g., rich

and poor timbre labels. We then compared the accuracy
of the user-generated timbre models with that of the
“pre-trained” models.

Four professional violinists were asked to record audio
examples of rich/poor timbre notes at the four different registers
explained in section 3.2, as well as one paired example of a self-
defined timbre quality dimension. Each example consisted of a
pair of notes, one with the opposite semantic label of the other
one which was used as training data. After training users tested
the real-time feedback system and recorded again one opposite-
label pair of notes for testing.We recorded both the data obtained
in real time and the models trained by each subject. We applied
Artificial Neural Networks (which produced the best accuracy
as seen in section 4.3) for evaluating the obtained models. The
average accuracy obtained on the models is presented in Table 9.
A similar result in terms of accuracy of the trained models
was observed in the offline experiments. We conducted cross
validation among performers for the rich/poor tone quality,
where each subject tested the systemwith the trainedmodel of the
other three violinists. To avoid bias based on the violin quality,
performers used the violin corresponding to the performer who
trained the model. In this case, the accuracy of the models tended
to decrease (see Table 10). This might be due to the fact that
performers use different performance resources to produce the
same tonal quality.

5. DISCUSSION

We have presented a machine learning approach for the
automatic assessment of the quality of tone in violin
performance. We have obtained a list of 10 opposite semantic
tonal dimensions provided by violin experts. We obtained
recordings of each of the tonal dimensions performed
by a professional violinist and performed a listening test
of the provided dimensions using an online survey. The
semantic associations of listeners over the defined tonal
dimensions were studied based on inter-user and inter-
dimension correlations. Spectral low-level descriptors were
extracted from the recording examples to later train machine
learning models. An offline machine learning approach
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TABLE 7 | Binary classification accuracies measured as CCI% for Train (T) and

10-fold cross validation (CV) for Pitch subgroup.

Pitch

sub-group

Class Base line Lin. Reg. SVM ANN

High Dark/bright 54.95 89.45 ◦ 92.55 ◦ 98.18 ◦

Cold/warm 53.31 90.65 ◦ 92.61 ◦ 98.95 ◦

Harsh/sweet 54.59 88.75 ◦ 93.05 ◦ 97.83 ◦

Dry/resonant 53.76 87.81 ◦ 92.95 ◦ 98.1 ◦

Light/heavy 51.44 89.04 ◦ 92.82 ◦ 97.5 ◦

Grainy/pure 50.96 85.24 ◦ 92.79 ◦ 97.3 ◦

Coarse/smooth 51.04 87.42 ◦ 94.84 ◦ 98.82 ◦

Closed/open 53.48 89.24 ◦ 94.24 ◦ 97.56 ◦

Restricted/free 50.96 89.90 ◦ 94.34 ◦ 98.40 ◦

Narrow/broad 54.38 86.05 ◦ 94.6 ◦ 97.27 ◦

Medium Dark/bright 54.25 89.47 ◦ 92.75 ◦ 97.88 ◦

Cold/warm 54.25 90.97 ◦ 94.10 ◦ 97.31 ◦

Harsh/sweet 52.62 86.71 ◦ 94.88 ◦ 97.86 ◦

Dry/resonant 52.29 88.44 ◦ 92.39 ◦ 97.77 ◦

Light/heavy 51.66 87.17 ◦ 93.92 ◦ 97.11 ◦

Grainy/pure 54.64 89.94 ◦ 93.48 ◦ 97.71 ◦

Coarse/smooth 52.41 85.41 ◦ 93.16 ◦ 97.68 ◦

Closed/open 54.77 88.00 ◦ 92.04 ◦ 97.79 ◦

Restricted/free 50.41 85.49 ◦ 94.62 ◦ 97.83 ◦

Narrow/broad 52.96 87.75 ◦ 94.15 ◦ 97.73 ◦

Low Dark/bright 54.62 88.81 ◦ 94.57 ◦ 97.73 ◦

Cold/warm 52.14 87.96 ◦ 93.48 ◦ 97.15 ◦

Harsh/sweet 51.92 86.25 ◦ 94.12 ◦ 97.85 ◦

Dry/resonant 53.31 90.10 ◦ 93.66 ◦ 98.15 ◦

Light/heavy 54.95 85.85 ◦ 92.02 ◦ 98.11 ◦

Grainy/pure 57.20 87.09 ◦ 93.62 ◦ 98.21 ◦

Coarse/smooth 51.52 89.65 ◦ 92.2 ◦ 98.44 ◦

Closed/open 53.37 89.95 ◦ 93.15 ◦ 97.18 ◦

Restricted/free 53.52 88.82 ◦ 93.72 ◦ 98.78 ◦

Narrow/broad 54.52 85.96 ◦ 92.29 ◦ 98.48 ◦

◦Statistically significant improvement.

was performed to investigate the accuracy obtained with
three different learning schemes, as well as across several
performance scenarios (different fingering, register, and
position). A subset of features was selected for a real-time
approach, where the system extracted in real-time the
aforementioned set of descriptors and provided real-time
feedback on the quality of the proposed tonal dimensions.
The system is able to be re-trained with user-defined sound
examples and semantic labels. An evaluation of the accuracy
of the user-trained models was performed in which it was
observed that the selected set of features contained enough
information to correctly classify different intended performed
tonal qualities.

In general, participants in the perceptual study pointed
out that the differences across the different tone examples
were so subtle that it was difficult to remember previous

TABLE 8 | Binary classification accuracies measured as CCI% for Train (T) and

10-fold cross validation (CV) for Position subgroup.

Position

sub-group

Class Base line Lin. Reg. SVM ANN

First Closed/open 57.75 88.56 ◦ 86.33 ◦ 95.25 ◦

Coarse/smooth 52.62 90.82 ◦ 89.33 ◦ 97.47 ◦

Cold/warm 56.30 88.26 ◦ 87.17 ◦ 96.56 ◦

Dark/bright 54.10 87.80 ◦ 81.77 ◦ 97.61 ◦

Dry/resonant 52.19 82.07 ◦ 80.38 ◦ 92.90 ◦

Grainy/pure 54.02 82.81 ◦ 81.06 ◦ 94.69 ◦

Harsh/sweet 57.44 86.47 ◦ 82.32 ◦ 97.62 ◦

Light/heavy 51.32 88.57 ◦ 85.38 ◦ 93.55 ◦

Narrow/broad 54.17 89.21 ◦ 86.49 ◦ 98.25 ◦

Restricted/free 54.51 86.14 ◦ 83.82 ◦ 96.41 ◦

Fifth Closed/open 58.18 84.79 ◦ 92.97 ◦ 95.02 ◦

Coarse/smooth 53.32 86.02 ◦ 94.90 ◦ 97.73 ◦

Cold/warm 55.25 80.07 ◦ 91.98 ◦ 95.15 ◦

Dark/bright 59.31 83.04 ◦ 91.70 ◦ 97.03 ◦

Dry/resonant 52.16 80.68 ◦ 92.96 ◦ 95.13 ◦

Grainy/pure 51.51 82.63 ◦ 92.68 ◦ 94.69 ◦

Harsh/sweet 53.61 81.46 ◦ 93.37 ◦ 96.80 ◦

Light/heavy 55.32 88.99 ◦ 94.20 ◦ 96.18 ◦

Narrow/broad 56.44 86.61 ◦ 94.37 ◦ 96.76 ◦

Restricted/free 58.71 86.01 ◦ 95.14 ◦ 96.62 ◦

◦Statistically significant improvement.

FIGURE 5 | Confusion matrix of the ANN model over the training set.

samples, which may explain the lack of consensus among
participants. However, computers have perfect memory and
are able to extract features characterizing the acoustic features
of the audio samples which seem to be informative for
differentiating the samples. Furthermore, in the cross validation
tests among performers, some participants managed to tune
the performance resources in order to match the tonal
quality model trained by a second violinist. The majority
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TABLE 9 | Binary classification accuracies measured as CCI% for the real-time

framework tests.

Class Base line ANN

Subject 1 Rich/poor 52.62 98.32 ◦

Subject 2 Rich/poor 54.63 98.41 ◦

Subject 3 Rich/poor 51.45 98.23 ◦

Subject 4 Rich/poor 54.62 97.38 ◦

Subject 1 Light/heavy 51.30 98.40 ◦

Subject 2 Bad/good 53.96 97.30 ◦

Subject 3 Thin/full 51.02 97.84 ◦

Subject 4 Light/heavy 53.14 98.73 ◦

◦Statistically significant improvement.

TABLE 10 | Binary classification accuracies measured as CCI% for cross

validation (CV) among performers and models.

Models trained by

Subject 1 Subject 2 Subject 3 Subject 4

Test note by Subject 1 92.08 58.33 63.29 55.26

Subject 2 88.97• 92.44 64.79 62.83

Subject 3 55.96 57.61 92.67 57.62

Subject 4 56.99 56.03 56.23 92.34

• Accuracy obtained by subject 2 on model by subject 1 after several trials.

of existing studies have looked at very different tones either
synthetically generated or across instruments. However, given
the fact that in this study we are considering several variables
simultaneously (several audio descriptors, several performers,
several listeners) it might be the case that, in the real world, the
differences among intended performance tonal qualities are often
quite subtle.

Most of the systems reviewed in section 2 approach the
correctness of a performance by assessing its timing and pitch
accuracy, whereas the system presented in this paper deals with
the quality of sound produced by the performer. In this sense,
the work by Romani Picas et al. (2015) is the most related existent
system, which assesses timbre richness and timbre stability as part
of the dimensions used for sound quality. However, this system
is based on static/predefined models of sound quality trained
with recordings made under specific conditions (i.e. specific
room acoustics, microphones, and musical instruments). The
specificity of the data used to train the system produces models
which lack generality and are inaccurate when audio capture
conditions vary.

Initial versions of our system were also trained using
recordings made under specific conditions (e.g., acoustic
conditions, quality of the instrument, level of the performer,
etc.) and, as the system proposed by Romani Picas et al.
(2015), failed to generalize. In addition to this, due to the
subjectiveness of the adjectives musicians use to describe music
timbre (e.g., cold, warm, dark, bright) timbre description
varied across performers. In order to solve these issues, the
system proposed in this paper allows the possibility of the
user to train the sound quality models. Thus, each user
trains and uses the system using the same audio capture
conditions and has control over the semantics of the tone labels
he/she defines.

The similarity of some of the considered tonal dimensions
might be better addressed on a comparative type test, where
users can provide a rating of a particular tone quality based on
the possibility of listening to several audio samples. Similarly,
a large scale study with violin performers could be performed
to obtain the semantic labels following a similar methodology
used by Saitis et al. (2017). For the tone survey a closer study of
the variation of RMS and pitch could be addressed to confirm
some of the claims/comments provided by listeners regarding
associations among some perceived tonal qualities and the level
of vibrato and loudness.

The evaluation of the system and its user-defined approach,
including implications for practice in music education contexts,
will be addressed in future work.
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