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Changing the information format from probabilities into frequencies as well as employing
appropriate visualizations such as tree diagrams or 2 × 2 tables are important tools that
can facilitate people’s statistical reasoning. Previous studies have shown that despite
their widespread use in statistical textbooks, both of those visualization types are only
of restricted help when they are provided with probabilities, but that they can foster
insight when presented with frequencies instead. In the present study, we attempt to
replicate this effect and also examine, by the method of eye tracking, why probabilistic
2 × 2 tables and tree diagrams do not facilitate reasoning with regard to Bayesian
inferences (i.e., determining what errors occur and whether they can be explained by
scan paths), and why the same visualizations are of great help to an individual when
they are combined with frequencies. All ten inferences of N = 24 participants were based
solely on tree diagrams or 2× 2 tables that presented either the famous “mammography
context” or an “economics context” (without additional textual wording). We first
asked participants for marginal, conjoint, and (non-inverted) conditional probabilities (or
frequencies), followed by related Bayesian tasks. While solution rates were higher for
natural frequency questions as compared to probability versions, eye-tracking analyses
indeed yielded noticeable differences regarding eye movements between correct and
incorrect solutions. For instance, heat maps (aggregated scan paths) of distinct results
differed remarkably, thereby making correct and faulty strategies visible in the line of
theoretical classifications. Moreover, the inherent structure of 2 × 2 tables seems to help
participants avoid certain Bayesian mistakes (e.g., “Fisherian” error) while tree diagrams
seem to help steer them away from others (e.g., “joint occurrence”). We will discuss
resulting educational consequences at the end of the paper.

Keywords: Bayesian reasoning, eye tracking, 2 × 2 table, tree diagram, natural frequencies, probabilities

INTRODUCTION

It is relevant to one’s understanding of statistical situations involving two binary uncertain events
(e.g., being ill: yes/no; medical test: positive/negative) whether the information is presented in
probabilities (e.g., “80%”) or in natural frequencies (e.g., “8 out of 10”; Gigerenzer and Hoffrage,
1995). In the case of what is known as Bayesian reasoning situations, a meta-study found that the
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change of probabilities in natural frequencies substantially
increases performance rates (McDowell and Jacobs, 2017; see
also Barbey and Sloman, 2007). In Bayesian reasoning situations
concerning medical contexts, the prevalence (a priori probability)
of a disease is usually given, as well as the sensitivity and false-
alarm rate of a medical test (see section Statistical Situations
Based on Two Binary Events for a detailed theoretical distinction
between Bayesian and non-Bayesian reasoning situations).
Furthermore, a good deal of the literature demonstrates that
visualizations can also foster insight into Bayesian reasoning or
in statistical thinking in general (Yamagishi, 2003; Steckelberg
et al., 2004; Binder et al., 2015; see also Figures 1, 2). In cognitive
psychology—because of their relevance in real-world medical and
legal decision-making (Hoffrage and Gigerenzer, 1998; Hoffrage
et al., 2000; Fenton et al., 2016; Operskalski and Barbey, 2016)—
Bayesian inferences stand firmly in the foreground of discussions
about statistical reasoning.

In the field of statistics education, secondary school and
university students have to assess and understand all probabilities
concerning situations involving two binary events such as
conjoint probabilities or (non-inverted) conditional probabilities
(in such situations, 16 different probabilities can be considered,
see section Statistical Situations Based on Two Binary Events).
Thus in statistics classes taught at secondary schools or
universities, a Bayesian inference is often treated as merely a
(complicated) special case of conditional probability.

Regarding visualizations, in Germany but also in many other
countries, tree diagrams and 2 × 2 tables are particularly widely
implemented in textbooks on probability (see Figure 1; e.g.,
Eisentraut et al., 2008; Freytag et al., 2008; Schmid et al., 2008;
Weber et al., 2018), most likely because both visualizations
explicitly contain numbers and can be constructed easily by
students based on typical problem wordings (neither of which
is the case for, e.g., Euler diagrams or similar visualizations
that rely on geometrical areas; see Figure 2; Weber et al.,
2018). However, when the visualizations are equipped with
probabilities (which in the classroom is most often the case),
students unfortunately seem to struggle regardless of which of the
two visualizations is used—especially concerning the notorious
Bayesian inferences. Binder et al. (2015) could demonstrate that
although German high school students are pretty much familiar
with both visualizations, they cannot exploit tree diagrams or
2 × 2 tables with probabilities for respective inferences, and that
the situation only changes when both visualizations are presented
with frequencies (see Figure 1).

The study detailed in this paper attempts to replicate format
effects concerning visualizations and goes one step further by
investigating corresponding cognitive processes with the method
of eye tracking. We expect with this method to be able to identify
and describe typical (correct) solution strategies on the one hand,
and on the other to explain specific errors frequently made
by the participants. Thus our study investigates the intriguing
question of why so many people struggle with probabilistic
reasoning (including Bayesian), even when the widely prominent
tree diagrams and 2 × 2 tables visualize the situation for them.
What is wrong with these visualizations? And how do scan
paths change when both visualizations are instead given with

frequencies? Despite multiple calls for its use (Verschaffel et al.,
2016; McDowell and Jacobs, 2017), the method of eye tracking
has been applied only a few times thus far within the framework
of statistical reasoning (Cohen and Staub, 2015; Reani et al., 2017;
Lehner and Reiss, 2018), and not at all for analyzing format
differences concerning both widely applied visualizations.

It has to be noted that most research in the field of cognitive
psychology or statistics education—with a strong focus on
the special case of Bayesian inferences, especially in cognitive
psychology—is concerned with attempts to boost performance,
for instance by changing the information format or presenting
additional visualizations (see, e.g., the recent meta-analysis by
McDowell and Jacobs, 2017), by implementing trainings (e.g.,
Sedlmeier and Gigerenzer, 2001; Steckelberg et al., 2004), or
by theoretically explaining the benefit of certain tools (e.g.,
the discussion between proponents of the ecological rationality
approach and the nested sets approach, Hoffrage et al., 2000;
Pighin et al., 2016). With mathematics education in mind, the
present research is in line with recent studies also conducted
by our research group that look at the other side of the coin of
statistical reasoning: when and why teaching fails. For instance,
by focusing on participants who failed in Bayesian inferences
although the information was displayed in terms of the favored
frequencies, Weber et al. (2018) could demonstrate that due
to a “fixed mindset,” many of these students translated the
given natural frequencies “back” into probabilities, with the
consequence that they were not able to solve the task.

In the first theoretical section of the paper, we will show
that Bayesian inferences are only a special case in situations
with two binary uncertain events, and examine which other
probabilities are regularly covered in teaching at secondary
school and university. We will then explain why tree diagrams
and 2 × 2 tables are both widely implemented worldwide in the
actual teaching of statistics, and what is already known about
typical errors that are made with regard to inferences based on
those two visualizations. In this way, the rationale of our present
approach combines the concept of natural frequencies and the
focus on Bayesian reasoning from cognitive psychology with a
consideration of all 16 probabilities and the choice to utilize tree
diagrams and 2× 2 tables in typical statistics education materials
used at secondary school and university.

STATISTICAL THINKING

Statistical Situations Based on Two
Binary Events
Bayesian situations usually refer to two binary uncertain events
such as a state of health (being ill vs. not being ill) and a medical
test result (e.g., positive vs. negative). In secondary school, and
especially with younger children, the respective events might,
for instance, be the gender of a child (female vs. male) and a
certain personality trait (e.g., loves sports vs. does not love sports).
In general, in such situations, 16 different probabilities can be
theoretically considered, which we will illustrate with the case
of the famous mammography context (that will also be applied
later on as one of the two contexts in our empirical study). The
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FIGURE 1 | Tree diagrams (above) and 2 × 2 tables (below), both with frequencies (left) and with probabilities (right) for the mammography context (figure adapted
from Binder et al., 2015).

mammography context contains two events, each with binary
values (B: having breast cancer; B: not having breast cancer;
M+: positive mammogram; M−: negative mammogram), which
allows for the consideration of the following probabilities:

Four probabilities taking just one event into account
(marginal probabilities):
P(B), P(¬B), P(M+), P(M−),
with P(¬B) = 1− P(B) and P(M−) = 1− P(M+)

Four conjoint probabilities:
P(B ∩M+), P(¬B ∩M+), P(B ∩M−), P(¬B ∩M−)

Eight conditional probabilities:
P(M+|B), P(M+|¬B), P(M−|B), P(M−|¬B),
P(B|M+), P(B|M−), P(¬B|M+), P(¬ B|M−)

Note that thus far, no task is given, and it is possible to
describe these situations in general without the need to decide on
a special inference (consequently, in the following we will strictly
distinguish between the “mammography situation” per se and
the corresponding problem/task posed). Respective inferences
often require—in cognitive psychology and in the teaching of
statistics as well—deducing a certain probability when at least
three other probabilities are given. The most prominent examples
are Bayesian inferences that involve the inversion of a given
conditional probability. For instance:

Mammography problem (probability format):
The probability of breast cancer (B) is 1% for a woman of a

particular age group who participates in a routine screening (P(B)).

If a woman who participates in a routine screening has breast
cancer, the probability P(M+|B) is 80% that she will have a positive
mammogram (M+). If a woman who participates in a routine
screening does not have breast cancer (B), the probability P(M+|B)
is 9.6% that she will have a false-positive mammogram.

What is the probability that a woman who participates
in a routine screening and has a positive mammogram has
breast cancer?

The required Bayesian inference is an “inversion” in the
sense that a conditional probability P(M+|B) is given and
the “inverse” conditional probability P(B|M+) has to be
assessed in order to “update” an a priori estimation [in
this case P(B)]. In the light of this new evidence, Bayes’
theorem yields:

P(B|M+) =
P(M+|B)P (B)

P(M+|B)P (B)+ P(M+|¬B)P (¬B)

=
80% · 1%

80% · 1%+ 9.6% · 99%
= 7.8% (1)

It is well known that such solutions may be counterintuitive
(especially when extreme base rates like 1% are given) and
that most people (even experts like physicians) have difficulty
estimating such probabilities. In the meta-analysis by McDowell
and Jacobs (2017), only 4% of the participants were able to
come up with correct answers concerning such inferences.
However, in addition to these problematic Bayesian inversions,
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FIGURE 2 | Alternative visualizations (figure from Binder et al., 2015).

the assessment of conjoint probabilities (e.g., Fiedler, 2000) can
also be difficult.

Information Formats: Probabilities vs.
Frequencies
Nevertheless, situations like these can actually be taught to
very young children who are not even aware of the concept of
conditional probability (or probabilities in general). In German
secondary schools, for instance, such situations are introduced
to children as young as 10, with absolute numbers concerning
a set of persons (or objects) provided, each of them having (or
not having) two certain characteristics. For instance, there may be
100 students, and the two characteristics might be gender (male
or female) and wearing glasses (or not). Note that when a certain
sample is given, all of the 16 probabilities mentioned above can be
expressed in absolute numbers that describe specific subsets. The

fact that absolute numbers are much easier to grasp is exploited
by the concept of natural frequencies (Gigerenzer and Hoffrage,
1995), which even foster insight into Bayesian inferences. Natural
frequencies combine two absolute frequencies, as illustrated in
the mammography problem:

Mammography problem (natural frequency format):
100 out of 10,000 women of a particular age group who

participate in a routine screening have breast cancer. 80 out of
100 women who participate in a routine screening and have breast
cancer will have a positive mammogram. 950 out of 9,900 women
who participate in a routine screening and have no breast cancer
will have a false-positive mammogram.

How many of the women who participate in a routine screening
and receive positive mammograms have breast cancer?

Substantially more people are now able to find the correct
solution to the problem (which is “80 out of 1,030”) because
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the solution becomes more obvious and the calculation is easier.
In the meta-analysis by McDowell and Jacobs (2017), frequency
versions of Bayesian reasoning problems can be solved on average
by 24% of participants across studies and contexts. Even in
more complex Bayesian problems, such as in situations involving
more than one medical test or unclear test results, frequencies
help people in their decision-making processes (Hoffrage et al.,
2015b; Binder et al., 2018). In the last 20 years, an abundance
of studies has shown the facilitating effect of frequencies for
many different kinds of populations: physicians, patients, judges
in court, managers, university and high school students, and
even young children (Gigerenzer and Hoffrage, 1995; Hoffrage
et al., 2000; Zhu and Gigerenzer, 2006; Siegrist and Keller,
2011; Hoffrage et al., 2015a; McDowell and Jacobs, 2017). Weber
et al. (2018), on the other side, shed light on the question
of why (on average) 76% of participants still fail even though
frequencies (instead of probabilities) are provided, finding that
many participants translated the given frequencies back into
(more complicated) probabilities.

Natural frequencies can be obtained both by natural sampling
(Kleiter, 1994) or, alternatively, by actively translating given
probabilities (e.g., “80%”) into expressions consisting of two
absolute frequencies (e.g., “80 out of 100”). In our research—
in contrast to some other scholars’ work (e.g., Spiegelhalter
and Gage, 2015)—we consider natural frequencies as the
superordinate concept for both empirically sampled and expected
frequencies. While the latter constitute frequencies that are
expected in the long run (cf. Hertwig et al., 2004; Spiegelhalter
and Gage, 2015; case 2 in Woike et al., 2017), empirically
sampled frequencies are derived from a natural sampling process
(cf. Kleiter, 1994; Fiedler et al., 2000; cases 1 and 3 in Woike
et al., 2017). Whereas empirically sampled frequencies can
obviously deviate from the expected ones (but are still natural
frequencies), expected frequencies fit perfectly into the teaching
context (here, natural frequencies usually stem from imagining a
specific sample).

Furthermore, it is not only natural frequencies of Bayesian
tasks that can be considered natural frequencies. Of course, on
the one hand it is possible to sample all of the 16 probabilities
mentioned above in terms of natural frequencies (by natural
sampling). And, on the other hand, if probabilities are given, all
of them can actively be translated into natural frequencies as a
didactical tool (by researchers, teachers, or clever students, who
realize that only an arbitrary sample functioning as reference set
has to be imagined first).

Number-Based Visualizations: 2 × 2
Tables and Tree Diagrams
In their research articles, scholars often use 2 × 2 tables (Goodie
and Fantino, 1996; Dougherty et al., 1999; Fiedler et al., 2000)
or tree diagrams (Kleiter, 1994; Gigerenzer and Hoffrage, 1995;
Mandel, 2014; Navarrete et al., 2014) to illustrate Bayesian
reasoning situations to their peers. Both visualizations are
also very prominent in the context of statistical education at
secondary school and university. Interestingly, the effects of these
visualizations on participants’ performance have only rarely been

tested empirically thus far (for a discussion, e.g., see Binder et al.,
2015). With the numbers from the mammography context above,
there are generally four possible different visualizations of this
kind (see Figure 1). The cause for the calculations in the cell
at the below right is explained in issue 1 (see later in section
Number-Based Visualizations: 2× 2 Tables and Tree Diagrams).

Why are these visualizations so prominent, especially in the
context of teaching? Note that in contrast to most other visual
aids (see Figure 2), 2 × 2 tables and tree diagrams usually
explicitly contain numerical information and, furthermore,
both can be equipped with frequencies or with probabilities
(Figure 1). The decisive advantage for teaching and learning,
however, is that teachers and students can easily construct all
of these visualizations themselves. Note that “non-numerical”
visualizations such as Euler diagrams (e.g., Sloman et al., 2003;
Brase, 2008; Micallef et al., 2012; Sirota et al., 2014b), roulette
wheel diagrams (e.g., Yamagishi, 2003; Brase, 2014), or unit
squares (Böcherer-Linder and Eichler, 2017), all of which are
based on geometrical areas (Figure 2), require a substantial effort
to be produced (i.e., sometimes the size of the specific areas
needed for the visualizations can only be calculated when the task
is already solved). Furthermore, it is not always convenient to
display extreme base rates by a geometrical area. For instance, in
a true-to-scale unit square, the prevalence of 1% would no longer
be visible. Along the same lines, for displaying the mammography
problem with an icon array (Brase, 2008, 2014; Sirota et al., 2014b;
Zikmund-Fisher et al., 2014), which is based on small symbols
instead of geometrical areas, the student (or teacher) would have
to draw 10,000 icons.

It is important to note that, in principle, all visualizations
appearing in Figures 1, 2 allow for the assessment of all of
the 16 probabilities above (which is also true for all typical,
purely textual formulations of Bayesian tasks). Furthermore,
one can present not only “normal” tree diagrams or 2 × 2
tables, but also ones with highlighted branches or nodes (see
Binder et al., 2018) or cells. Cognitive load theory (Sweller,
2003) would suggest that according to the signaling principle,
highlighting the relevant branches, nodes, or cells might
improve performance of participants (Mautone and Mayer, 2001;
Mayer, 2008). Furthermore, a combination of textual and visual
information could shed more light on the redundancy principle
of multiple information sources, which is addressed in the
cognitive load theory and the cognitive theory of multimedia
learning (Mayer, 2005). The redundancy principle says, in short,
that the elimination of any redundant information may enhance
learning (see Sweller, 2003; Mayer, 2005) because of a reduction
of the extraneous cognitive load (also see Discussion).

Concerning the four visualizations of Figure 1 that are widely
used in teaching and that we will also implement in our empirical
study (for the final stimuli, see Figure 4), some theoretical details
have to be clarified:

(1) 2 × 2 tables cannot present conditional probabilities (only
tree diagrams can):
Concerning the probability format, it is obvious that the
probabilities provided in a Bayesian task cannot be placed
directly into a 2 × 2 table, since 2 × 2 tables contain
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conjoint probabilities but not conditional ones. Therefore,
while the conditional probabilities given in a Bayesian
task can be placed directly on the branches of a tree
diagram, 2 × 2 tables principally display different pieces
of information (see Figure 1).
This feature of 2× 2 tables makes them simpler (compared
to tree diagrams) in terms of the calculations to be
performed, at least for Bayesian inferences based on
probabilities, because a part of the calculation has already
been performed in order to complete the 2 × 2 table (as
indicated in small letters in Figure 1 in the cell below right).
Note that only a tree diagram with probabilities requires
Bayesian calculations according to formula (1), while in
2 × 2 tables the following calculation is sufficient for the
resulting conditional probabilities:

P(B|M+) =
P (B ∩M+)

P (M+)
=

0.8%
0.8%+ 9.5%

≈ 7.8% (2a)

Consequently, since Bayesian inferences imply the aspect
of inversion, it is interesting to consider whether inferences
based on 2 × 2 tables containing probabilities can be
called “Bayesian” at all (e.g., Binder et al., 2015, but see the
short menu in Gigerenzer and Hoffrage, 1995). Therefore,
in our experiments only one marginal distribution is
shown (see Figure 4) because displaying the other one in
addition would allow simply to dividing the numbers in
two cells for all conditional probabilities. Thus, inverted
and non-inverted conditional probabilities could not be
distinguished any longer.

(2) Concerning 2 × 2 tables, scan paths (gaze behavior) should
not depend on information format:
Concerning possible scan paths, it is important to note
that, regarding 2× 2 tables (see below in Figure 1), exactly
the same cells would have to be inspected in both formats
for all 16 possible inferences. In contrast, probabilities in
tree diagrams are depicted at the branches and absolute
frequencies in the nodes, thus requiring slightly deviating
scan paths in the two formats. For the 2 × 2 table
presented with frequencies of the mammography context,
similar to formula (2a), two frequencies (instead of
probabilities) have to be added to obtain the denominator
in formula (2b):

P(B|M+) =
# (B ∩M+)

# (M+)
=

80
80+ 950

≈ 7.8% (2b)

(3) Frequentistic visualizations are more flexible than textual
natural frequency versions:
Notably, both frequentistic visualizations (see left side
in Figure 1) contain absolute frequencies, implying that
natural frequencies of the type “x out of y” (i.e., natural
frequencies always consist of two absolute frequencies)
would have to be combined by first relating two absolute
numbers (x and y) in any case. However, this necessity
makes frequency visualizations flexible, since the absolute
frequencies displayed in Figure 1 can be combined to
multiple kinds of natural frequencies (e.g., “80 out of 100,”
“100 out of 10,000,” “80 out of 10,000”).

(4) 2 × 2 tables and tree diagrams display more statistical
information than textual wording:
Furthermore, it is striking that in all four visualizations
(Figure 1), more numerical information is displayed
than in the corresponding mammography wordings
(specifically, statistical information on the respective
counter events is included). However, concerning
Bayesian inferences, this additional information can
usually be disregarded.

(5) Non-inverted vs. inverted (Bayesian) conditional
probabilities:
Most importantly, with respect to Bayesian reasoning, tree
diagrams (above in Figure 1) entail a specific order of
subsetting: First, the sample is divided according to state
of health, then according to test result (an inverse tree
diagram can easily be imagined by first dividing the sample
according to M+ and M−, and subsequently according to
the state of health). In order to mirror this structure in
the corresponding 2 × 2 tables, we deliberately presented
only one of the two marginal distributions (in both formats,
see Figure 4). As a consequence, we can distinguish
in all four visualizations between “normal” conditional
probabilities and inverse conditional probabilities in the
following way: Non-inverted conditional probabilities (and
frequencies as well) require a simple division of two pieces
of information displayed (in the “probability tree,” the
non-inverted conditional probabilities can even be taken
directly from the lower branches). In contrast, as explicated
above, the inversion of conditional probabilities (and
thus Bayesian reasoning) requires more complex cognitive
operations. Note that formulas (1) and (2a), based on
the probability tree or the “probability 2 × 2 table,” and
formula (2b), based on both frequentistic visualizations,
all entail more operations than the simple division of two
pieces of information.

(6) 2× 2 tables and tree diagrams in secondary schools:
Finally, it has to be noted that the 2× 2 table (with conjoint
probabilities), the 2 × 2 table (with frequencies), and the
tree diagram (with probabilities) are part of the German
secondary school curriculum, whereas the “frequency tree”
is not. However, (Bayesian) inferences based on both
frequency visualizations seem to be much easier than
those based on both probability visualizations (Binder
et al., 2015), which brings into question the omnipresent
application of the latter in the teaching of statistics.
This emphasizes the schools’ challenge in teaching the
intelligent reading of visualizations (i.e., the facets “read the
data,” “read between the data,” and “read beyond the data”
from Curcio, 1989).

Error Strategies Detectable in Tree
Diagrams and 2 × 2 Tables
Many statistics educators, but also the psychologists McDowell
and Jacobs (2017) in their meta-analysis on Bayesian reasoning,
stress the importance of investigating erroneous cognitive
algorithms. This, of course, is true for teaching and learning
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mathematics in general (e.g., Krauss et al., 2008). But only a
few studies have explicitly reported typical incorrect reasoning
strategies concerning Bayesian inferences (for some exceptions,
see Gigerenzer and Hoffrage, 1995; Steckelberg et al., 2004;
Zhu and Gigerenzer, 2006; Eichler and Böcherer-Linder, 2018;
Weber et al., 2018).

In order to gain insight into the cognitive problems that
people encounter concerning Bayesian inferences and statistical
thinking in general, a better understanding of typical errors is
required. The few existing classifications of incorrect Bayesian
strategies are summarized in Table 1. While Gigerenzer and
Hoffrage (1995) describe the typical erroneous strategies based
on probabilities, Zhu and Gigerenzer (2006) and Eichler
and Böcherer-Linder (2018) choose an explanatory approach
based on frequencies. To relate all types of errors to our
four visualizations (Figure 1), we first display both kinds of
classifications next to each other (Table 1). In doing so, we
present the errors based on the notation shown in Figure 3
(uppercase letters stand for absolute frequencies while lowercase
letters represent probabilities). Keep in mind that these letters will
later on be used to denote respective areas of interest (AOIs).

Note, however, that the errors reported refer to the typical
textual formulations of Bayesian reasoning tasks implemented
(see, e.g., the wordings of the mammography problem in
the probability and frequency formats in sections Statistical
Situations Based on Two Binary Events and Information
Formats: Probabilities vs. Frequencies). Gigerenzer and Hoffrage
(1995) found the joint occurrence to be the most frequent
erroneous strategy in Bayesian reasoning. Joint occurrence
involves multiplying the base rate b and the sensitivity d

TABLE 1 | Correct solution and typical incorrect (Bayesian) strategies according to
the correct solution “D out of D + F” in a typical Bayesian reasoning task
(according to Gigerenzer and Hoffrage, 1995; Steckelberg et al., 2004; Zhu and
Gigerenzer, 2006; Eichler and Böcherer-Linder, 2018).

Frequencies Probabilities

(with A, B, C,
D, E, F, G∗)

(with b, c, d, e,
f, g, h, i, j, k∗)

Correct solution (Bayesian) D out of (D + F) (b · d)/
(b · d + c · f)

Incorrect algorithm (non-Bayesian)

Joint occurrence (Gigerenzer and
Hoffrage, 1995)

D out of A b · d

Fisherian (Gigerenzer and
Hoffrage, 1995)/Representative
thinking

D out of B d

Likelihood subtraction (Gigerenzer
and Hoffrage, 1995)

(D out of B) –
(F out of C)

d − f

Base rate only (Gigerenzer and
Hoffrage, 1995)/conservatism
(Zhu and Gigerenzer, 2006)

B out of A b

Evidence-only (Zhu and
Gigerenzer, 2006)

(D + F ) out of A b · d + c · f

Pre-Bayes (Steckelberg et al.,
2004; Zhu and Gigerenzer, 2006)

B out of (D + F ) Not applicable

Correct positive rate/false positive
rate (Steckelberg et al., 2004)

(D/B) out of (F/C) d/f

∗ A, B, C, etc., and b, c, d, etc. represent the pieces of statistical information in the
respective visualization (see also Figure 3).

(in frequencies: divide D by A) without considering the healthy
people with positive test results (i.e., c and f ; or correctly dividing
D by D+F). According to the same authors, another frequently
applied erroneous strategy is the Fisherian (or representative
thinking, according to Zhu and Gigerenzer, 2006) strategy, in
which one only takes the sensitivity d of the test as the answer
(or in terms of frequencies: to calculate D/B). This error is
widespread because it is tempting to confuse P(B|M+) with
P(M+|B). Furthermore some participants used another wrong
algorithm, which is called likelihood subtraction (Gigerenzer and
Hoffrage, 1995), meaning erroneously to compute P(M+|B) –
P(M+|–B). However, this wrong algorithm predominately occurs
in probability versions and is rather unusual for natural frequency
versions. A few other participants in that study (Gigerenzer and
Hoffrage, 1995) only provided the base rate b as the solution
of the Bayesian reasoning task, which in frequencies means
dividing B by A (this error is called conservatism by Zhu
and Gigerenzer, 2006). The authors also identified the error
evidence-only, which is the proportion of people with positive
test results [i.e., c and f ; or, (D+F) out of A, respectively].
Furthermore, Zhu and Gigerenzer (2006) as well as Steckelberg
et al. (2004) reported an error that is documented for frequency
versions only, namely pre-Bayes (which means to incorrectly
divide B by D+F). Finally, some participants also applied
the erroneous strategy correct positive rate/false positive rate
(Steckelberg et al., 2004).

Because visualizations could prevent specific
misunderstandings or even block faulty algorithms, it is
crucial to reconsider cognitive algorithms with respect to specific
visualizations. For instance, the (Fisherian) confusion of P(A|B)
with P(B|A) might occur less frequently with a tree diagram
(compared to a text-only version) since tree diagrams emphasize
the sequential character of the situation more. But even though
different visualizations might help for very different reasons,
they could also cause new errors that are not listed in Table 1.
Certain new types of errors might occur according to cognitive
load theory (Sweller, 2003) precisely because more information
is presented in a tree diagram or in a 2 × 2 table than in a
textual version of a Bayesian task. For instance, E and G or the
corresponding probabilities e and g (cf. Figure 3) only appear in
visualizations but not in typical wordings, and it is possible for
people to erroneously make use of this statistical information
in their calculations. It has to be noted that Steckelberg et al.
(2004) mention incorrect Bayesian strategies associated with
visualizations (tree diagrams and 2× 2 tables), but do not discuss
them in detail. Likewise, possible explanations of the beneficial
effect of particular visualizations often remain theoretical (see,
e.g., Khan et al., 2015).

For teaching statistics, just as for teaching mathematics
in general, it is essential to be an expert on typical errors
and on learners’ preconceptions (Shulman, 1986, 1987; Krauss
et al., 2017). To this end, McDowell et al. (2018) call for
a broader methodological approach that can identify typical
incorrect Bayesian strategies. Johnson and Tubau (2015) and
McDowell and Jacobs (2017) even explicitly suggest eye-tracking
analyses of Bayesian reasoning strategies. As educators for future
mathematics teachers, we are in addition interested in the pros
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FIGURE 3 | General tree diagrams (above) and 2 × 2 tables (below) provided with frequencies (left) or probabilities (right).

FIGURE 4 | Stimuli for the mammography context and for the economics context (blue-colored AOIs only were included afterwards for the analyses).
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and cons of visualizations regarding all 16 possible inferences,
especially concerning the most frequently applied visualizations
in the (German) context of teaching statistics in secondary
schools and universities, namely 2× 2 tables and tree diagrams.

In the second theoretical section of this paper, we will now
focus on the method of eye tracking and how it has been used
thus far concerning strategy detection in general but also with
respect to statistical reasoning in particular. For this purpose, we
introduce the design and results of three studies that are closest
to the approach followed in the present article.

EYE TRACKING AS A METHOD FOR
ASSESSING STATISTICAL REASONING
STRATEGIES

Research Techniques for Identifying
Cognitive Processes
Most empirical studies on Bayesian reasoning (or statistical
thinking in general) primarily focus on participants’ performance
rates. However, neither performance rate nor reaction time can
fully explain underlying reasoning processes. Verbal reports (or
qualitative interviews) might be a path toward an identification
of strategies (Robinson, 2001; Smith-Chant and LeFevre, 2003),
but participants may have insufficient explicit knowledge to
be able to theoretically reflect solution strategies (especially
post hoc). Therefore, the think-aloud and write-aloud methods
(van Someren et al., 1994; for write-aloud protocols on Bayesian
reasoning, see Gigerenzer and Hoffrage, 1995) represent an
alternative, requiring participants to report on their reasoning
strategies simultaneously to their problem solving. However,
although this method certainly offers valuable insight into the
cognitive strategies that are employed in task processing, it
obviously also affects the problem-solving itself.

In contrast, the method of eye tracking—a non-invasive
measurement of eye movements relative to the head and the
visual stimulus—gives a more objective, measurable insight into
cognitive and attentional processes involved in, for instance,
strategy use or problem solving, without concurrently influencing
the process (e.g., Green et al., 2007; Merkley and Ansari, 2010;
Huber et al., 2014a). Recording eye movements may therefore
be a potential source for capturing thought processes during
reasoning and strategy activity. More specifically, and especially
with respect to visualizations, it might provide insight into which
pieces of information were generally taken into account by a
participant and which were not. Thus, eye tracking can be used
as a window into cognitive processes that may not be consciously
accessible to the participant or apparent to the researcher by
task performance (Stephen et al., 2009). Of course, brain-imaging
techniques could be a promising additional source of information
for combining with techniques like eye tracking within the near
future (e.g., see Marian et al., 2003).

Important correlates for cognitive processes during task
processing gained by eye tracking are different quantitative and
qualitative measures with respect to spatial and temporal features
of eye movements that deliver information on eye fixations and

saccades. Fixations represent the maintaining of the visual gaze
on a certain location in the visual field, while fast eye movements
from one location to another are called saccades. The resulting
sequence of fixations and saccades is called a scan path, and
dwell time is the totalized time of all fixations on a given area. In
addition, colored heat maps aggregate scan paths across different
participants, thereby helping researchers to better visualize the
relative occurrence of certain scan paths (e.g., see Holmqvist et al.,
2011, or Figures 7–10).

Eye movements have already been a valuable tool for
investigating a number of cognitive domains, including reading
(Verschaffel et al., 1992; Meseguer et al., 2002), visual search
(Ho et al., 2001), chess (Charness et al., 2001), and problem
solving (Epelboim and Suppes, 2001; Knoblich et al., 2001;
Thomas and Lleras, 2007). Meanwhile, eye tracking is also
being used increasingly within educational research (e.g.,
van Gog and Scheiter, 2010). With respect to mathematics
education, there are a number of studies that have applied
eye movements for innovative findings, for instance regarding
arithmetic word problems (e.g., De Corte et al., 1990; Verschaffel
et al., 1992; Hegarty et al., 1995), strategies in solving mental
addition problems (Verschaffel et al., 1994; Green et al., 2007),
fraction comparison (Huber et al., 2014b; Ischebeck et al.,
2015; Obersteiner and Tumpek, 2016), number-line estimation
strategies (Schneider et al., 2008; Heine et al., 2010; Sullivan et al.,
2011), concepts of angles (Schick, 2012), and equation solving
(Susac et al., 2014).

Notwithstanding, Verschaffel et al. (2016) point out that “it is
remarkable how little researchers in mathematics education have
made use of eye tracking so far, particularly for the identification
of strategies” (p. 388).

Eye Tracking With Tree Diagrams and
2 × 2 Tables
Only a very few studies have analyzed eye movements during
the processing of statistical visualizations like tree diagrams or
2× 2 tables (especially with respect to Bayesian reasoning tasks),
although the method seems well suited to investigating cognitive
processes in this domain. In the following, we will describe
three relevant eye-tracking studies that deal with at least one
of the following aspects: (1) Bayesian reasoning situations, (2)
tree diagrams or 2 × 2 tables, and (3) information formats
(probabilities and frequencies).

Cohen and Staub (2015) examined wrong strategies in
Bayesian reasoning based on purely textual statistical information
provided in probabilities. They found that several participants
consistently used only one of the three probabilities given
in a typical Bayesian reasoning problem (see the respective
errors in Table 1, e.g., joint occurrence or Fisherian) while
other participants used an additive combination of four of
the probabilities presented in the tasks (e.g., evidence-only).
However, Cohen and Staub (2015) examined only probability
versions (but no frequency versions) and did not investigate
visualizations in their study.

Lehner and Reiss (2018) analyzed eye movements regarding
2× 2 tables with absolute numbers (without displaying marginal
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distributions). However, they did not ask their participants
(students) for probabilities or natural frequencies, but rather for
decisions (e.g., “Persons of which sex should be asked if...?”;
the absolute numbers of female and male people from two
countries were given in the corresponding 2 × 2 table). To
answer the implemented questions, students had to focus on one
or a combination of two, three or all of the four cells of the
visualization. Interestingly, the authors found that the students’
gaze durations on single cells differed considerably, with the
upper left cell viewed for the most amount of time and the lower
right cell for the least amount of time. Moreover, students who
were able to solve all of the twelve items with the correct strategy
directed their gaze at the lower right cell for a longer period of
time than the other participants did. In contrast, students who
only solved easier one- or two-cell problems focused for a longer
duration on the left column of the table. The authors drew a
clear connection between eye movements and (more complex)
decision strategies with respect to 2× 2 tables (Lehner and Reiss,
2018). This research, however, was exclusively focused on 2 × 2
tables containing absolute frequencies and thus tree diagrams or
different information formats were not addressed. Furthermore,
since no Bayesian reasoning tasks were implemented, the findings
cannot be related to Table 1 of this paper.

Finally, Reani et al. (2017) did indeed investigate the
effect of the use of different visualizations with regard to
Bayesian reasoning problems. With eye tracking they examined
visualizations that were presented in addition to text versions,
namely tree diagrams (with frequencies), Euler diagrams (as
in Figure 2, but with frequencies in the segments of the
circles), and icon arrays (without any numerical information).
The goal of their study was not primarily to examine whether
visualizations facilitate understanding but how students use the
presented information. Their eye-tracking data showed that, in
line with Lehner and Reiss (2018), participants who answered
the presented tasks correctly looked at the stimuli almost twice
as long as participants who answered the tasks incorrectly.
Regarding frequency trees, they could show that participants
looked more intently at information A (=total population) than
did participants who were presented with a Euler diagram.
Conversely, although the performances were identical, regardless
of which visualization was used, persons who were shown a Euler
diagram viewed information F more frequently than persons
using a tree diagram (see Table 1). However, Reani et al.
(2017) analyzed students’ eye movements only with respect to
frequency-based visualizations. This is relevant to note since in
secondary school and university, probability format (instead of
frequency format) is usually applied, which is much more at risk
for possible errors. Yet only by explicitly investigating 2 × 2
tables and tree diagrams with probabilities can one shed light
on the seeming discrepancy between the prominent use and, at
the same time, the bad performance attributable to probabilistic
visualizations (Binder et al., 2015).

Since (German) students are taught statistics based on
2 × 2 tables and tree diagrams, an eye-tracking analysis
systematically comparing both visualizations would seem to be
a good source of information that could possibly offer insight
regarding underlying cognitive processes (including those that

result in errors). As statistics (unfortunately) is usually taught
almost exclusively based on probabilities and with probability
visualizations, a systematic variation of information format
within both visualizations is needed in order to explain the
benefit of the format change with respect to these two widely
used visualizations.

Present Approach and Research
Questions
The present study provides an empirical basis for interpreting
eye movements in terms of strategy use concerning statistical
situations containing two binary uncertain events. In our
approach, we displayed visualizations (tree diagram vs.
2 × 2 table) of such situations. Instead of presenting a
complete textual wording, only the requested inferences
were shown (above the visualization). On each new screen
displaying a certain task in our computer-based experiment,
the information format in the visualization changed from
probability to frequency (and vice versa), and the requested
inference presented above switched between probability and
frequency versions accordingly (see Figure 4 for examples
of the final stimuli implemented). In doing so, we examined
the strategies of students when they are solving statistical
tasks—from easy questions asking for marginal inferences to
Bayesian tasks asking for “inverted” conditional inferences
(see section Stimuli and Design)—in two different contexts
(i.e., mammography context and economics context) by the
method of eye tracking, resulting in 20 inferences per participant
(see Table 2 for the design). We investigated how participants
looked over those visualizations that comprised the relevant
statistical information while answering the questions (within a
given time limit).

Our research questions are:
Research question 1:
Which (correct or erroneous) strategies (dependent on

visualization type, format, and inference type) used by
participants can be detected with the method of eye tracking, and
how well can this method predict final performance (i.e., correct
or incorrect answer)?

Research question 2:
What can we learn by eye-tracking data about errors made

especially in Bayesian reasoning tasks (based on widely applied
visualization tools)?

With the first research question (RQ1), we solely want
to describe participants’ strategies with “classic” quantitative
descriptives such as means of solution rates and error types, and
compare these results with corresponding heat maps (obtained
by scan paths). Thus, in RQ1, we primarily want to check how
validly, reliably, and objectively the method of eye tracking can
predict the correctness or error type as documented by the purely
numerical answer that participants provide as their solution to
the task. Since solution strategies and errors are easier to identify
with “simple” inferences, we here start with scan paths of non-
Bayesian inferences [i.e., marginal, (non-inverted) conditional,
and conjoint] regarding RQ1. If scan paths prove to be a valid
indicator of participants’ reasoning strategies in accordance with
RQ1, this method can be used in the second research question
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(RQ2) to shed light on (more complicated) Bayesian inferences.
Since the effects of visualization and information format have
the highest relevance concerning these notoriously difficult
problems, in RQ2 we try to explain by eye-tracking data the
benefits and problems inherent in both visualizations considering
both formats, especially concerning Bayesian inferences.

According to the results of the studies explicated (see section
Eye Tracking With Tree Diagrams and 2 × 2 Tables), we
expect to find a clear connection between eye movements and
certain strategies (see Lehner and Reiss, 2018), which can be
found in corresponding spatial and temporal measures. We
furthermore expect tree diagrams to be more adequate for some
inference types (e.g., conditional probabilities), which might find
expression in higher solution rates. Of course, we also expect a
replication of the natural frequency effect. With respect to Reani
et al. (2017), we expect to find, for instance, that students focus
more on areas that are relevant for answering the corresponding
questions as compared to other areas (this should apply equally
to both information formats), resulting in a higher dwell time and
more fixations.

MATERIALS AND METHODS

Participants
A total of 31 adults, all with normal or corrected-to-normal
vision, were recruited as a sample for the experiment. Four
of these participants had been tested in a pilot study (their
eye-tracking data were not included in the present analysis),
and the data of three more participants had to be excluded
due to their glasses or technical problems. Thus, N = 24
participants (16 female, 8 male) were included in the final
analyses. Their mean age was 22.3 (1.6) years, and they ranged
from 19 to 26 years of age. The participants were a convenience
sample consisting of students from various disciplines at the
University of Regensburg (Bavaria, Germany) who were recruited
by acquaintance or recommendation. All participants gave
their written informed consent and were paid 10 Euro as
a representation allowance. While six participants had some
unspecific experience with university mathematics due to their
studies, the others had only basic mathematical knowledge, and
in particular no deeper prior knowledge about (un)conditional
probabilities or Bayesian reasoning. Due to their high school
education, however, all students were familiar with 2 × 2 tables
and tree diagrams containing probabilities, and with 2 × 2
tables containing absolute frequencies, but not with tree diagrams
containing frequencies in their nodes (e.g., Binder et al., 2015;
Weber et al., 2018).

Eye-Tracking Device
Participants sat in front of a 19-inch computer monitor (with a
screen refresh rate of 100 Hz and a resolution of 1280× 1024 px)
at a viewing distance of 70 ± 10 cm. The screen was connected
to a remote eye-tracker (iView XRemote RED 250 mobile by
SMI) with a sampling rate of 250 Hz. Throughout each trial, the
spatial position of each of the observers’ eyes (“smart binocular”)
was sampled running in pupil and corneal reflection mode,

resulting in an average spatial accuracy of 0.15◦. Participants
were asked not to make too many head or body movements, but
no device restricted them from moving. Eye movements were
calibrated with a five-point, full-screen calibration, both before
the experiment began and after a short pause in the middle
of the experiment.

Stimuli and Design
Participants were presented two different statistical situations
both involving two binary events, namely the mammography
context and an economics context (the latter adapted from
Ajzen, 1977; for both contexts, see also Binder et al., 2015).
In Figure 4, all four combinations of information format and
visualization type are displayed (with an exemplary inference;
further inferences can be seen in Table 3). For each of these two
contexts, participants were first asked six non-Bayesian statistical
questions—two marginal, two (non-inverted) conditional, and
two conjoint inferences, respectively)—in randomized order.
After that, they had to answer four (again randomized) Bayesian
questions in each context, thus resulting in 20 (=2·10) inferences
per participant altogether (for the design of the study see Table 2;
for the implemented infernces see Table 3; examples of complete
stimuli can be seen in Figure 4).

During the administration of each situation (mammography
or economics), a large projection of the visualization was shown,
with the respective requested inference displayed above the
projected image, one after the other. Statistical information on
both contexts was given only by this visualization, that is, without
additional textual information aside from the question above.
To be clear, since both frequency visualizations contain absolute
frequencies, the term natural frequencies strictly speaking refers
to the question format and not the information format. However,
absolute frequencies from both visualization types can easily be
combined to natural frequencies.

In order to allow familiarization with not only a certain
context but also with a specific visualization type, participants
always saw a tree diagram for the first ten inferences in
the mammography context (factor 1: visualization type). The
respective information format within the tree diagram, however,
varied randomly, that is, five inferences based on a probability
tree and five on a frequency tree (factor 2: information format).

TABLE 2 | Design of the experiment (including 20 resulting inferences
per participant).

N = 24 students Factor 1: visualization type

Tree diagram (context:
mammography problem)

2 × 2 table (context:
economics problem)

Factor 2:
information
format

Probabilities • 1 marginal
• 1 conjoint
• 1 conditional
• 2 Bayesian

• 1 marginal
• 1 conjoint
• 1 conditional
• 2 Bayesian

Frequencies • 1 marginal
• 1 conjoint
• 1 conditional
• 2 Bayesian

• 1 marginal
• 1 conjoint
• 1 conditional
• 2 Bayesian
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TABLE 3 | Categorization of the four possible inference types (Factor 3)
for both contexts.

Factor 3:
inference
type

Question for Implemented questions (showing up above the
visualizations)

Marginal P (B) Only in probabilities:
“What is the probability that a woman/student receives a
positive test result/is career-oriented (___ %)?”

P (¬B) Only in natural frequencies:
“How many of the women/students receive a negative
test result/are not career-oriented (____ out of ____
women/students)?”

Conjoint P (A ∩ B) Only in probabilities:
“What is the probability that applies if, at the same time,
a woman/a student has breast cancer/attends the
economics course and receives a positive test result/is
career-oriented (___ %)?”

P (A ∩ ¬B) Only in natural frequencies:
“To how many of the women/students does this apply at
the same time: They have breast cancer/attend the
economics course and receive a negative test result/are
not career-oriented (____ out of ____ women/students)?”

P (¬A ∩ B),
P (¬A ∩ ¬B)

Not implemented.

Conditional P (B|A) Only in natural frequencies:
“How many of the women/students who have breast
cancer/attend the economics course receive a positive
test result/are career-oriented (____ out of ____ women/
students)?”

P (¬B|A) Only in probabilities:
“What is the probability that a woman/student who has
breast cancer/attends the economics course receives a
negative test result/is not career-oriented (___ %)?”

P (B|¬A),
P (¬B|¬A)

Not implemented.

Bayesian P (A|B) Only in probabilities:
“What is the probability that a woman/student who
receives a positive test result/is career-oriented has
breast cancer/attends the economics course (___ %)?”

P (A|¬B) Only in natural frequencies:
“How many of the women/students who receive a
negative test result/are not career-oriented do have
breast cancer/attend the economics course (____ out of
____ women/students)?”

P (¬A|B) Only in natural frequencies:
“How many of the women/students who receive a
positive test result/are career-oriented do not have
breast cancer/do not attend the economics course
(____ out of ____ women/students)?”

P (¬A|¬B) Only in probabilities:
“What is the probability that a woman/student who
receives a negative test result/is not career-oriented
doesn’t have breast cancer/does not attend the
economics course (___ %)?”

Event A: breast cancer or economics course; event B: positive test result or career-
oriented.

Afterward, the same procedure was applied for the ten varying
inferences (factor 3: inference type) in the economics context,
all of which were based on 2 × 2 tables (again, with a randomly
varied information format).

In the following, we refer to non-inverted conditional
probabilities simply as “conditional probabilities” and to
inverted Bayesian conditional probabilities simply as “Bayesian
probabilities.” The difference between both types of conditional
probabilities (and the respective frequencies) as expressed by our
visualizations is explained in issue 5 of section Number-Based
Visualizations: 2× 2 Tables and Tree Diagrams.

TABLE 4 | Procedure of the experiment.

Part of experiment Component (no.)

Introduction (1) Welcome and introduction.

(2) Six nature pictures for familiarization
with the screen.

Part 1 (visualization: tree diagrams; (3) Calibration.

context: mammography) (4) Problem introduction (incl. related
narrative) and two example inferences.

(5) Six non-Bayesian inferences.

(6) Four Bayesian inferences.

Short pause (7) /

Part 2 (visualization: 2 × 2 tables;
context: economics)

(8) Sequence of components (3)–(6)
once again.

The wordings of each task can be found in Table 3.

• Factor 1: Visualization type: 2 × 2 table (context:
mammography problem) vs. tree diagram (context:
economics problem)
• Factor 2: Format of statistical information: probabilities

vs. absolute frequencies (or natural frequencies in the
corresponding question)
• Factor 3: Inference type: marginal vs. conditional vs.

conjoint vs. Bayesian (2×).

In Table 2, the design is illustrated. Since 24 students
participated in the experiment, 480 (=24·20) inferences were
made in total, of which 192 (=24·8) were Bayesian inferences.
The concrete formulations of the four different types of inferences
(displayed above the visualizations) can be found in Table 3.

Thus, from all 16 possible questions (see section Statistical
Situations Based on Two Binary Events), we posed 10 questions in
each context. Therefore, only two out of four conjoint inferences
and two out of four non-inverted conditional inferences are
missing (see Table 3), while the also-missing base rates P(A)
and P(¬A) (unconditional probabilities) were posed as sample
questions in the introduction to illustrate the procedure.

Procedure
After a verbal introduction to the experiment that would follow,
the procedure began with a short visual introduction [component
no. (1), see Table 4]; in order to make participants familiar with
the device, several nature pictures were shown on the screen (2).

In the first part of the experiment (mammography problem
with tree diagrams), initial calibration using cornea reflex was
conducted (3). If measurement inaccuracy lay below 0.5◦ in each
direction, the experimental procedure itself began, for which
we asked participants to avoid head movements as much as
possible. Participants were asked to answer as correctly and as
quickly as possible. A time limit of 30 s for each inference
was implemented to avoid continuing unspecific, non-target-
orientated eye movements.

In both parts of the experiment, the problem contexts
were introduced with the help of a short related narrative
(e.g., “Imagine you are a reporter from a women’s magazine
and you want to write an article about breast cancer. You
investigate the tests that are conducted in a routine screening
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in order to detect breast cancer. The following visualization
illustrates the situation.”). Then, after participants viewed
the situation, they were given two practice trials (4) in
order to further familiarize them with the context and both
formats (probabilities and frequencies). Both example tasks
asked for simple unconditional inferences (i.e., P(A) and
P(¬A) with A being the event “breast cancer” or, in part
2, “economics course”), with one referring to probabilities
and the other to frequencies (correct solutions to each were
shown afterward). After that, six non-Bayesian inferences
followed in random order (5). These six tasks represented
a balanced mixture of all possible non-Bayesian tasks (see
Tables 2, 3) with respect to format (3× probabilities, 3× natural
frequencies) and inference type (2 × marginal, 2 × conjoint,
and 2 × conditional). If, for instance, one task was given
in frequencies [e.g., P(B|A)], the other question of the same
inference type [P(¬B|A)] was posed in probabilities (see
Table 3). At the end of part 1, four Bayesian tasks were
presented to the participants (6). While two of the four
Bayesian questions [P(A|B), P(¬A|B), P(A|¬B) or P(¬A|¬B)]
were asked in probabilities, the other two were asked in
natural frequencies. Because Bayesian tasks were presented
at the end of each part, participants at this stage were
already familiar with the context. Thus by this design,
purposeless and merely orientating eye movements should
have been avoided at least regarding the four final Bayesian
inferences in each context. Whenever the format of questions
changed the information format in the tree diagram
changed correspondingly.

After a short pause (7), the second part of the experiment (8)
was conducted parallel to the first part (a calibration was again
conducted beforehand). Regarding the inferences concerning the
economics context (all ten based on 2× 2 tables), each participant
received the corresponding inference types again systematically
varied (see Tables 2, 3).

Participants were assessed individually in a dimly lit room at
the University of Regensburg and were asked to speak loudly
and communicate their solutions as quickly and as correctly
as possible. When they clicked on the F11-key (or when 30 s
ran out), the visualization was no longer visible on the screen,
but a fixation cross was shown in the middle of the screen;
participants then had to immediately state their answer. The
experimenter noted down these verbal responses. No feedback
was given to the students during the experimental trials. In order
to proceed with the next task, participants were required to click
the F11-key on the keyboard once again. It was not necessary
to use any other key or the computer mouse. In sum, the whole
procedure (including introduction, calibrations, pause, etc.) took
about 30–40 min.

With respect to traditional coding, a response was classified
as a correct answer if either the exact probability or frequency
solution was provided or if the indicated probability answer lay
within a one percent interval around the correct answer. For
instance, in the mammography problem the correct solution
to one of the four Bayesian questions is 7.8%, meaning that
answers between 7 and 8% were classified as correct (see also
Gigerenzer and Hoffrage, 1995).

Data Analysis
While stimuli were presented with the software “Experiment
Center 3.0,” data analysis of eye movements was conducted using
“Suite BeGaze 3.1” (both provided by SMI). To analyze the eye
movements, we defined three kinds of “areas of interest” (AOIs)
for each screen displaying a task: requested inference (above),
concrete information in the visualization, and surrounding white
space. Figure 4 displays four sample (out of 20 different)
questions (plus AOIs), one for each visualization × format type.
(The AOIs do not belong to the stimuli but were only used for
analyses.) Please remind that for each of the four visualizations,
five inferences were implemented.

More specifically, the AOIs were fitted around the relevant
parts of the screen as follows: With respect to the case of tree
diagrams with frequencies (see case 1a in Figure 4), both the
event and the numerical information were given within the
nodes of the tree diagram. Here, each of the seven (rectangular)
nodes was covered by an equal-sized AOI (each time comprising
both number and name of event). In the case of tree diagrams
with probabilities (case 1b), numerical information was depicted
alongside the branches of the diagram; therefore, respective AOIs
covered not only the seven nodes (containing the event) but also
included the corresponding parts of the branches (containing
the respective probability). These AOIs were again equal-sized.
In addition, in both cases, the respective inference at the very
top of the screen was also covered by an AOI (which was
necessarily bigger than the others were). Taken together, eight
AOIs covered the whole screen while the rest of the screen was
interpreted as a separate area (“whitespace”) representing no
information. In the case of 2 × 2 tables with either frequencies
or probabilities, respectively, the cells themselves were identified
as AOIs for both frequencies and probabilities (cases 2a and
2b). Note that regarding 2 × 2 tables in which the name of the
event and the corresponding number are not as close to each
other as they are in tree diagrams, the four cells containing the
events (“attend the economics course,” “not attend the economics
course,” “are career-oriented,” and “are not career-oriented”) were
also covered by an additional AOI. In total, this procedure
led to eleven equal-sized AOIs for the 2 × 2 table itself, one
additional (bigger) AOI for the requested inference, and the
remaining whitespace.

RESULTS

Research Question 1
Regarding the first research question (RQ1)—“Which (correct or
erroneous) strategies (dependent on visualization type, format,
and inference type) used by participants can be detected with the
method of eye tracking, and how well can this method predict
final performance (i.e., correct or incorrect answer)?”—we aim
at mapping “classic” quantitative statistics on solution and error
rates with the corresponding eye-tracking evidence. For doing so,
we first discuss solution rates and errors (Table 5) that are just
based on participants’ spoken answers and thus were detectable
without eye tracking. Afterward, we report reaction times as
well as heat maps regarding participants’ scan paths of correct
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TABLE 5 | “Classic” descriptives on all inferences.

Tree diagram 2 × 2 table

Inference
type

Requested
inference

Question
format

Correct
answer

Performance:
pct. correct (#)

Incorrect answers (#) Correct
answer

Performance:
pct. correct (#)

Incorrect answers (#)

Marg. P (¬B) Nat. freq. 8,970 out
of 10,000

95.8%
(23 out of 24)

9,000 out of 10,000 (1×) 500 out
of 1,000

91.7%
(22 out of 24)

50 out of 1,000 (1×), 450
out of 1,000 (1×)

P (B) Prob. 10.3% 33.3%
(8 out of 24)

89.6% (7×), ca. 80%
(4×), ca. 1% (3×), 85%
(1×), 90% (1×)

50% 83.3%
(20 out of 24)

20%, 25%, 35%, 50%
(1× each)

Conj. P (A ∩ ¬B) Nat. freq. 20 out of
10,000

50.0%
(12 out of 24)

20 out of 100 (7×), 8,950
out of 10,000 (2×), 950
out of 9,900 (2×), 950
out of 10,000 (1×)

50 out of
1,000

79.2%
(19 out of 24)

50 out of 250 (3×), 200
out of 1,000 (2×)

P (A ∩ B) Prob. 0.8% 45.8%
(11 out of 24)

80% (11×), 1% (1×),
20% (1×)

20% 95.8%
(23 out of 24)

80% (1×)

Cond. P (B|A) Nat. freq. 80 out of
100

87.5%
(21 out of 24)

950/1,030/80 out of
10,000 (1× each)

200 out
of 250

75.0%
(18 out of 24)

200 out of 1,000 (3×),
200 out of 500 (2×), 300
out of 1,000 (1×)

P (¬B|A) Prob. 20% 83.3%
(20 out of 24)

0.2% (2×), 0.02% (1×),
90.4% (1×)

20% 25.0%
(6 out of 24)

5% (14×), no answer
(2×), 25% (1×), 45% (1×)

Bayes
(inverted
cond.)

P (¬A|B) Nat. freq. 950 out of
1,030

37.5%
(9 out of 24)

950 out of 10,000 (=joint
occurrence, 5×), 950 out
of 9,900 (=Fisherian, 4×),
20 out of 100
(=Fisherian + misread,
2×), no answer (2×), 20
out of 950 (misread, 1×),
8,950 out of 9,030
(misread, 1×)

300 out
of 500

79.2%
(19 out of 24)

300 out of 1,000 (=joint
occurrence) (2×), 200 out
of 500 (=misread), 450
out of 500 (=misread),
300 out of 750
(=Fisherian) (1× each)

P (A|B) Prob. ≈7.8% 4.2%
(1 out of 24)

80% (=Fisherian, 7×), no
answer (6×), ca. 90%
(=“likelihood addition,”
3×), 2% (/, 2×), 0.8%
(=joint occurrence), 10%
and 12% (=evidence
only), ca. 20% (=evidence
only + miscalculated),
71.4% (=likelihood
subtraction) (1× each)

40% 37.5%
(9 out of 24)

20% (=joint occurrence)
(12×), 66% (=correct
positive rate/false positive
rate), 75% (=correct
positive rate/false positive
rate + miscalculated), no
answer (1× each)

P (A|¬B) Nat. freq. 20 out of
8,970

41.7%
(11 out of 24)

20 out of 10,000 (=joint
occurrence, 5×), 20 out
of 100 (=Fisherian, 4×),
950 out of 9,900
(=Fisherian + misread,
2×), ca. 100 out of 8,970
(=pre-Bayes, 1×), 80 out
of 8,950 (misread, 1×)

50 out of
500

79.2%
(19 out of 24)

50 out of 1,000 (=joint
occurrence) (2×), 20 out
of 500 (=misread), 50 out
of 250 (=Fisherian), 50
out of 450 (=correct
positive rate/false positive
rate) (1× each)

P (¬A|¬B) Prob. 99.8% 8.3%
(2 out of 24)

90.4% (=Fisherian, 8×),
(ca.) 90% (=evidence only
(2×) or joint occurrence
(1×)), ca. 80%
(=likelihood subtraction,
3×), (ca.) 95% [=joint
occurrence (1×),/(2×)],
98% [=joint occurrence
(1×),/(1×)], ca. 97%
(=joint occurrence), ca.
96% (/), no answer (1×
each)

90% 25.0%
(6 out of 24)

45% (=joint occurrence)
(13×), 80%
(/=miscalculated), 60%
(=Fisherian + misread),
30% (=joint
occurrence + misread),
22.5%
(=/ + miscalculated),
about 10% (=correct
positive rate/false positive
rate) (1× each)

Event A, breast cancer or economics course; event B, positive test result or career-oriented. Likelihood addition means erroneously to add two conjoint probabilities.
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answers (Figures 5, 6). Finally, we display the quantitative eye-
tracking measures such as dwell time and number of fixations
(this time across all participants irrespective of correctness of
their answers) for the single AOIs (e.g., A, B, C, etc., and b, c,
d, etc.; see Tables 6, 7).

Solution Rates and Errors
Although solution rates are clearly not at the center of the present
investigation, they are obviously affected by (correct or incorrect)
strategies utilized. Table 5 presents an overview of solution
rates and the absolute frequencies of specific errors for each of
the 20 inferences made by the participants. Solution rates vary
substantially, ranging from 4.2 to 95.8% across all conditions.

First, in comparing both visualization types (factor 1: tree
diagram vs. 2 × 2 table), the considerably different solution
rates for structurally identical questions—albeit presented with
different contexts—immediately catch the eye. Interesting as
that is, however, one must keep in mind when comparing

quantitative results between both visualization types that the
visualization was not randomized in the current study, since
the “mammography trees” preceded the “economics 2 × 2
tables” (see Procedure) because the study initially focused on tree
diagrams. Thus learning effects might in fact occur. Nonetheless,
2 × 2 tables proved to be more helpful for “marginal”
inferences [P(B), P(¬B)], although only for probabilities (tree:
33.3%; 2 × 2: 83.3%) and not for frequencies (tree: 95.8%;
2 × 2: 91.7%). Questions asking for conjunctions [P(A ∩ B),
P(A ∩ ¬B)] were also answered at a higher rate of error
when accompanied by tree diagrams (freq.: 50.0%; prob.:
45.8%) than they were when accompanied by 2 × 2 tables
(freq.: 79.2%; prob.: 95.8%). This is in line with theory since
conjunctions only have to be read of the screen in 2 × 2
tables (see section Number-Based Visualizations: 2 × 2 Tables
and Tree Diagrams). The opposite applies when it comes to
(non-inverted) conditional probabilities [P(B|A), P(¬B|¬A)],
which were answered with a lower rate of error when

FIGURE 5 | Heat maps of tree diagrams provided with frequencies (left) or with probabilities (right) regarding the following six inferences (from up to below): marginal
probabilities, conjoint probabilities, and (non-inverted) conditional probabilities (each only for participants with correct solutions).
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FIGURE 6 | Heat maps of 2 × 2 tables provided with frequencies (left) or with probabilities (right) regarding the following six inferences (from up to below): marginal
probabilities, conjoint probabilities, and (non-inverted) conditional probabilities (each only for participants with correct solutions).

accompanied by tree diagrams (freq.: 87.5%; prob.: 83.3%)
rather than by 2 × 2 tables (freq.: 75.0%; prob.: 25.0%).
Referring to Bayesian inferences (i.e., inverted conditional
probabilities), the use of 2 × 2 tables produced either similar
or better results than did tree diagrams in relation to all four
cases [P(A|B), P(¬A|B), P(A|¬B), P(¬A|¬B)].

Second, regarding information format (factor 2: probabilities
vs. frequencies), solution rates based on frequencies exceeded
those based on probabilities (with one exception) when
comparing corresponding questions within tree diagrams
(e.g., marginal inferences: freq.: 95.8%; prob.: 33.3%; conjoint
inferences: freq.: 50.0%; prob.: 45.8%; conditional inferences:
freq.: 87.5%; prob.: 83.3%). The same holds true for the
average solution rates of both Bayesian inferences (freq.: 39.6%;
prob.: 6.3%). Regarding 2 × 2 tables, similar tendencies were
found (marginal inference with freq.: 91.7%; with prob.: 83.3%;
conditional inference with freq.: 75.0%; with prob.: 25.0%),
except, expectedly, in the case of conjunctions (freq.: 79.2%;
prob.: 95.8%). In addition, participants more often solved the two
Bayesian tasks correctly in frequency versions than in probability

versions (freq.: 79.2 and 79.2%; prob.: 37.5 and 25.0%). When
seen in comparison, visualizations presented with frequencies
proved to be more easily understandable than those presented
with probabilities.

Third, when it comes to different inference types (factor 3:
marginal vs. conditional vs. conjoint vs. Bayesian), Bayesian
tasks, as expected, turned out to be most difficult to solve
(39.6% on average across all versions). In probability versions of
Bayesian tasks, not only was performance in general relatively
low (tree: 6.3%; 2 × 2: 31.3%), but also the kinds of errors
that appeared were wide-ranging (see Table 5; we will return to
the Bayesian inferences in RQ2). In contrast, solution rates of
marginal, conjoint, or conditional inferences (across visualization
and format: 76.0, 67.7, or 69.8%, respectively) turned out to be
substantially higher meaning that these three kinds of inferences
are similarly difficult to solve.

Moreover (and pertinent to the focus of the present
investigation), Table 5 exhibits some interesting accumulations
of mistakes: Concerning tree diagrams, for instance, some
errors regarding non-Bayesian inferences were made by
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TABLE 6 | Quantitative performance indicators regarding AOIs in tree diagrams (mammography context).

Requested inference
in frequencies Question A (=10,000) B (=100) C (=9,900) D (=80) E (=20) F (=950) G (=8,950)

White
space Indicators

P (¬B)

(=8,970 out of 10,000)
(solution rate: 95.8%,
23 out of 24)

1
5.12 (29.5%)
22.2
24/24

2
1.38 (8.2%)
5.7
23/24

6
0.34 (1.9%)
1.7
14/24

5
0.76 (4.1%)
2.6
19/24

7
0.15 (1.0%)
0.6
7/24

4
1.69 (10.3%)
6.3
22/24

8
0.49 (2.6%)
1.6
14/24

9
3.25 (20.5%)
7.4
24/24

3
0.47 (3.0%)
3.0
23/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (A ∩ ¬B)

(=20 out of 10,000)
(solution rate: 50%,
12 out of 24)

1
8.72 (47.0%)
35.9/4.7
24/24

3
1.06 (6.0%)
4.4/2.7
23/24

6
1.37 (6.8%)
5.4/3.0
21/24

4
0.89 (4.9%)
2.6/2.3
13/24

9
0.21 (1.2%)
0.8/0.4
9/24

8
1.76 (9.8%)
5.4
18/24

5
0.53 (2.9%)
2.0
10/24

7
0.36 (1.9%)
1.1
7/24

2
0.78 (4.3%)
4.1
24/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (B|A)

(=80 out of 100)
(solution rate: 87.5%,
21 out of 24)

1
5.86 (46.3%)
25.4
24/24

3
0.62 (4.6%)
2.9
22/24

5
1.42 (11.0%)
5.4
23/24

4
0.31 (2.1%)
0.9
10/24

6
1.43 (10.8%)
5.1
22/24

7
0.18 (1.3%)
0.7
8/24

8
0.26 (2.0%)
1.0
4/24

9
<0.01 (0.0%)
0.0
1/24

2
0.60 (4.3%)
3.6
23/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (¬A|B)

(=950 out of 1,030)
(solution rate: 37.5%,
9 out of 24)

1
7.34 (36.5%)
32.3
24/24

3
0.53 (2.8%)
2.4
22/24

5
0.75 (3.9%)
2.8
18/24

8
1.46 (7.0%)
4.2
20/24

4
1.58 (7.4%)
6.0
18/24

7
0.54 (2.6%)
2.0
16/24

6
3.24 (15.7%)
9.9
21/24

9
0.37 (1.8%)
1.3
8/24

2
0.70 (3.6%)
4.1
22/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (A|¬B)

(=20 out of 8,970)
(solution rate: 45.8%,
11 out of 24)

1
7.52 (34.9%)
32.7
24/24

3
0.53 (2.7%)
2.3
21/24

7
1.39 (6.5%)
5.3
22/24

4
1.09 (4.7%)
3.4
18/24

8
0.22 (0.9%)
0.9
7/24

5
2.83 (13.2%)
9.5
23/24

6
0.87 (3.7%)
3.3
19/24

9
2.58 (11.5%)
7.0
20/24

2
0.83 (4.1%)
5.0
24/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

Requested inference
in probabilities Question /(=women) b (=1%) c (=99%) d (=80%) e (=20%) f (=9.6%) g (=90.4%)

White
space Indicators

P (B)

(=10.3%)
(solution rate: 33.3%,
8 out of 24)

1
4.66 (22.1%)
20.5
24/24

3
0.55 (2.7%)
3.1
23/24

4
1.77 (7.5%)
7.9
24/24

5
2.00 (7.9%)
7.9
20/24

7
2.48 (10.7%)
8.4
23/24

8
0.65 (2.7%)
2.8
18/24

6
4.34 (18.5%)
13.1
21/24

9
0.32 (1.4%)
1.4
11/24

2
1.21 (4.8%)
5.6
23/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (A ∩ B)

(=0.8%)
(solution rate: 45.8%,
11 out of 24)

1
7.04 (39.2%)
30.0
24/24

2
0.47 (2.4%)
2.6
20/24

4
2.72 (13.1%)
10.6
22/24

7
0.38 (1.8%)
1.3
11/24

5
2.79 (14.5%)
8.6
22/24

6
0.64 (3.5%)
2.3
16/24

9
0.18 (0.8%)
0.7
7/24

8
0.03 (0.1%)
0.1
2/24

3
0.88 (4.5%)
4.2
24/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (¬B|A)

(=20%)
(solution rate: 83.3%,
20 out of 24)

1
6.07 (43.5%)
26.0
24/24

3
0.33 (2.3%)
1.7
19/24

4
1.58 (10.7%)
6.5
22/24

6
0.56 (3.7%)
2.1
16/24

9
0.17 (1.2%)
0.8
9/24

5
1.83 (12.8%)
6.3
22/24

7
0.25 (1.5%)
1.0
7/24

8
0.28 (1.9%)
0.7
5/24

2
0.53 (4.0%)
2.9
20/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (A|B)

(≈7.8%)
(solution rate: 4.2%,
1 out of 24)

2
7.50 (32.1%)
32.2
24/24

3
0.45 (2.3%)
2.0
19/24

7
2.33 (9.4%)
9.3
23/24

6
1.39 (5.2%)
5.6
19/24

4
2.99 (12.5%)
10.2
23/24

9
0.70 (2.6%)
2.7
17/24

5
3.41 (12.1%)
10.1
17/24

8
0.13 (0.5%)
0.6
6/24

1
0.80 (3.2%)
3.8
22/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

P (¬A|¬B)

(=99.8%)
(solution rate: 37.5%,
9 out of 24)

2
7.56 (30.9%)
32.3
24/24

4
0.32 (1.4%)
1.7
20/24

8
0.80 (2.9%)
3.3
17/24

3
3.27 (12.8%)
10.6
24/24

9
0.19 (0.8%)
0.8
9/24

7
2.28 (8.5%)
8.3
20/24

6
0.85 (3.5%)
3.6
21/24

5
4.16 (17.3%)
13.4
24/24

1
0.79 (3.2%)
4.2
23/24

Order in sequence
Dwell time (in sec./pct.)
No. of fixations
Hit ratio

For the first column: event A, breast cancer; event B, positive test result. Gray-colored cells represent AOIs (branches or nodes) relevant to answering the corresponding
question correctly. For AOIs denoting A, B, C, etc., and b, c, d, etc., see Figure 3.

about a third (or more) of all participants [P(A ∩ ¬B): “20
out of 100” (7×) instead of “20 out of 1,000”; P(A ∩ B):
“80%” (11×) instead of “0.8%”; P(B): “89.6%” (7×) instead
of “10.3%”]. With Bayesian tasks, participants’ wrong
answers naturally piled up all the more [e.g., P(A|B): “80%”
(=Fisherian) (7×) instead of “0.83%”; P(¬A|¬B): “90.4%”
(=Fisherian) (8×) instead of “99.8%”]. Second, and very
similarly, wrong answers regarding inferences based on 2 × 2
tables indicate common deficient strategies. Most often by
far, the (non-Bayesian) conditional probability P(¬B|¬A)
produced a great number of identical wrong answers [e.g.,
“5%” (14×) instead of “20%”]. The same holds true for the
Bayesian inferences in which two wrong answers in particular
(both conforming to joint occurrence and both based on
probabilities) appeared to be very tempting [P(A|B): “20%”
(12×) instead of “40%”; P(¬A|¬B): “45%” (13×) instead of
“90%,” see Table 5]. In all of these cases, analysis of scan paths

might reveal a deeper understanding of the specific errors
(for details see below).

Reaction Times
Interestingly, the average time it took for participants to reach
a solution was not remarkably different for correct or incorrect
solutions (in contrast to Reani et al., 2017). In fact, we found
differential effects with respect to both visualization types.
For instance, regarding the four Bayesian inferences based
on tree diagrams, participants who solved the tasks correctly
took slightly more time than those who did not [Bayesian
inferences with tree diagrams: M(SD)correct = 23.57(5.78) sec.
vs. M(SD)incorrect = 22.06(7.05) sec.; small effect of d = 0.23
according to Cohen, 1992]. In contrast, with respect to the
corresponding four Bayesian inferences based on 2 × 2 tables,
the opposite is true: 2 × 2 tables were looked at for a longer
period of time by participants who came up with incorrect

Frontiers in Psychology | www.frontiersin.org 17 May 2019 | Volume 10 | Article 632

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00632 May 15, 2019 Time: 15:20 # 18

Bruckmaier et al. Examining Bayesian Reasoning With Eye Tracking

TA
B

LE
7

|Q
ua

nt
ita

tiv
e

pe
rfo

rm
an

ce
in

di
ca

to
rs

re
ga

rd
in

g
A

O
Is

in
2
×

2
ta

bl
es

(e
co

no
m

ic
s

co
nt

ex
t).

R
eq

ue
st

ed
in

fe
re

nc
e

in
fr

eq
ue

nc
ie

s
Q

ue
st

io
n

A
(=

1,
00

0)
B

(=
25

0)
C

(=
75

0)
D

(=
20

0)
E

(=
50

)
F

(=
30

0)
G

(=
45

0)
E

ve
nt

A
E

ve
nt
¬

A
E

ve
nt

B
E

ve
nt
¬

B
W

hi
te

sp
ac

e
In

d
ic

at
o

rs

P
(¬

B
)

(=
50

0
ou

to
f1

,0
00

)
(s

ol
ut

io
n

ra
te

:9
1.

7%
,

22
ou

to
f2

4)

1 3.
47

(2
8.

4%
)

15
.7

24
/2

4

7 0.
34

(3
.3

%
)

1.
4

16
/2

4

12 0.
34

(2
.7

%
)

1.
4

16
/2

4

11 0.
28

(2
.2

%
)

0.
9

12
/2

4

5 0.
13

(1
.1

%
)

0.
7

11
/2

4

2 1.
52

(1
2.

4%
)

6.
5

22
/2

4

13 0.
05

(0
.3

%
)

0.
3

6/
24

8 0.
92

(7
.5

%
)

3.
5

21
/2

4

9 0.
27

(2
.0

%
)

1.
1

14
/2

4

10 0.
26

(1
.9

%
)

1.
0

10
/2

4

3 0.
54

(4
.5

%
)

1.
8

18
/2

4

4 1.
83

(1
4.

8%
)

5.
7

24
/2

4

6 0.
18

(1
.4

%
)

1.
0

15
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(A
∩
¬

B
)

(=
50

ou
to

f1
,0

00
)

(s
ol

ut
io

n
ra

te
:7

9.
2%

,
19

ou
to

f2
4)

1 6.
79

(4
4.

7%
)

28
.0

24
/2

4

7 0.
41

(2
.8

%
)

1.
8

16
/2

4

11 0.
38

(2
.5

%
)

1.
8

17
/2

4

12 0.
11

(0
.7

%
)

0.
5

8/
24

4 0.
20

(1
.3

%
)

1.
1

14
/2

4

3 1.
26

(8
.5

%
)

5.
1

24
/2

4

13 0.
02

(0
.1

%
)

0.
1

1/
24

9 0.
04

(0
.2

%
)

0.
1

4/
24

6 0.
71

(4
.4

%
)

2.
7

23
/2

4

10 0.
19

(1
.1

%
)

0.
6

8/
24

2 0.
52

(3
.3

%
)

2.
1

16
/2

4

5 1.
45

(9
.3

%
)

4.
8

21
/2

4

8 0.
26

(1
.8

%
)

1.
4

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(B
|A

)

(=
20

0
ou

to
f2

50
)

(s
ol

ut
io

n
ra

te
:7

5%
,

18
ou

to
f2

4)

1 6.
02

(4
0.

4%
)

26
.0

24
/2

4

4 0.
43

(3
.0

%
)

2.
0

16
/2

4

12 0.
68

(4
.6

%
)

3.
1

19
/2

4

13 0.
03

(0
.1

%
)

0.
1

4/
24

5 1.
23

(8
.0

%
)

5.
6

24
/2

4

6 0.
26

(1
.6

%
)

1.
5

18
/2

4

9 0.
09

(0
.6

%
)

0.
3

5/
24

10 0.
01

(0
.2

%
)

0.
1

1/
24

7 1.
15

(7
.5

%
)

3.
7

22
/2

4

11 0.
21

(1
.1

%
)

0.
6

7/
24

3 1.
50

(9
.4

%
)

5.
7

23
/2

4

8 0.
58

(3
.6

%
)

2.
4

17
/2

4

2 0.
29

(1
.9

%
)

1.
7

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(¬

A
|B

)

(=
30

0
ou

to
f5

00
)

(s
ol

ut
io

n
ra

te
:7

9.
2%

,
19

ou
to

f2
4)

1 6.
45

(4
0.

2%
)

27
.7

24
/2

4

4 0.
17

(1
.2

%
)

1.
0

9/
24

11 0.
13

(0
.8

%
)

0.
5

8/
24

12 0.
06

(0
.3

%
)

0.
3

6/
24

6 1.
13

(7
.1

%
)

4.
7

23
/2

4

2 0.
32

(1
.5

%
)

1.
5

13
/2

4

8 0.
84

(6
.0

%
)

3.
1

22
/2

4

13 0.
15

(0
.6

%
)

0.
6

4/
24

10 0.
59

(3
.0

%
)

2.
2

16
/2

4

9 0.
90

(5
.2

%
)

2.
9

21
/2

4

3 1.
87

(1
0.

7%
)

5.
9

24
/2

4

7 0.
52

(2
.3

%
)

1.
7

13
/2

4

5 0.
30

(1
.8

%
)

1.
4

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(A
|¬

B
)

(=
50

ou
to

f5
00

)
(s

ol
ut

io
n

ra
te

:7
9.

2%
,

19
ou

to
f2

4)

1 7.
19

(4
1.

2%
)

30
.4

24
/2

4

9 0.
19

(1
.0

%
)

0.
7

12
/2

4

13 0.
18

(0
.8

%
)

0.
8

8/
24

12 0.
04

(0
.2

%
)

0.
1

3/
24

5 0.
17

(0
.9

%
)

0.
8

9/
24

3 1.
82

(1
0.

6%
)

7.
4

22
/2

4

7 0.
01

(0
.1

%
)

0.
0

1/
24

11 0.
48

(2
.8

%
)

1.
9

19
/2

4

8 0.
95

(5
.2

%
)

3.
5

20
/2

4

10 0.
15

(0
.7

%
)

0.
6

6/
24

2 0.
34

(2
.0

%
)

1.
6

17
/2

4

4 2.
62

(1
3.

8%
)

8.
0

22
/2

4

6 0.
26

(1
.4

%
)

1.
3

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

R
eq

ue
st

ed
in

fe
re

nc
e

in
p

ro
b

ab
ili

ti
es

Q
ue

st
io

n
/

(=
10

0%
)

b
(=

25
%

)
c

(=
75

%
)

h
(=

20
%

)
i(

=
5%

)
j(

=
30

%
)

k
(=

45
%

)
E

ve
nt

A
E

ve
nt
¬

A
E

ve
nt

B
E

ve
nt
¬

B
W

hi
te

sp
ac

e
In

d
ic

at
o

rs

P
(B

)

(=
50

%
)

(s
ol

ut
io

n
ra

te
:8

3.
3%

,
20

ou
to

f2
4)

1 4.
10

(2
7.

7%
)

18
.1

24
/2

4

4 0.
27

(1
.2

%
)

1.
3

10
/2

4

9 0.
78

(3
.6

%
)

3.
1

16
/2

4

13 0.
36

(2
.3

%
)

1.
5

14
/2

4

5 1.
99

(1
0.

9%
)

7.
9

24
/2

4

3 0.
78

(4
.6

%
)

3.
4

21
/2

4

7 0.
96

(5
.9

%
)

3.
7

21
/2

4

12 0.
38

(2
.1

%
)

1.
3

14
/2

4

8 0.
57

(2
.5

%
)

2.
0

16
/2

4

11 0.
56

(3
.4

%
)

1.
9

16
/2

4

2 2.
31

(1
4.

5%
)

7.
7

22
/2

4

6 0.
74

(3
.9

%
)

3.
1

18
/2

4

10 0.
18

(1
.3

%
)

1.
0

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(A
∩

B
)

(=
20

%
)

(s
ol

ut
io

n
ra

te
:9

5.
8%

,
23

ou
to

f2
4)

1 6.
19

(4
7.

5%
)

26
.4

24
/2

4

10 0.
08

(0
.5

%
)

0.
4

7/
24

13 0.
21

(1
.3

%
)

0.
7

11
/2

4

8 0.
05

(0
.4

%
)

0.
1

2/
24

5 1.
28

(9
.3

%
)

4.
1

22
/2

4

2 0.
17

(1
.3

%
)

0.
9

14
/2

4

9 0.
02

(0
.2

%
)

0.
1

2/
24

12 0.
01

(0
.1

%
)

0.
1

1/
24

6 0.
92

(7
.1

%
)

3.
3

23
/2

4

11 0.
10

(0
.7

%
)

0.
4

6/
24

3 1.
56

(1
1.

6%
)

5.
6

23
/2

4

7 0.
39

(2
.7

%
)

1.
4

15
/2

4

4 0.
23

(1
.8

%
)

1.
2

15
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(¬

B
|A

)

(=
20

%
)

(s
ol

ut
io

n
ra

te
:2

5%
,

6
ou

to
f2

4)

1 6.
71

(4
0.

1%
)

29
.0

24
/2

4

5 0.
14

(0
.9

%
)

0.
6

9/
24

10 0.
76

(3
.2

%
)

2.
8

16
/2

4

13 0.
03

(0
.2

%
)

0.
1

2/
24

3 0.
77

(3
.6

%
)

2.
9

16
/2

4

6 2.
16

(1
1.

1%
)

7.
5

23
/2

4

12 0.
06

(0
.3

%
)

0.
2

3/
24

11 0.
20

(1
.1

%
)

0.
7

6/
24

8 1.
15

(6
.6

%
)

3.
5

21
/2

4

9 0.
29

(1
.4

%
)

1.
0

10
/2

4

2 0.
60

(3
.3

%
)

2.
2

19
/2

4

4 1.
89

(1
0.

9%
)

6.
4

23
/2

4

7 0.
25

(1
.5

%
)

1.
0

14
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(A
|B

)

(=
40

%
)

(s
ol

ut
io

n
ra

te
:3

7.
5%

,
9

ou
to

f2
4)

1 7.
08

(3
7.

4%
)

30
.0

24
/2

4

7 0.
18

(0
.9

%
)

1.
1

13
/2

4

10 0.
23

(1
.0

%
)

1.
0

11
/2

4

13 0.
02

(0
.1

%
)

0.
1

1/
24

5 3.
02

(1
4.

9%
)

8.
5

23
/2

4

2 0.
27

(1
.3

%
)

1.
3

16
/2

4

9 0.
72

(3
.1

%
)

2.
4

16
/2

4

12 0.
02

(0
.1

%
)

0.
1

2/
24

8 1.
29

(6
.4

%
)

4.
5

23
/2

4

11 0.
41

(1
.9

%
)

1.
4

15
/2

4

3 2.
24

(1
1.

2%
)

7.
4

23
/2

4

6 0.
33

(1
.6

%
)

1.
4

13
/2

4

4 0.
36

(1
.7

%
)

1.
4

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

P
(¬

A
|¬

B
)

(=
90

%
)

(s
ol

ut
io

n
ra

te
:2

5%
,

6
ou

to
f2

4)

1 7.
98

(3
7.

8%
)

32
.0

24
/2

4

7 0.
09

(0
.5

%
)

0.
5

6/
24

11 0.
06

(0
.3

%
)

0.
4

5/
24

12 0.
21

(1
.1

%
)

1.
0

12
/2

4

4 0.
29

(1
.3

%
)

1.
6

15
/2

4

2 1.
61

(7
.3

%
)

5.
4

21
/2

4

13 0.
20

(0
.8

%
)

0.
9

11
/2

4

6 2.
40

(1
1.

6%
)

6.
3

21
/2

4

10 0.
30

(1
.2

%
)

1.
2

12
/2

4

9 1.
00

(5
.0

%
)

3.
0

20
/2

4

3 0.
46

(2
.1

%
)

1.
7

15
/2

4

5 2.
14

(1
0.

0%
)

6.
3

23
/2

4

8 0.
22

(1
.0

%
)

1.
0

16
/2

4

O
rd

er
in

se
qu

en
ce

D
w

el
lt

im
e

(in
se

c.
/p

ct
.)

N
o.

of
fix

at
io

ns
H

it
ra

tio

Fo
r

th
e

fir
st

co
lu

m
n:

ev
en

tA
,e

co
no

m
ic

s
co

ur
se

;e
ve

nt
B

,c
ar

ee
r-

or
ie

nt
ed

.G
ra

y-
co

lo
re

d
ce

lls
re

pr
es

en
tA

O
Is

(c
el

ls
)r

el
ev

an
tt

o
an

sw
er

in
g

th
e

co
rr

es
po

nd
in

g
qu

es
tio

n
co

rr
ec

tly
.F

or
A

O
Is

de
no

tin
g

A
,B

,C
,e

tc
.,

an
d

b,
c,

d,
et

c.
,s

ee
F

ig
ur

e
3.

Frontiers in Psychology | www.frontiersin.org 18 May 2019 | Volume 10 | Article 632

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00632 May 15, 2019 Time: 15:20 # 19

Bruckmaier et al. Examining Bayesian Reasoning With Eye Tracking

solutions than by those who gave correct answers [Bayesian
inferences with 2 × 2 tables: M(SD)correct = 17.31(5.78) sec.
as compared to M(SD)incorrect = 20.03(7.69) sec., d = −0.40]
(also see Binder et al., unpublished).

Cognitive Strategies Heat Maps Displaying Correct
Answers
Before we begin our analysis, we should mention a qualitative
aspect that we immediately noticed about participants’ scan
paths: Participants tended to look back to the requested inference
after initially having looked forward to the inference, and after
that to the visualization. It seems as if they wanted to make sure
that they had understood the requested inference correctly (see
also Tables 6, 7). This occurred even more frequently when the
question was either difficult (i.e., low solution rate) or the person
subsequently answered the question wrongly.

Heat maps can present the scan paths of, for instance,
participants who solved the tasks correctly. In Figure 5, such
heat maps regarding all six non-Bayesian inferences based on
tree diagrams are presented. Corresponding heat maps regarding
Bayesian inferences (based on tree diagrams or 2 × 2 tables) are
displayed in Supplementary Material. These colored maps can
serve as an indicator for the validity, reliability, and objectivity
of the method in general: As can be seen in Figure 5, nodes
and branches that were relevant for solving the task based on
a given tree diagram precisely and distinctly correspond to the
areas at which participants looked for the longest period of time.
The same holds true with respect to 2 × 2 tables (see Figure 6).
Taken together, heat maps indicating the most-viewed areas of
a stimulus provide a first clue that participants’ (individual)
viewing areas correspond to their (individual) viewing strategies.

Because in eye-tracking studies it is not possible to present
all qualitative results in detail, only heat maps regarding
correct solutions are presented here (see Figures 5, 6 for all
implemented non-Bayesian inferences, Figures 7–10 for four
sample Bayesian inferences, and Supplementary Material for
the other four Bayesian inferences). Since heat maps in general
prove to be valid indicators of participants’ focused areas, and
because errors are much more relevant concerning Bayesian
inferences, we will return to “Bayesian error heat maps” in section
Research Question 2.

Quantitative Eye-Tracking Analyses of AOIs (Across
Correct and Wrong Answers)
Quantitative eye-tracking data refer to the single AOIs, as labeled
in Figure 3 (A, B, C, etc., and b, c, d, etc., respectively). The
upper halves of Table 6 (mammography context) and Table 7
(economics context) report results regarding nodes or cells of
frequency visualizations, and the lower halves those regarding
the corresponding AOIs in probability visualizations. Each cell in
both tables displays what is known as performance indicators that
are calculated on average for all participants irrespective of the
correctness of their answers, and which are (from top to bottom
in each cell) (a) the ordinal number of a certain AOI considered
in the sequence (scan paths), (b) the overall dwell time on the
respective AOI (in seconds and percentage-wise), (c) the total
number of fixations on this AOI, and (d) the hit ratio (i.e., by

how many participants the AOI was viewed). In both tables, gray-
colored cells represent AOIs that were relevant to answering the
corresponding questions, while the other cells were not relevant.
For instance, to compute P(¬B) (correct answer: “8,970 out of
10,000”), one has to add the numbers in the AOIs E (“20”) and
G (“8,950”) and put the sum in relation to A (“10,000”). Because
of the small sample size, in the following we present no inference
measures (i.e., p-values) in favor of qualitative interpretations.

The order in sequence is a condensed measure representing
the order in which participants scanned the visualization.
Considering all of these numbers within a scan path, this measure
corresponds to what participants’ averaged scan paths look like
chronologically. Quite irrespective of whether an AOI is of
relevance or not to answer the corresponding question, both
visualization types were tendentially viewed for the first time
from top to bottom and from left to right [e.g., see P(B|A)]. To be
clear, the requested inference is considered first. In tree diagrams,
the underlying sample (size) is usually viewed after that (which
is the AOI A for frequency or the AOI “women” for probability
versions), while in 2 × 2 tables, participants usually next looked
at event B and the upper cells (which are D and E for frequency
or h and i for probability visualizations).

The dwell time represents the time added up of a participant’s
fixating on a certain AOI, and therefore is necessarily highly
correlated with number of fixations (see next paragraph). It is
not surprising that the AOI that attracted the most attention
by far was the requested inference at the top of the screen.
Participants spent between 20% and 50% of their time looking
at this area. In more detail, both the percentage of time and
the absolute time spent on this instruction were especially high
for Bayesian questions [e.g., P(¬A|¬B)] and relatively low for
(easier) marginal inferences [e.g., P(¬B)]. This finding indicates
that participants needed more time (to grasp and understand the
requested inference correctly) the more difficult the inferences
were. In addition, AOIs that had to be looked at in order to
answer the questions (i.e., gray-colored cells) attracted more
attention than those that were irrelevant. With only a few
exceptions [e.g., P(¬A|¬B) with tree diagrams], the dwell time
in the relevant AOIs (gray-colored cells) for any inference was
always higher than the dwell time in the irrelevant AOIs.

The number of fixations is simply a total of single fixations
that occurred in an AOI. As can be seen with respect to both
visualizations, the number of fixations was nearly always highest
for the AOIs that contained information that was necessary
to answering the corresponding question (gray-colored cells).
For instance, answering the conditional probability P(B|A),
participants spent at least three fixations on the two relevant AOIs
(cells B and D) and almost completely ignored all others. With
only one exception [namely, the AOI f for P(¬A|¬B) in the tree
diagram with probabilities], the average number of fixations on
the relevant AOIs was always higher than the average number
on all of the irrelevant AOIs. These results further indicate
that participants process the information in the relevant areas
more intensively.

The hit ratio represents the proportion of (all 24) participants
who looked at the respective AOI. While—not surprisingly—all
participants in each instance viewed each task’s instructions, some
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FIGURE 7 | Heat maps regarding the Bayesian inference P(¬A|B) with a tree diagram (mammography context) with frequencies.

of the irrelevant AOIs were almost completely ignored, which was
true especially for the very easy questions [e.g., P(B|A) for tree
diagrams or P(A ∩ B) for 2× 2 tables]. This finding indicates that
participants are effectively able to find the relevant information.

In sum, not only heat maps but also performance measures
regarding the AOIs (i.e., indicators like order in sequence, dwell
time, etc.) obviously provide meaningful evidence of participants’
reasoning processes. Both kinds of measures (see Figures 5, 6 and
Tables 6, 7) can not only be matched with solution and error
rates (Table 5), but also partly explain erroneous strategies (e.g.,
Fisherian). This motivates the consideration of these measures
with respect to Bayesian inferences in RQ2.

Research Question 2
In the following, we will analyze how solution strategies in
Bayesian tasks as evidenced by heat maps and performance
indicators (i.e., dwell time, etc.) are impacted by the varying of the
two factors visualization type and format. To do so, we take the
two Bayesian inferences P(¬A|B) and P(¬A|¬B) as sample tasks
(A reminder: While performance rates of all Bayesian inferences
are summarized in the lower half of Table 5, performance
indicators based on the AOIs of all Bayesian inferences can
be found in Tables 6, 7). Heat maps of the two chosen
Bayesian inferences, P(¬A|B) and P(¬A|¬B) (both for the

correct and the most frequent incorrect strategies), are displayed
in Figures 7–10, whereas the respective heat maps regarding the
two unchosen Bayesian inferences, P(¬A|B) and P(¬A|B), can be
found in Supplementary Material. Note that while performance
measures of AOIs (Tables 6, 7) again are summarized across
all participants’ strategies, the heat maps (Figures 7–10 and
Supplementary Material) explicitly distinguish between correct
and incorrect answers.

P(¬A|B), Based on a Tree Diagram With Frequencies
(Mammography Context)
N = 9 participants solved the task P(¬A|B), which asked for a
Bayesian inference with frequencies [correct solution: “950 out
of 1,030” = “950 out of (950+80)” = “F out of (F+D)”]. As
might be expected, participants focused mainly on the relevant
AOIs (nodes) D (“80”) and F (“950”) (but also on A and C; see
Figure 7). In doing so, they focused much more on F (than on D),
which is relevant for both the numerator and the denominator
during calculation (besides the mere size of the number). This
finding is supported by the high values of number of fixations and
dwell time in the corresponding AOIs (although all participants
are included, not just those with correct answers).

More interestingly, and of relevance for RQ2, with respect
to wrong answer 1 (“950 out of 10,000,” N = 5), the scan
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paths are very similar to those evidenced when selecting the
correct answer. For obvious reasons, node A (“10,000”) was
focused on to a greater extent, resulting in a calculation of
the “marginal frequency” P(B) (=error “joint occurrence”). In
addition, participants focused more on the question provided
above the visualization. With respect to wrong answer 2 (“950 out
of 9,900,” N = 4), participants heavily focused on C (“9,900”) in
addition to F, therefore erroneously calculating the conditional
probability P(B|¬A) (=Fisherian). Finally, participants giving
incorrect answer 3 (“20 out of 100,” N = 2) focused on the
corresponding AOIs E (“20”) and B (“100”), which means that
they calculated the “conditional frequency” P(B|A). Obviously,
the latter two participants not only executed the wrong
calculations, but also misread the question (“receive a negative
test result” instead of “receive a positive test result”) (=Fisherian).

P(¬A|¬B), Based on a Tree Diagram With
Probabilities (Mammography Context)
The question P(¬A|¬B) required a Bayesian inference
with probabilities and was solved correctly by only N = 2
participants [correct solution: “99.80%” = 99%·90.4%/
(99%·90.4% + 1%·20%) = “(c·g)/((c·g) + (b·e))”]. Participants
with the correct answer (all answers between 99 and 100%
were classified as correct) focused mainly on the relevant AOIs
(branches) c (“99%”) and g (“90.4%”) and on the AOIs b and e
(see Figure 8), which are relevant for both the numerator and the

denominator during calculation. This finding is supported by the
maximally high hit ratio (24 out of 24 hits each on AOIs c and
g) and also by the quite high values of dwell time and number of
fixations in the corresponding AOIs.

The heat map of all wrong answers (N = 15) reveals a
particular focus on the AOI g (“90.4%”), which was also true
for the most prominent wrong answer [“90.4%” (N = 8) or
“(about) 90%” (N = 3)]. Obviously, some of these participants
thought that they could simply read on the screen the correct
answer from AOI g (“90.4%”). Alternatively, some others thought
that they had to multiply “90.4%” (AOI g) by “99%” (AOI c)
(≈ 90%). In any case, this is why they more or less ignored
the (relevant) AOIs b and e. While the first incorrect answer
represents a conditional probability (=Fisherian), the second
corresponds to a conjoint probability [=joint occurrence, or the
error “evidence only” = (c·g)+(b·e)]. Eye-movement patterns
helped to distinguish, for instance, Fisherian from conjoint
occurrence errors, even though both mistakes result in nearly
the same incorrect answer (e.g., “90.4%” and “ca. 90%,” but also
“95%” or “98%”). Regarding wrong answer 2 [“(about) 80%,”
N = 3], participants’ viewing patterns were quite similar to those
of participants who solved the task correctly. Interestingly, as
can also be seen in Figure 8, their answer, “80%,” is obviously
not due to AOI d (“80%”), which they more or less ignored,
nor to the subtraction “90.4–9.6%” (=g–f ). Instead, it seems
that they calculated “90.4%–20%” (or “99%–20%”) (=likelihood

FIGURE 8 | Heat maps regarding the Bayesian inference P(¬A|¬B) with a tree diagram (mammography context) with probabilities.
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subtraction). Thus, with respect to RQ2, incorrect reasoning
strategies could be detected (only with the help of eye-tracking
data) that were not obvious in the given wrong answers itself.

P(¬A|B), Based on a 2 × 2 Table With Frequencies
(Economics Context)
P(¬A|B) asked for a Bayesian inference with frequencies. It was
solved by N = 19 participants [correct solution: “300 out of
500” = 300 out of (300+200) = “D out of (D+F)”]. Participants
focused mainly on the relevant AOIs D (“300”) and F (“200”),
each to a similar extent (see Figure 9). In addition, they also
focused on the marginal cells “choose the economics course”
(event A) and—to an even greater extent—“is career-oriented”
(event B), which also finds expression in, for instance, the dwell
time and hit ratio on the corresponding AOIs.

With respect to all wrong answers (N = 5), the heat
map shows that the marginal cells “choose the economics
course” (event A) and (the irrelevant) “not choose the
economics course” (event ¬A) were focused on most,
both to a very similar extent. However, regarding wrong
answer 1 (“300 out of 1,000,” N = 2), the corresponding
participants’ viewing patterns were somehow similar to
those of participants with correct solutions, except that the
former focused heavily on D (“300”). Also, in contrast to
the participants who gave the correct answer, they focused
substantially on the marginal cell “1,000 students,” which was

part of their answer, thus providing a “marginal frequency”
(=joint occurrence).

P(¬A|¬B), Based on a 2 × 2 Table With Probabilities
(Economics Context)
Only N = 6 participants solved the question P(¬A|¬B)
correctly, which asked for a Bayesian inference based on a
2 × 2 table provided with probabilities [correct solution:
“90%” = 45%/(45%+5%) = “k/(k+i)”]. Participants who gave
the correct answer focused mainly on the relevant cells k
(“45%”) and i (“5%”) (see Figure 10). Interestingly, in doing
so, they focused much more on i (than on k), which is relevant
only for the calculation of the denominator. This may be
because the cell i is positioned between the other two relevant
cells. They also focus substantially on the marginal cell “are
not career-oriented,” which represents the condition ¬B. This
finding is supported by the values of number of fixations, dwell
time, and hit ratio in the corresponding AOIs (all participants
are included).

The heat map of all wrong answers (N = 18) reveals a stronger
focus on cell i (“5%”) in addition to the corresponding marginal
cells (“not choose the economics course” and “are not career-
oriented”). The same holds true for the most relevant wrong
answer (“45%,” N = 13): Obviously, these participants thought
that they could read the correct answer from the screen in cell
k (“45%”), which is why they more or less ignored the (relevant)

FIGURE 9 | Heat maps regarding the inference P(¬A|B) with a 2 × 2 table (economics context) with frequencies.
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FIGURE 10 | Heat maps regarding the inference P(¬A|¬B) with a 2 × 2 table (economics context) with probabilities.

cell i (“5%”). In doing so, their answer once again erroneously
represents a conjoint probability (=joint occurrence).

In sum, the analysis of scan paths by eye tracking
revealed, aside from some instances of apparent misreadings,
miscalculations, and undefined mistakes, the following
recognized errors that can occur in Bayesian tasks (see Table 8):
The errors “joint occurrence” (in sum: 45×) and “Fisherian”
(30×) happened by far the most often. While Fisherian occurred
more frequently with tree diagrams (27×) than with 2 × 2 tables
(3×), the opposite applies for joint occurrence (tree: 15×; 2×2:
30×). This mismatch is especially due to the high number of joint
occurrence errors involving 2× 2 tables with probabilities (26×),
but not involving those with frequencies (4×). All of the other
cited errors (e.g., “Pre-Bayes,” “likelihood subtraction,” etc.; see
Table 1) could be found in the scan paths and the corresponding
answers, but in sum, only quite seldom (15×).

DISCUSSION

Conclusion
An original feature of this study was the collection of scan
paths produced by eye movements during statistical reasoning
processes based on tree diagrams and 2 × 2 tables (both
provided with probabilities or frequencies). Analyzing students’
viewing strategies for solving statistical tasks proved useful as a
valid, detailed, and sensitive indicator of participants’ reasoning
strategies (RQ1). These eye movements provided insight into
temporal and spatial distributions of attention during the

TABLE 8 | Errors per visualization × question/information format for Bayesian
inferences.

Visualization Format: Frequencies Probabilities

Tree diagram 10× joint occurrence
12× Fisherian
1× Pre-Bayes
(in sum: 23× established
errors out of 28 errors)

5× joint occurrence
15× Fisherian
3× likelihood subtraction
3× “likelihood addition”
3× evidence only
(in sum: 29× out of 45 errors)

2 × 2 table 4× joint occurrence
2× Fisherian
(in sum: 6× out of 10
errors)

26× joint occurrence
1× Fisherian
3× correct positive rate/false
positive rate
(in sum: 30× out of 33 errors)

48 Bayesian inferences per combination.

processing of specific visualizations that are widely applied in
the teaching of statistics, not only in Germany but also in many
other countries. Since the visualizations provided were presented
with either probabilities or frequencies, the participants’ solutions
also give some hints regarding the benefits and pitfalls (such
as provoking particular recognized errors) of different formats
in different visualizations. In this way, they call for didactical
consequences with respect to the teaching and learning of
statistical and especially Bayesian reasoning.

Concerning Bayesian inferences (RQ2), which are intensively
examined in cognitive psychology because of their relevance
for expert decision-making in various domains, we specifically
found the following: Regarding different visualization types, tree
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diagrams clearly elicit more different kinds of errors than do
2 × 2 tables (see Table 8). Viewing patterns (i.e., heat maps) that
are essentially a representation of incorrect solutions indicate
that 2 × 2 tables especially provoke answers equaling marginal
probabilities (or frequencies)—a mistake which is called “joint
occurrence” (see Table 1). This is logical insofar as 2 × 2 tables,
solely due to their structure, display conjoint probabilities in
their central cells, thus very much focusing on these probabilities
(or frequencies). Moreover, we found only few more established
mistakes (i.e., Fisherian, see Table 8). Tree diagrams, on the other
hand, elicit a variety of incorrect calculations for both formats: We
most often encountered “joint occurrence” and “Fisherian,” but
occasionally “pre-Bayes,” “likelihood subtraction,” and “evidence-
only” as well (see Table 8). Thus even though there are obvious
benefits of tree diagrams (e.g., see Binder et al., 2015), they more
frequently led to different kinds of erroneous calculations in
Bayesian questions. One could speculate on whether this is due
to their hierarchical structure (contrary to the non-hierarchically
structured 2 × 2 tables), which, for example, finds expression
in better performances for (non-inverted) conditional inferences
for tree diagrams (see Table 5). In addition, eye-tracking patterns
(i.e., scan paths and heat maps) also revealed that some mistakes
were caused by simple misreading (e.g., oversight of a negation)
or miscalculations.

Regarding different formats, tasks with frequencies were
solved to a substantially larger extent than those with
probabilities. This result is also reflected in the briefer period of
time required to solve frequency tasks (irrespective of whether
correct or incorrect answers are compared). Regarding Bayesian
inferences, though most participants identified the relevant AOIs
for answering a specific inference (as mirrored by dwell time
and hit ratio, see Tables 6, 7), neither information format could
inhibit the most relevant errors (especially “joint occurrence”
and “Fisherian”). The corresponding scan paths and aggregated
heat maps (e.g., see Figures 7–10) support these findings. While
participants made only a few different errors in questions posed
in natural frequencies, tasks posed in probabilities provoked a
greater variety of mistakes, for instance “likelihood addition”
(which means erroneously to add two conjoint probabilities) and
“evidence only,” in addition to some unspecific errors. It seems as
if, in contrast to the probability format, the format of frequencies
not only reduces errors in general, but also prevents participants
from unusual errors (presumably, since the nodes and the cells
can very flexibly be combined to multiple insight-fostering
natural frequencies).

With respect to different inference types, the solution rates
of Bayesian tasks expectedly were lower than those of the other
inference types. This result also finds expression in the dwell
time that participants spent in looking at the instruction: This
quantitative measure was especially high for Bayesian questions
(and low for marginal inferences). Moreover, we found that
participants considered task-relevant AOIs more important than
irrelevant AOIs, irrespective of the requested inference type
(which is reflected in a higher hit ratio, dwell time, and number
of fixations for relevant AOIs). In detail, regarding Bayesian
inferences, some typical erroneous Bayesian calculations (see
Table 1) occurred quite often, while we could detect some others

only very rarely (see Table 8). Presumably, this finding is due to
the given visualizations (rather than mere textual information),
which obviously prevents participants from experiencing some
(infrequent) misunderstandings.

In sum, and especially with respect to RQ2, the analyses
of individual scan paths helped to identify certain strategies,
which would not have been possible without eye tracking. For
instance, eye tracking helped in interpreting (incorrect) answers
that otherwise would have seemed like “nonsense” answers but
now could be attributed to misinterpretation, misreading, or
miscalculation (see Table 5, e.g., for P(¬A|¬B) with 2 × 2
tables). Moreover, and especially with respect to probability
visualizations in Bayesian tasks, eye-movement analyses revealed
that different answers sometimes arise from basically the same
errors (see, e.g., P(¬A|¬B) with tree diagrams). Conversely, eye
tracking helped to distinguish different errors from the same (or
very similar) erroneous answers (also see, e.g., P(¬A|¬B) with
tree diagrams). Furthermore, eye-tracking data revealed that both
visualization types are often considered from top to bottom and
from left to right (as indicated by the order of sequence), quite
similar to the way in which one usually reads a text. Last but not
least, participants viewed the requested inferences for quite a long
time (and their gaze often returned to them, especially in the case
of Bayesian tasks).

The above-mentioned findings, especially the occurrence
of very different error distributions with respect to different
visualization types and information formats, lead to the following
recommendations with respect to the teaching and learning
of Bayesian situations: With the results from all inference
types (i.e., marginal, conjoint, conditional, and Bayesian) in
mind, visualizations should be taught in a more integrative and
contrasting way. This means that, apart from merely showing
the visualization (and grasping the relevant information on its
own), the “location” of certain information could be explicitly
made obvious, for instance by marking the relevant branches
or nodes (see Binder et al., 2018). Furthermore, the location of
some probabilities or frequencies could explicitly be compared
with the location of the same information in other visualizations
in order to contrast the different visualizations and information
formats (and thus also their advantages and disadvantages). This
might lead to a better understanding of which information tree
diagrams and 2 × 2 tables display directly (and where), and
which inferences cannot be read off but have to be calculated
through combining different numbers. In this way, less mixing up
of different inference types should occur. Finally, teachers could
emphasize the intelligent reading of visualizations (see Curcio,
1989). For instance, if a conditional probability P(B|A) has to
be read or computed from a 2 × 2 table, it is somehow more
straightforward to focus on the condition first (i.e., on event A,
in our study depicted in the columns), and only after that to
focus on the corresponding unconditional event (i.e., on event
B) in order to compute the correct probability. In tree diagrams,
students have to understand that only one “reading direction”
is displayed, and thus only one piece of marginal information
can be directly read from the tree. In contrast, in double-tree
diagrams (e.g., see Wassner, 2004; Khan et al., 2015) both reading
directions are displayed at a glance, which is advantageous for
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teaching conditional probabilities. In our study, the scan paths of
many participants led us to believe that they did not have a deep
understanding of how both of the presented visualizations were
structured (although they certainly were confronted with them
in secondary school).

Limitations of This Study, and Possible
Future Research
Qualitative and quantitative eye-movement data and
participants’ accuracy (i.e., solution rates) provide support
for distinguishing among (perhaps unconscious) strategies.
Nevertheless, it is necessary to acknowledge that strategies here
were derived only indirectly through (aggregated) scan paths
(i.e., heat maps), accompanied by the participants’ answers.
More generally, as it holds true for all eye-tracking studies, it
has to be conceded that eye movements and strategy use are by
nature related but distinct indicators of thought processes. This
is because—similar to gesture—any strategy principally can be
performed without the corresponding eye movements as long
as the meanings and locations of all the numbers and symbols
(e.g., distinct probabilities or frequencies) are known. Future
studies, for instance accompanied by retrospective questions to
the students intended to help them to figure out their (conscious)
strategies, could even more deeply enhance our understanding of
participants’ thinking.

Moreover, eye-movement data for strategy identification in
the domain of mathematical cognition have some general pitfalls
(see Verschaffel, 2014): The “process of solving a mathematical
problem typically not only consists of an execution phase, but
also of an orientation and (possibly) a verification phase” (see
Verschaffel et al., 2016, p. 388). Those phases are experimentally
hard to separate from each other. In addition, even if one
were able to isolate the execution phase, it “frequently may
not consist of the straightforward running of a single well-
identifiable strategy” (see Verschaffel et al., 2016, p. 388). Taken
together, strategies cannot be derived that easily or incautiously.
However, we tried to minimize those concerns by keeping the
related narrative and the context constant, only changing the
corresponding inference (and the information format in the
visualization accordingly).

We further acknowledge the limitation that participants were
always shown tasks with tree diagrams first, which were then
followed by questions with 2 × 2 tables, maybe resulting in
a certain learning trajectory from tasks with tree diagrams to
those with 2 × 2 tables. Further confounding variables with
respect to a comparison of both contexts (and consequently
of both visualization types) were somewhat “easier” numbers,
the counterintuitive low base rate [i.e., P(A)], and the context
itself that might disadvantage tree diagrams as compared to
2 × 2 tables (see also Siegrist and Keller, 2011, for differences
in performance of participants in different contexts). For these
reasons, comparisons of solution rates and distribution of various
mistakes have to be made very cautiously, which might also affect
the heterogeneity of wrong answers to some extent. Furthermore,
the number of participants was relatively low—although very
small case numbers are actually common in eye-tracking studies

due to the complexity of their technical implementation. Since
quantitative measures obtained can therefore only be interpreted
restrictedly, we refrained from inferential statistics. Due to the
different structure of both visualization types (hierarchical vs.
non-hierarchical) and the location of statistical information
(branches or nodes in tree diagrams vs. cells in 2 × 2 tables),
both the numbers and the sizes of areas of interest cannot be kept
completely comparable, thus in some ways biasing quantitative
measures in different conditions. A potential solution to this
problem might be to standardize quantitative measures (e.g.,
fixations) by dividing their number or length by the size and/or
number of the respective AOIs.

For future research, it would be interesting to examine the
effect of different textual problem formulations on strategies
(e.g., for conjoint probabilities, see Hertwig et al., 2008;
for conditional probabilities, see partitive vs. non-partitive
formulations in Macchi, 2000), since understanding and strategy
use are obviously heavily affected by linguistic competencies. In
the mammography problem, the more complicated terminology
and/or cognitively taxing scenario could also account for the
different effects in the different contexts (e.g., Lesage et al., 2013;
Sirota et al., 2014a).

Regarding visual aspects, it would also be interesting to
analyze the effect of special characteristics of visualizations on
viewing patterns. For instance, instead of presenting “normal”
tree diagrams or 2 × 2 tables, one could display visualizations
with highlighted branches, nodes, or cells in order to figure
out the visualizations’ effect on participants’ eye movements
(“signaling principle,” see section Number-Based Visualizations:
2 × 2 Tables and Tree Diagrams). Furthermore, it would be
interesting to determine whether and how both resources of
information (textual and visual) can be integrated or not (and
thus shed more light on the “redundancy principle,” see section
Number-Based Visualizations: 2× 2 Tables and Tree Diagrams).

Last but not least, the expert-novices paradigm promises some
new insights, for example with respect to certain patterns of
mistakes: In comparing scan paths and strategies of novices
with those of experts, one could perhaps make “learning
visible” over time.
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