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Adaptive learning systems have received an increasing attention as they enable to provide

personalized instructions tailored to the behaviors and needs of individual learners. In

order to reach this goal, it is desired to have an assessment system, monitoring each

learner’s ability change in real time. The Elo Rating System (ERS), a popular scoring

algorithm for paired competitions, has recently been considered as a fast and flexible

method that can assess learning progress in online learning environments. However, it

has been argued that a standard ERS may be problematic due to the multidimensional

nature of the abilities embedded in learning materials. In order to handle this issue, we

propose a system that incorporates a multidimensional item response theory model

(MIRT) in the ERS. The basic idea is that instead of updating a single ability parameter

from the Rasch model, our method allows a simultaneous update of multiple ability

parameters based on a compensatory MIRT model, resulting in a multidimensional

extension of the ERS (“M-ERS”). To evaluate the approach, three simulation studies were

conducted. Results suggest that the ERS that incorrectly assumes unidimensionality

has a seriously lower prediction accuracy compared to the M-ERS. Accounting for both

speed and accuracy in M-ERS is shown to perform better than using accuracy data only.

An application further illustrates themethod using real-life data from a popular educational

platform for exercising math skills.

Keywords: multidimensional IRT, Elo rating system, adaptive practice, speed-accuracy trade-off, e-learning

INTRODUCTION

Over the past decade adaptive learning systems have received an increasing attention as they enable
to provide instructions tailored to the behaviors, needs, and learning pace of individual learners. In
this way the learners can benefit from more personalized learning items. Therefore, it is desired for
the systems to have a learner modeling method that keeps track of the learner’s cognitive states and
its evolution in a timely and flexible manner. In the context of computerized adaptive testing (CAT;
van der Linden, 2000) the use of item response theory (IRT) is a common method to model the
relationship between the learner’s ability level and their responses to different measurable items.

As originally intended for high-stakes standardized tests, studies related to CAT primarily zooms
in on how to increase the precision of the examinee’s ability level estimate by successively rendering

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.00620
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.00620&domain=pdf&date_stamp=2019-03-29
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ellie.park@kuleuven.be
https://doi.org/10.3389/fpsyg.2019.00620
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00620/full
http://loop.frontiersin.org/people/258627/overview
http://loop.frontiersin.org/people/571860/overview


Park et al. Multidimensional IRT for Computerized Practice

most informative items, or how to decrease the number of test
items while maintaining a high level of precision in estimating
the ability level. Because typically no feedback is given during
the test, the true ability level is not expected to evolve. The
idea of CAT also can be applied to learning environments in
which learners interact with items, toward computerized adaptive
practice (CAP; Klinkenberg et al., 2011). An a-priori expectation
is that the learners in a learning environment, unlike in a testing
environment, tend to develop their knowledge by interacting
with the items rendered (and by getting feedback on their
responses), and their true ability levels consequently evolve in
real time. Therefore, a first step toward the goal of the adaptive
learning system of optimizing the learning gain is tracing the
learners’ ability evolution in a fast and accurate manner.

In the context of intelligent tutoring systems (ITS), there
are specialized approaches for tracing the learner’s mastery of
knowledge. A representative example is Bayesian knowledge
tracing (BKT; Corbett and Anderson, 1994). In BKT, the learner’s
knowledge state is represented by a set of multiple binary latent
variables that indicate mastery or non-mastery of the skills.
The probability of having mastered each skill is estimated by
binary measurement outcomes (correct or incorrect responses
to items) and iteratively updated by using the rule of Bayes.
Similar to CAT, however, the methods require a calibration
on large samples using some nontrivial estimation techniques
(expectation-maximization algorithm, or exhaustive search) that
require high computational power (Papousek et al., 2014;
Pálanek, 2016).

To that extent, an interesting alternative that can be
considered for tracking the learner’s ability evolution is the
Elo rating system (ERS; Elo, 1978). The ERS was originally
developed for calculating relative skill levels of players in chess
performances, and the method also has widely been used in sport
statistics for paired competitions (e.g., major league baseball).
More recently, the ERS has been applied to various contexts
of educational and psychological studies (e.g., Attali, 2014;
Brinkhuis et al., 2015). In regard of its application to online-
learning environment, the paired competition can be thought of
as an interaction between the learner and the item. In general,
the ERS algorithm is formulated to update the learner ability and
item difficulty parameters from the Rasch model. To be specific,
once a learner has responded to an item, the ERS updates the
individual learner’s ability level estimate that was based on his
or her previous trajectory. Given the learner’s current ability
level, the next item is chosen by its difficulty level. A practical
strength of this approach is that the method is conceptually fast
and readily implementable in any software.

Several articles compared the performance of ERS with that
of traditional IRT modeling to explore whether its parameter
estimation is as accurate as the traditional approach. Maris and
Van der Maas (2012) showed that the ability estimates updated
from ERS method is highly correlated with the expected a
posteriori (EAP) estimates from an IRT model when a speed-
accuracy trade-off scoring rule was used. Studies also compared
the performance of ERS with alternative methods for estimating
item difficulties. For example, Wauters et al. (2012) compared
the quality of the ERS-based item difficulty estimates with those

based on maximum likelihood procedures, proportion correct,
and human judgementmethods, and found that the ERS provides
reliable results with a sample size of 200 learners. Similarly,
Pálanek (2016) provided evidence that there is a high correlation
between ERS-based item difficulty estimates and joint maximum
likelihood-based estimates.

Researchers (e.g., Klinkenberg et al., 2011; Savi et al., 2015;
Braithwaite et al., 2016; Coomans et al., 2016; Hofman et al.,
2018) also provided empirical evidence in favor of the ERS, by
means of massive log data from Maths Garden, a CAP system
where the learner ability and item difficulty levels are updated
on the fly. Park et al. (2018) proposed a method to alleviate the
cold-start in adaptive learning systems—the problem that for new
learners we do not have an idea of their ability and therefore
the adaptive learning environment might not perform well until
the learner made a substantial number of items. The authors
proposed using an explanatory IRT model based on learner-item
interaction data and learner features (e.g., age, gender, or learning
disability) and estimate the learners initial ability levels and their
ability changes while not engaged in the learning environment.

Despite the increasing number of studies applying the ERS
in adaptive learning systems, in the majority of these studies,
the ERS is intended to track just a single broad ability. In
contrast, monitoring multiple abilities not only forms the basis
of learners’ understanding of the material, but also provides
direct information to educational researchers and instructors
as to the areas that learners need to improve upon (Ferrini-
Mundy and Schmidt, 2005). Therefore, identifying his or her
progress onmore fine-grained ability dimensions would imply an
important advancement of the adaptive learning system, because
of the sheer amount of information about the learner’s learning
state. Doebler et al. (2015) and Pálanek (2016) proposed an
improved ERS algorithm for tracking multiple dimensions of
ability. Yet, their methodological focus is still on situations where
items are allowed to load on only one of the multiple ability
dimensions in the answering process. More recently, Chen et al.
(2018) and Tang et al. (2018) used a Markov decision process
to track multiple dimensions of ability. In these studies, the
learner’s ability was modeled by a set of multiple binary latent
variables that indicate mastery or non-mastery of the skills while
a reinforcement learning approach was proposed to recommend
personalized items.

In the current article, therefore, we propose to address these
issues by using a multidimensional IRT (MIRT) model to track
the (continuous) ability parameter estimates within ERS. The
basic idea is that instead of assuming a unidimensional trait of
item responses, our approach will assume that a single item may
involve more than one ability parameters. Therefore, we extend
the standard ERS that updates a single ability parameter based on
the Rasch model, and will allow to have a simultaneous update
on multiple ability parameters based on a compensatory MIRT
model (“M-ERS”).

In the next section we give more details on the methodological
framework of the ERS and its application to educational settings.
We then propose our method (“M-ERS”) that is formulated to
update multiple abilities. Next, we will evaluate the performance
of our method through three simulation studies. Furthermore,
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the method will be demonstrated using a real application
of learning data obtained from an educational platform for
children’s math ability development. We end with conclusions
and implications.

ELO RATING SYSTEM

The ERS is originally rooted in the Bradley Terry Luce (BTL;
Bradley and Terry, 1952) model, a probabilistic model that
predicts the outcome of players in a type of paired competitions.
Specifically, the expected outcome that one player defeats his or
her opponent is formulated as follows:

Pij = P
(

i defeats j
)

=
θi

θi + θj
, (1)

where θi and θj represent the ratings (e.g., latent traits) of players
i and j, respectively. By setting up θi = eθi , Equation (1) can be
transformed to a logistic function of the difference between θi and
θj, which comprises of the expected outcome of the ERS. That is,

Pij = P
(

i defeats j
)

=
exp(θi − θj)

1+ exp(θi − θj)
(2)

Likewise, both the BTL model and the ERS are based on the
probability of winning a competition; however, the latter method
is additionally intended to supply easy-to-compute updates as
new outcomes are observed. In other words, the ERS takes an
algorithmic heuristic to easily update the expected outcome for
the next iteration, based upon the estimated latent trait (i.e., θi
and θj) at the current iteration. Kiraly and Qian (2017) showed
that the derivative of a likelihood function for Equation (2)
based on a single data point produces the following updating
component for the ERS algorithm:

∂ l
(

θi, θj
∣

∣Yij

)

∂θi
= Yij

(

1− Pij
)

−
(

1− Yij

)

Pij = Yij − Pij, (3)

where l
(

θi, θj
∣

∣Yij

)

= Yij log Pij + (1− Yij)log(1− Pij).
In sum, given the observations for a competition between

players i and j, the estimates of θi and θj are updated
simultaneously. Specifically,

θ̂i = θ̂i + K
{

Yij − Pij
}

for a player i,

θ̂j = θ̂j − K
{

Yij − Pij
}

for a player j. (4)

In the equation above, the term
{

Yij − Pij
}

can be viewed as the
discrepancy between what is expected and what is observed. In
fact, the ERS can be viewed as a type of the stochastic gradient
descent (SGD; Robbins and Monro, 1951) algorithm where
the updating rule in the system corresponds to the update of
parameters along the error gradient (Pálanek, 2016). The update
will be larger if the current parameter setting produces a large
discrepancy. Note that K is a step size that defines to what extent
the ability estimate can be affected by the difference between the
current and expected responses for the student p.

APPLICATION TO ADAPTIVE
LEARNING SYSTEMS

In adaptive learning environments, the paired competition
occurs when the learner interacts with the learning material
(=item). The ERS process can be applied as follows. Consider
θi(t) be an ability of a learner i (unidimensional continuous
variable) after solving an item at measurement occasion t. Also,
suppose Yij(t) be the learner i outcome for item j measured at
measurement occasion t, where the outcome is dichotomously
scored (0 = incorrect; 1 = correct answer to the item).
Then the ERS for updating the ability parameter takes the
following sequence:

θ̂i(t) = θ̂i(t−1) + K
{

Yij(t) − Pij(t)
}

for a learner i

β̂j(t) = β̂j(t−1) − K
{

Yij(t) − Pij(t)
}

for an item j, (5)

where θ̂i(t−1) is the ability estimate at the previous measurement

time t−1 for the learner i, β̂j(t−1) is the item difficulty estimate
at the previous measurement time t−1 for the item j, and Pij(t)
is the expected response for the current measurement occasion
t. Consequently, a learner interacting with a very difficult item
risks losing a little bit of ability level in case of failure, with
the possibility of gaining much greater ability level in case of
success. Several studies have explored the optimal step size K for
the ERS for student modeling. Wauters et al. (2012) suggested
using a constant step size, K = 0.4 in the context of educational
data. On the other hand, other studies (e.g., Glickman, 1999;
Klinkenberg et al., 2011; Papousek et al., 2014; NiŽnan et al.,
2015) proposed that the step size needs to decrease as a function
of a total number of item answered and therefore the system gains
more information about the learner’s true ability level.

In Equation (5), it is possible that the outcome Yij(t) can be
scored by considering whether the learner completed the item
within the allotted limit. Maris and Van der Maas (2012) derived
a scoring rule that accounts for response time and accuracy,
and applied it within ERS. While the ERS can be used to
gradually obtain reliable estimates of both student’s abilities and
item difficulties, adaptive item sequencing can be more efficient
if we could start from a pre-calibrated item bank, including
information on item difficulty and possibly other characteristics
of items, and from which items with undesired characteristics are
excluded (van Groen et al., 2014). In this case, β̂j(t) in Equation
(5) needs not be updated.

MULTIDIMENSIONAL EXTENSION OF THE
ERS (M-ERS)

In this section we propose an extended version of the ERS that
enables the system to track multidimensional abilities in real
time. Specifically, the proposed algorithm can handle two types
of dimensional structures in the item bank–(a) “within-item
dimensionality” where a single item can be associated with more
than one task ability; as well as (b) “between-item dimensionality”
where a set of items is associated with multiple abilities, while
each item measures only one of those abilities.
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Suppose an adaptive learning environment contains an item
bank that is designed to measure a total of M-dimensional

abilities i.e., θi = (θi1, . . . , θiM)
′

for a student i. The
multidimensional dichotomous logistic model (Reckase, 1985)
that describes the probability of a correct answer to item j can be
formulated by either conjunctive or compensatory assumptions
about how the latent abilities are combined. In a conjunctive
model assumption, it is assumed that the learner should have each
of the relevant abilities in order to answer an item correctly. The
probability of a correct response therefore is a joint product of
the inverse logit function of the difference between each of the
abilities and the corresponding item difficulty:

Pij = P
(

Yij = 1
)

=
∏M

m=1

exp(αjm[θim − βj])

1+ exp(αjm[θim − βj])
, (6)

where P
(

Yij = 1
)

indicates the probability of a correct answer,
θim is the mth ability parameter of the learner i (m = 1, . . . ,M),
αjm is the item discrimination of the item j corresponding to
mth ability dimension, and βj denotes the overall difficulty level
of the item j. On the other hand, in a compensatory model, on
the other hand, it is assumed that the lack of one ability can be
compensated by greater level of another ability, as follows:

Pij = P
(

Yij = 1
)

=
exp(

∑M
m=1 αjmθim − βj)

1+ exp(
∑M

m=1 αjmθim − βj)
. (7)

The difference between the observed and the expected
performance Pij based on the multidimensional IRT models is
used to update the ability parameters after each item response.
Specifically, the Pij within ERS for the m-th ability for person i
on measurement occasion t is updated as follows:

θ̂im(t) = θ̂im(t−1) + Dm(t) K
{

Yij(t) − Pij(t)
}

β̂j(t) = β̂j(t−1) − Dm(t) K
{

Yij(t) − Pij(t)
}

, (8)

where Dm(t) is a weight to specify whether the mth ability is
indicated by the item given at t-th step. For the ability that
is indicated by the item, Dm(t) equals 1. For the ability that is
not indicated by the item, the weight takes values between zero
and one.

SIMULATION STUDY

To explore the performance of the M-ERS method in terms of
estimating the real-time evolution of multidimensional ability
parameters for individual learners, we apply the method to data
generated under a variety of conditions. In accordance with our
research questions, the simulation study consists of three parts.
In Study 1, we examine the result of a standard ERS that naively
assumes the unidimensionality of ability parameter, where in fact
data involve a multidimensional ability. In Study 2, we explore
the performance of the M-ERS in relation to the total number of
items answered. In Study 3, we investigate the performance of the
modified M-ERS in which both response time and accuracy data
are incorporated.

TABLE 1 | Patterns of multidimensionality (a sample of 15 items from two

item banks).

Item ID βj Item bank 1 Item bank 2

θ1 θ2 θ3 θ1 θ2 θ3

1 −2.534 1 . . 1 . .

2 −2.21 1 . . 1 . .

3 1.326 1 . . 1 . .

4 0.253 1 . . 1 . .

5 1.275 1 . . 1 . .

6 0.089 1 . . 1 . .

7 −0.001 1 1 . . 1 .

8 −1.256 1 1 . . 1 .

9 2.242 1 1 . . 1 .

10 −1.556 1 1 . . 1 .

11 2.213 1 1 . . 1 .

12 −3.3 1 . 1 . . 1

13 0.753 1 . 1 . . 1

14 −2.246 1 . 1 . . 1

15 −1.156 1 . 1 . . 1

“1” indicates that the item loads on the dimension.

Item Bank
Following the literature on the MIRT (e.g., Adams et al., 1997;
Hartig and Höhler, 2008), we consider two loading structures to
determine patterns of the multidimensionality. Specifically, two
types of item banks are created– (a) when items are allowed to
load onmore than a single ability dimension (“Item bank 1”); and
(b) when items are allowed to load on only one of the multiple
ability dimensions (“Item bank 2”). Each of them includes 200
operational items, measuring a total of three dimensions. Item
bank 1 consists of a primary dimension θ1 indicated by all the
items, and two auxiliary dimensions, θ2 and θ3, indicated by 35%
of items and the 25% of the remaining items. In Item bank 2, each
item involves only one out of the three dimensions. Specifically,
40% of items involves the 1st dimension, 35% of them involves
the 2nd dimension, and the remaining 25% of them involves the
3rd dimension (as an illustration, Table 1 gives a sample of 15
items from two item banks). Based on each item bank, data are
generated under a compensatory IRT model with difficulty and
discrimination parameters, mimicking realistic test items:

Pij = P
(

Yij = 1
)

=

exp
(

∑3
m=1 αmjθjm − βj

)

1+ exp
(

∑3
m=1 αmjθjm − βj

) , (9)

where the generating parameter values for the difficulty and the
slope parameters are drawn from βj ∼ N(0, 1) and αmj ∼

U(0.5, 2), where j = 1,. . . , 200 (items) andm =1, 2, 3 (dimensions
of ability).

Persons
A total of n = 250 learners are considered in the simulation
studies. The population distribution of ability parameters is taken
to be N(µ,6), where µ=(1, 1, 1)′. In 6, all variances are equal to
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1 and the three bivariate correlations are equal: dimensions were
independent (ρmm′ = 0.0), weakly correlated (ρmm′ = 0.2), or
moderately correlated (ρmm′ = 0.5).

A total of 6 data sets were generated by following 6 scenarios
(2 patterns of dimensionality × 3 correlations among ability
dimensions). In each condition, the M-ERS method will be used
to update the three ability parameter estimates for each learner as
he or she attempts on a sequence of items. We assume that each
learner is assigned a sequence of 200 items that are randomly
selected. That is, item sequences are varied across learners. In
M-ERS, in Equation (7), the expected response is estimated by
using a compensatory IRT model with a constraint that the slope
parameters αmj’s are equal to 1 for simplicity (the inclusion of
different loadings is a logical further extension). That is,

P
(

Yij(t) = 1
)

=

exp
(

∑3
m=1 θjm − βj

)

1+ exp
(

∑3
m=1 θjm − βj

) .

In the equation, we use step size K that linearly decreases as
a function of a total number of items answered between the
maximum value of 0.4 and the minimum value of 0.1. Note
that we assume that item difficulty parameters are considered as
known (based on a calibration study), and the difficulty estimates
therefore will not be further updated within the M-ERS.

STUDY 1: PREDICTION ACCURACY OF A
STANDARD ERS AND M-ERS

In the first study, we explore the extent to which the
unidimensional ability assumption embedded in a standard ERS
has an impact on the prediction accuracy (in terms of the learners’
future responses), when the truth is that the responses to the
learning items involve three-dimensional ability parameters. As
seen in Equation (8), predictions of the responses of learners
can be achieved by using the ERS algorithm based on the
known item parameters and the learner ability estimate(s)
predicted by the preceding step. The prediction accuracy is
calculated by classifying the expected response (= Pij(t)) with
a certain cut-point into the observed response (= Yij(t)) on
measurement occasion t. To evaluate the quality of predictions,
we use a Receiver Operating Characteristic curve (ROC). The
ROC curve represents the relation between true positive rates
[=TP/(TP + FN)] and false positive rates [FP/(FP + FN)] at
various probability cut-off points. In case of totally random
predictions, the Area Under Receiver Operating Characteristic
curve (AUROC) is approximately equal to 0.5.

Figure 1 visualizes the ROC curves, comparing the
performances of a standard ERS and the M-ERS. Each panel
in the figure includes 6 curves, representing a combination
of simulation conditions (2 patterns of dimensionality × 3
correlations among ability parameters). The x-axis and y-axis
indicate the false positive rate and the true positive rate. Note
that the best possible prediction method would yield a point
in the upper left corner or coordinate (0, 1) of the ROC space,
representing 100% sensitivity and specificity. Therefore, results
from the two panels suggest that M-ERS outperforms the

FIGURE 1 | Receiver operating characteristic (ROC) curves for a

standard ERS and M-ERS. Note. Each panel includes six ROC curves

representing a total of 6 simulation conditions (2 patterns of dimensionality × 3

correlations among ability parameters).

TABLE 2 | Area Under ROC curve (AUROC) for a standard ERS and M-ERS.

Item bank 1 Item bank 2

Standard ERS M-ERS Standard ERS M-ERS

ρ = 0.0 0.5197 0.8038 0.5216 0.7850

ρ = 0.2 0.5204 0.8070 0.5324 0.7900

ρ = 0.5 0.5496 0.8157 0.5494 0.7893

Average 0.5299 0.8088 0.5345 0.7881

standard ERS in all six simulated scenarios. Table 2 summarizes
the area under the ROC curves (AUROC). In case of M-ERS,
the AUROCs are much higher than the expected values using
random predictions (i.e., 0.5 for AUROC). It is seen that the
AUROCs for M-ERS are 0.8088 and 0.7881 for Item banks 1 and
2, respectively. However, the standard ERS generally reveals only
performs marginally better than the random predictions (i.e.,
0.5299 for Item bank 1 and 0.5345 for Item bank 2).

STUDY 2: ABILITY PARAMETER
ESTIMATION AS A FUNCTION OF
NUMBER OF ITEMS ANSWERED

In the second study, we investigate the performance of M-
ERS as a function of the total number of items answered.
We also examine the effect of different simulation conditions
(i.e., dimensionality patterns and correlations among true three
ability parameters) on the ability parameter estimation. To
evaluate the quality of the ability estimation, the estimated ability
parameters are summarized by mean squared error (MSE). In
particular, the differences between the true and estimated abilities
at measurement occasion t are squared, and averaged over the
entire sample size of new students. That is, for the learner i at the
measurement occasion t:

MSE(θ̂m(t)) =

∑N
i=1 (θ̂im(t) − θim(t))

2

N
(10)
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FIGURE 2 | Result of 3-dimensional ability estimation across the number of items answered. Cor, correlations between dimensions; D1, 1st dimension; D2, 2nd

dimension; D3, 3rd dimension.

Figure 2 includes line plots demonstrating the performances of
the M-ERS for two different patterns of dimensionality. Each
panel in the figure represents a different simulation condition
with the patterns of dimensionality (Item banks 1 and 2) and
the true correlations among ability parameters (ρmm′ = 0.0,
0.2, and 0.5), with a total number of items answered being on
the x-axis and the MSEs on the y-axis. The three lines in each
panel comprise the squared difference between the θ̂im(t) and
θim(t) averaged across n = 250 individual learners for the three
dimensions (“D1,” “D2,” and “D3” in the legend). Remind that the
three panels on the left-hand side summarize the performance of
the M-ERS method for Item bank 1 that exhibits one primary
dimensions plus two auxiliary dimensions (Item bank 1). The

other three on the right-hand side are based on the data where
each item involves only a single dimension. See the section of
“Study Design” for more details.

Overall, results suggest that that the MSEs tend to decrease
as the total number of items answered increases. The finding
is common to all three dimensions (“D1,” “D2,” and “D3”),
but the speed of decrease varies by the number of items the
ability dimension involves. For Item bank 1 (column left), it
is seen that MSE for the 1st dimension (on which all items
load) reveals a dramatic decrease while the first 20 items are
answered (to around 0.2). Similarly, though more gradually,
MSEs for 2nd and 3rd dimensions (on which only 35 and 25%
of the items load) also tend to decrease. In these two auxiliary
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dimensions, however, the MSE does not reach 0.2, even up to
200 items.

For Item bank 2 (column right), on the other hand, the
degrees of the decreasing trends are extremely similar among
the three dimensions. This can be explained by the fact that
the three dimensions involve a similar amount of items i.e., 40,
35, and 25% of items load on the D1, D2, and D3, respectively.
For moderate scenarios, in particular, the difference becomes
extremely tiny. It is seen that the true correlations among
ability parameters do not have an impact on MSEs across any
measurement occasions.

As an alternative way to check the performance of M-ERS,
Figure 3 compares the ability estimates of 250 learners after 200
Elo-updates with the expected a posteriori (EAP) ability estimates
obtained by fitting a compensatory IRT approach. Overall, ability
estimates from EAP and M-ERS are highly correlated, regardless
of any simulation conditions and the ability dimensions. The
correlation coefficients (3 dimensions × 2 item banks × 3
correlation among true abilities) range from 0.967 to 0.990.
Note that the EAP estimates are the results of an analysis that
requires responses of many persons on many items, and is
computing-intensive and therefore cannot be used on the fly.
Therefore, the EAP estimates are used here as a benchmark,
but they cannot be considered as a viable alternative for the
ERS approach.

STUDY 3: M-ERS FOR
SPEED-ACCURACY TRADEOFF

There have been an increasing number of studies (e.g., Tuerlinckx
and De Boeck, 2005; van der Linden, 2007; De Boeck et al., 2017)
that account for response time as well as response accuracy in
order to model the ability parameter. Of several statistical and
psychological approaches to the response time modeling (van
der Linden, 2009), one of the promising methods is to model
response time and accuracy from the measurement perspective
by two-step procedures; specifically, (a) setting up a scoring
rule and (b) fitting a proper statistical model that conforms
scores of the type. Klinkenberg et al. (2011) showed that the
ERS method outperforms a standard CAT method (specifically,
Eggen and Verschoor, 2006) when the speed-accuracy trade-
off scores [so called high speed high stake (HSHS)] and the
corresponding model were used. We do not know studies
that model multidimensional ability trajectories based on both
response time and accuracy within ERS. Therefore, we aim
to explore the incorporation of the HSHS scoring rule in the
proposed M-ERS method.

According to the HSHS scoring rule, the observed scores can
be calculated as follows: Sij = (2Yij − 1)(d − Tij), where Yij is
an accuracy for the learner i’s response to the item j, d is a time
limit, and Tij is an time spent for the learner i until answering
the item j. In this expression the residual time i.e., (d − Tij)
can compensate or penalize for the learner, corresponding to the
learner’s accuracy to the item. In particular, for a correct response
(i.e., Yij = 1), the learner will gain the residual time as a score.
Similarly, for an incorrect response (i.e., Yij = 0), the score will

FIGURE 3 | Relations between EAP and M-ERS estimates.

be reduced by the same amount. In current study, the maximum
time given each item (= d) is restricted to be 1, so the residual
time simply reflects the proportion of time left. Such a scoring
scheme is especially useful to control for the case that the learner
guesses instantaneously guess the given item (a quick incorrect
answer). The expectation of the trade-off score, E(Sij), for an item
that is based on three abilities can naturally be extended from
a unidimensional version in Maris and Van der Maas (2012).
That is,

E
(

Sij
)

=

exp
(

2(
∑3

m=1 θim − βj)
)

+ 1

exp
(

2(
∑3

m=1 θim − βj)
)

− 1
−

1
(

∑3
m=1 θim − βj

) ,

(11)

where m =1, 2, 3 (abilities). Specifically, the E
(

Sij
)

in Equation
(10) provides the expected HSHS score for learner i’s to solve the
item j.

We conduct a simulation study to compare this approach
with the M-ERS method based on the accuracy data only. The
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TABLE 3 | Comparing IRT-based ERS algorithms for correctness vs. trade-off

score (correctness and speediness combined).

ρ = 0.0 ρ = 0.2 ρ = 0.5

|Bias| MSE |Bias| MSE |Bias| MSE

ITEM BANK 1

θ̂1 Accuracy 0.009 0.300 0.008 0.286 0.009 0.289

Speed-accuracy 0.008 0.245 0.008 0.232 0.007 0.213

θ̂2 Accuracy 0.010 0.364 0.009 0.363 0.010 0.382

Speed-accuracy 0.009 0.306 0.009 0.298 0.009 0.307

θ̂3 Accuracy 0.010 0.400 0.010 0.395 0.010 0.392

Speed-accuracy 0.009 0.337 0.009 0.336 0.009 0.332

ITEM BANK 2

θ̂1 Accuracy 0.008 0.291 0.008 0.294 0.008 0.290

Speed-accuracy 0.008 0.245 0.008 0.251 0.008 0.252

θ̂2 Accuracy 0.008 0.299 0.008 0.290 0.008 0.291

Speed-accuracy 0.008 0.260 0.008 0.245 0.008 0.252

θ̂3 Accuracy 0.009 0.337 0.009 0.353 0.009 0.315

Speed-accuracy 0.008 0.299 0.009 0.310 0.008 0.278

|Bias|, absolute value of the bias averaged over learners and items; MSE, a mean squared

error averaged over learners and items.

entire data-generating process follows what is described in the
section “Study Design.” The response time data is generated for
each learner who solves each item, using a formula for expected
response time from Maris and Van der Maas (2012), where the
time limit for each item is consistently set at 1-min. Like in studies
1 and 2, the simulation conditions are combinations of patterns
of dimensionality (Item banks 1 and 2) and the true correlations
among ability parameters (ρmm′ = 0.0, 0.2, and 0.5).

Table 3 comprises two tables that compare the performance
of two M-ERS method when only accuracy data are used
(“Accuracy”) or both speed and accuracy data (“Speed-
Accuracy”) are used. Overall results suggest that M-ERS for
speed-accuracy data shows smaller MSE, regardless of any
simulation conditions.

REAL DATA ANALYSIS

Description
For illustrative purposes, we used a dataset collected from a web-
based learning platform, “Number Sense” (Linsen et al., 2016)
developed by KU Leuven, Belgium. It was designed as an item-
based e-learning environment for 6- to 8-year-old children and
includes approximate number discrimination tasks, symbolic
comparison tasks, and symbolic and non-symbolic number
line estimation tasks. In particular, current data were collected
between Fall 2017 and Spring 2018, during one school year.
It includes data from 299 students’ responses to 330 items in
total. Among the items, 168 of them are designed to measure
(a) comparison ability and the remaining 162 items are designed
to measure (b) number line estimation ability. There were no
items that require both. All responses to the items are scored
for accuracy i.e., the binary scale (correct/incorrect). Current log
data do not include response times.

For the purpose of obtaining item parameters, data from
200 out of 299 students were used to fit a MIRT formula i.e.,

P
(

Yij = 1
)

=
exp(θj1+θj2−βj)

1+exp(θj1+θj2−βj)
, where θi1 and θi2 reflect abilities

in relation to the comparison and number line estimation,
respectively. The remaining 99 students were used to illustrate
the Elo algorithm. For the estimation procedure with this training
set, the MCMC algorithm is implemented with R 3.3.3 (R Core
Team, 2013). More specifically, JAGS (Plummer, 2015) was
implemented by an R package “R2jags” (Su and Yajima, 2015) that
provides wrapper functions for the Bayesian analysis program.
For each analysis with the JAGS, four chains were run, and
each ran for 10,000 iterations. We used a thinning parameter
of four and used the first half as burn-in. (Gelman and Rubin’s,
1995) statistics are used for a convergence diagnostic. Results of
the Bayesian inference show that the posterior predictive mean
for the correlation between the comparison and number line
estimation abilities (i.e., θi1 and θi2) was approximately ρ̂ =

0.13. The posterior predictivemeans for item discriminations and
difficulties (i.e., α̂mj and β̂j) were used as known item parameters,
and where therefore not updated within the Elo algorithm.

Results
Figure 4 shows the resulting ability trajectory of two randomly
chosen students by fitting a standard ERS and the M-ERS.
As in the simulation result, the figure presents the impact of
assuming unidimensionality or multidimensionality of the ability
parameter. It is noticeable that the ability estimates obtained by
a standard ERS are in general greater than the two-dimensional
ability estimates from the M-ERS. Based on the similarity
of the Number Sense data to the data we generated in the
simulation and the results we found there, we can suspect that
the unidimensional ERS ability estimates for the Number Sense
items are biased (upward), and the M-ERS has removed the bias.
That implies that ignoring the multidimensional data structure
may cause considerable bias in ability trajectory estimation in the
learning environment, and therefore in a suboptimal adaptivity
of the learning environment. After a longer sequence of items
in the session, however, it is shown that the gaps among four
approaches tend to be negligible.

CONCLUSION

In this paper, we have proposed an MIRT-based ERS method
to address a dynamic estimation of the learner’s progress in an
adaptive practice environment where the learning items exhibit a
multidimensional ability criteria. The model combines the idea
of using a compensatory MIRT model to predict the learner
performance with a fast and heuristic algorithm for tracking his
or her irregular trend of ability parameters through the ERS.

First, we have shown that there occurs a considerable error
in terms of updating the ability changes, when a unidimensional
IRT is used in ERS when the truth is that there is a
multidimensionality in a set of items. We have shown that the
error in estimating the ability parameters can be alleviated with
the compensatory IRT in ERS. Second, we have shown that at the
initial step of learning, the error of ability estimates are bigger
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FIGURE 4 | Example of ability estimates for a student by standard ERS and M-ERS.

where each individual item involves more than one dimensions,
as compared to the case where the item purely involves one
of the multiple dimensions. However, we have found that the
error has been noticeably reduced as more items are rendered.
Third, we have extended the M-ERS method for the trade-off
scores between response time and accuracy. Results show that
bias and MSE of ability estimates are smaller when the HSHS
(i.e., the speed-accuracy trade-off scoring that gives penalty for
guessing) was incorporated in M-ERS than using the accuracy
data only.

We believe that our approach offers the possibility to improve
adaptivity when applied in an adaptive environment. In our
simulation study, the items were chosen randomly across
measurement occasions for each student, but it is also possible
to administer items that optimize the item selection criteria. For
example, the item can be chosen such that its difficulty level is as
close as possible to the learner’s current ability (e.g., 50% chance
of answering correctly). In the ERS based on the IRT formula,
such an item selection strategy can be flexibly adjusted to avoid
too easy (e.g., 90% chance of answering correctly) or too hard
(e.g., 25% chance of answering correctly) items to individual
learners. That means that the ERS can provide a flexible item
sequencing tool for adaptivity in which a series of items are
updated in real time based on their ability or knowledge levels
(Wauters et al., 2010).

Another idea that may arise when considering to deal with
ability estimation in ERS is to handle the cold-start problem i.e.,
the system does not know a new learner’s ability level in the
beginning of learning stage, when the new learner comes into
the e-learning system for the first time. The cold start problem
may also occur when a learner leave the e-learning system for a
while and return (i.e., between-session period) because external
effects could lead to the ability level change. Finally, the current
simulation study shows a few limitations. For instance, the true
ability was assumed to be constant over time, although it tends to
evolve in learning environments. Including a time trend can add
additional challenges, such as the determination of a step size that

is large enough to keep track of the evolving ability but not too
large in order to avoid very instable ability estimates.

Nevertheless, we believe the results of current study provide
valuable information about how to efficiently follow up estimate
multidimensional ability changes in the e-learning environments
in order to alleviate concerns about the ERS and catalyze the
usefulness of the e-learning system in educational settings.
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