
ORIGINAL RESEARCH
published: 15 April 2019

doi: 10.3389/fpsyg.2019.00765

Frontiers in Psychology | www.frontiersin.org 1 April 2019 | Volume 10 | Article 765

Edited by:

Ana-Maria Olteteanu,

Freie Universität Berlin, Germany

Reviewed by:

Ariel Telpaz,

General Motors, United States

Valentina Bambini,

Istituto Universitario di Studi Superiori

di Pavia (IUSS), Italy

*Correspondence:

Stephen McGregor

semcgregor@hotmail.com

Specialty section:

This article was submitted to

Cognitive Science,

a section of the journal

Frontiers in Psychology

Received: 09 July 2018

Accepted: 19 March 2019

Published: 15 April 2019

Citation:

McGregor S, Agres K, Rataj K,

Purver M and Wiggins G (2019)

Re-Representing Metaphor: Modeling

Metaphor Perception Using

Dynamically Contextual Distributional

Semantics. Front. Psychol. 10:765.

doi: 10.3389/fpsyg.2019.00765

Re-Representing Metaphor:
Modeling Metaphor Perception Using
Dynamically Contextual
Distributional Semantics
Stephen McGregor 1*, Kat Agres 2, Karolina Rataj 3,4, Matthew Purver 5 and

Geraint Wiggins 5,6

1 LATTICE, CNRS & École Normale Supérieure, PSL, Université Sorbonne Nouvelle Paris 3, Montrouge, France, 2Department

of Social and Cognitive Computing, Institute of High Performance Computing, A*STAR, Singapore, Singapore, 3Department

of Psycholinguistic Studies, Faculty of English, Adam Mickiewicz University, Poznań, Poland, 4Department of
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In this paper, we present a novel context-dependent approach to modeling word

meaning, and apply it to the modeling of metaphor. In distributional semantic

approaches, words are represented as points in a high dimensional space generated

from co-occurrence statistics; the distances between points may then be used to

quantifying semantic relationships. Contrary to other approaches which use static,

global representations, our approach discovers contextualized representations by

dynamically projecting low-dimensional subspaces; in these ad hoc spaces, words

can be re-represented in an open-ended assortment of geometrical and conceptual

configurations as appropriate for particular contexts. We hypothesize that this

context-specific re-representation enables a more effective model of the semantics of

metaphor than standard static approaches. We test this hypothesis on a dataset of

English word dyads rated for degrees of metaphoricity, meaningfulness, and familiarity

by human participants. We demonstrate that our model captures these ratings more

effectively than a state-of-the-art static model, and does so via the amount of

contextualizing work inherent in the re-representational process.

Keywords: distributional semantics, metaphor, conceptual models, computational creativity, vector space

models, computational linguistics

1. INTRODUCTION

Metaphor is a mode of re-representation: words take on new semantic roles in a particular
communicative context, and this phenomenon reflects the way that conceptualisation itself emerges
during a cognitive agent’s interaction with some situation in a dynamic environment. To describe
someone as a fox will evoke very different properties in a context which emphasizes cunning and in
one which emphasizes good looks. Metaphor, and the attendant transfer of intensional properties
from one conceptual domain to another, is therefore not just a matter of semantic encoding;
rather, it involves an agent actually perceiving and experiencing the world through a shift in
conceptualisation, and correspondingly in cognitive and linguistic representation.

Because metaphor occurs contextually, we hypothesize that the appropriate mode of
lexical-semantic representation will have some mechanism for contextual manipulation. With
this in mind, we introduce a methodology for constructing dynamically contextual distributional
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semantic models, allowing for the ad hoc projection of
representations based on the analysis of contextualizing input.
This methodology is based on corpus-driven techniques for
building lexical semantic representations, and the components
of these representations refer to observations about the way that
words tend to occur with other words. The ability to analyse
these co-occurrence statistics dynamically will give our model the
ability to generate representations in the course of a developing,
and potentially changing, conceptual context.

While the term context is often used in the field of natural
language processing to refer explicitly to the textual context in
which a word is observed over the course of a corpus, our
methodology has been designed to capture something more in
line with the sense of context explored by, for instance, Barsalou
(1999), who describes the way that a situation in an environment
frames the context specific application of a perceptually grounded
symbol. Similarly, Carston (2010a) investigates the way that
metaphor arises in the course of the production of ad hoc
concepts in reaction to a particular situation in the world. One
of the primary objectives of our methodology is to describe a
framework that accommodates a pragmatic stance on conceptual
re-representation that is an essential aspect of metaphor.

In practice, we define contexts in terms of subspaces of co-
occurrence features selected for their salience in relation to a
combination of input words. In the experiments described in
the following sections, we will seek to classify and rate the
metaphoricity of verb-object compositions, using a statistical
analysis of the way that each word in the compositional dyad is
observed to co-occur with other words over the course of a large-
scale textual corpus. So, for instance, if we have a phrase such
as “cut pollution,” we will build context-specific representations
based on overlaps and disjunctions independently observed
in the co-occurrence tendencies of cut and pollution. These
representations are dynamic in that they are generated specifically
in response to a particular input, and we show how this
dynamism can capture the re-representational quality by which
metaphor is involved in the production of ad hoc concepts.

Importantly, our contextualization methodology is not
contingent on discovering actual collocations of the words in
a phrase, and in fact it is perfectly conceivable that we should
be able to offer a quantitative assessment of the metaphoricity
of a particular phrase based on an analysis of a corpus in
which the constituent words never actually co-occur in any
given sentence. This is because the representation of a word
dynamically generated in the context of a composition with
another word is contingent on co-occurrence features which
are potentially shared between the words being modeled:
while the words cut and pollution could conceivably never
have been observed to co-occur in a particular corpus, it
is very likely that they will have some other co-occurrences
in common, and our methodology uses these secondary
alignments to explore contextual re-representations. We predict
that it is not only the features of the contextualized word
representations themselves, but also the overall features of the
subspace into which they are projected (representing a particular
conceptual and semantic context), which will be indicative
of metaphoricity.

A key element in the development of our methodology for
projecting contextualized distributional semantic subspaces is the
definition of conceptual salience in terms of an analysis of specific
co-occurrence features. These features become the constituents
of a geometric mode of metaphoric re-representation, and our
hypothesis is that a thorough analysis of the geometry of a
contextually projected subspace will facilitate the assessment
of metaphoricity in context. The capacity for our model to
make on-line selections, as well as its susceptibility to replete
geometric analysis, are key strengths that differentiate this
from existing quantitative techniques for representing metaphor.
Our computational methodology is a variant of an approach
developed for context-dependent conceptual modeling (Agres
et al., 2015; McGregor et al., 2015); we describe the model and
its application to modeling metaphor perception in section 3.

The data that we use here to explore the re-representational
capacities of our methodology consists of human ratings of a
set of English language verb-object phrases, categorized in equal
parts as literal non-metaphors, conventional metaphors, and
novel metaphors, with each phrase given a rating by a group of
competent English speakers on a one-to-seven Likert scale for
metaphoricity as well as for meaningfulness and familiarity. We
note that, in the context of this data (described in section 4),
metaphoricity has a negative correlation with assessments of
both meaningfulness and familiarity. In section 5, we use this
data to train a series of regressions geared to learn to predict
ratings for different semantic categories based on the statistical
geometry of subspaces contextualized by the concept conveyed
by a given phrase.

Ourmethodology lends itself to a thorough analysis of the way
different geometric features in a space of weighted co-occurrence
statistics indicate metaphoricity. One of our objectives is the
extrapolation of features that are particularly salient to shifts
in meaning by way of conceptual re-representation, and to this
end we develop a methodology for identifying sets of geometric
measures that are independently and collectively associated
with metaphor.

2. BACKGROUND

We have developed a novel computational model for metaphor
processing, designed to treat metaphor as a graded phenomenon
unfolding in the context of an agent’s interaction with a dynamic
environment. In what follows, we seek to ground our own model
in research about the way humans process metaphor. This brief
survey leads on to a review of what have been some of the leading
computational approaches to modeling metaphor. Finally, we
review the ways that existing computational approaches do and
do not fit into our own theoretical commitments, setting the
scene for the presentation of our own model.

2.1. Metaphor Processing and
Comprehension in Human Participants
Behavioral and electrophysiological research with human
participants has gone a long way in clarifying the cognitive
mechanisms involved in metaphoric language processing and
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comprehension. In most behavioral studies, participants decide
whether literal and metaphoric sentences make sense (a semantic
judgement task), while the reaction times and accuracy are
measured and compared across the different sentence types.
In electrophysiological studies, in addition to the behavioral
data, Event-Related Potentials (ERP) are analyzed. ERPs are
brain responses to specific cognitive events, in this case to literal
and metaphoric sentences presented to the participants. Both
behavioral and ERP studies on metaphor processing have shown
that metaphor processing and comprehension are modulated by
the conventionality level of metaphoric utterances.

Analyses of behavioral data obtained from participants in
response to literal and metaphoric utterances have revealed
longer reaction times and lower accuracy rates when participants
judge novel metaphors than literal sentences. Conventional
metaphoric sentences evoke either shorter reaction times than
novel metaphoric, but longer than literal sentences (Lai and
Curran, 2013), or comparable reaction times to literal items
(Arzouan et al., 2007). In electrophysiological research, two ERP
components have garnered particular interest in this line of work.
The N400, a negative-going wave elicited between 300 and 500
ms post-stimulus, was first reported in response to semantic
anomaly (Kutas and Hillyard, 1984), with meaningless sentences
evoking larger N400 amplitudes than meaningful sentences. In
line with previous suggestions and a recently proposed single-
stream Retrieval-Integration account of language processing, the
N400 can be interpreted as reflecting retrieval of information
from semantic memory (Kutas and Federmeier, 2000; Brouwer
and Hoeks, 2013; Brouwer et al., 2017). Other accounts propose
that the N400 can be seen as reflecting both information
retrieval and integration (Coulson and Van Petten, 2002;
Lai and Curran, 2013). In electrophysiological research on
metaphor, novel metaphors evoke larger N400 amplitudes than
conventional metaphors, followed by literal utterances, which
evoke the smallest N400 amplitudes (Arzouan et al., 2007). This
graded effect might reflect an increase in retrieval of semantic
information required for complex mappings in the case of
metaphoric utterances, which is additionally modulated by the
conventionality of the metaphor.

Another ERP component that has recently received attention
in the context of metaphor comprehension is the late positive
complex (LPC). LPC is a positive-going wave observed between
500 and 800 ms post-stimulus. While LPC amplitudes observed
in response to conventional metaphors converge with those
for literal utterances, novel metaphors evoke reduced LPC
amplitudes (Arzouan et al., 2007; Goldstein et al., 2012; Rataj
et al., 2018; Bambini et al., 2019). This reduction is difficult
to interpret within the current theories of the LPC, which
see this component as reflecting integration of the retrieved
semantic information in a given context. Because semantic
integration demands are larger for novel metaphoric than literal
sentences, as evident in behavioral data, larger LPC amplitudes
for novel metaphoric than literal sentences would be expected.
Such increases in LPC amplitudes have been reported in
studies that used conventional metaphors, or metaphors that
were evaluated as neither familiar nor unfamiliar (De Grauwe
et al., 2010; Weiland et al., 2014), but not when the tested
metaphoric utterances were novel. One possible interpretation

of this novel metaphor effect is that because of the difficulty
related to establishing novel mappings in the course of novel
metaphor processing, access to semantic information that begins
in the N400 time window is prolonged and reflected in
sustained negativity that overlaps with the LPC, thus reducing
its amplitude. Taken together, ERP findings reveal crucial
information about the time-course of metaphor processing and
comprehension, and point to two cognitive mechanisms, i.e.,
semantic information retrieval and integration, as the core
operations required in understanding metaphoric language.

Several theoretical accounts of metaphor processing and
comprehension have been formulated. The structure mapping
model (Bowdle and Gentner, 2005; Wolff and Gentner, 2011)
proposes that understanding metaphoric utterances such as this
classroom is a zoo require a symmetrical mapping mechanism
to align relational commonalities between the source (zoo)
and target (classroom), as well as an asymmetrical mechanism
projecting an inference about the source to the target. The
career of metaphor model (Bowdle and Gentner, 2005) further
posits that conventional metaphor comprehension requires a
process of categorization, while novel metaphors are understood
by means of comparison. Within the conceptual expansion
account, the existing concepts are broadened as a results
of novel meaning construction (Ward, 1994; Rutter et al.,
2012). Conceptual expansion could be seen as creating a re-
representation of an existing concept in the process of novel
meaning construction. The important questions thus concern the
ways the semantic knowledge is retrieved and integrated in the
process of metaphoric meaning construction.

2.2. Computational Studies
From the perspective of semantic representation, computational
approaches to modeling metaphor have typically sought some
mechanism for identifying the transference of salient properties
from one conceptual domain to another (Shutova, 2015). Some
approaches have used structured, logical representations: one
early exemplar is the MIDAS system of Martin (1990), which
maps metaphors as connections between different conceptual
representations, interpreting the semantic import of a metaphor
in terms of plausible projections of properties from once
concept to another. The system described by Narayanan (1999)
likewise builds up conceptual representations as composites of
properties, introducing a concept of broader conceptual domains
grounded in knowledge about action in the world which can be
mapped to one another by identifying isomorphisms in patterns
of relationships within each domain. This move opens up a
correspondence between computational methodologies and the
theory of conceptual metaphor outlined by Lakoff and Johnson
(1980). Barnden (2008) offers an overview of these and a few
other early approaches, tying them in to the rich history of
theoretical and philosophical work on metaphor.

Data-driven approaches have often adopted a similar
theoretical premise to metaphor (seeking to model cross-domain
mappings), but build representations based on observations
across large-scale datasets rather than rules or logical structures.
So, for instance, the model developed by Kintsch (2000) extracts
statistics about dependency relationships between predicates and
subjects from a large-scale corpus and then iteratively moves
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from a metaphoric phrase to a propositional interpretation
of this phrase by traversing the relationships implied by
these statistics. Similarly, Utsumi (2011) uses co-occurrence
statistics to build up representations, pushing labeled word-
vectors into a semantic space in which geometric relationships
can be mapped to predictions about word meaning: proximity
between word-vectors in such a space are used to generate
plausible interpretations of metaphors. Shutova et al. (2012a)
present a comprehensive review of statistical approaches to the
computational modeling of metaphor.

A recent development in these approaches (and in natural
language processing in general) has been the application
distributional semantic techniques to capture phrase and
sentence level semantics via the geometry of vector spaces. The
distributional semantic paradigm has its roots in the theoretical
work of Harris (1957), and particularly the premise that words
that tend to be observed with similar co-occurrence profiles
across large scale corpora are likely to be related in meaning;
modern computational approaches capture this by modeling
words as vectors in high-dimensional spaces which capture
the details of those co-occurrence profiles. Features of these
vectors and spaces have been shown to improve performance
in natural language processing tasks ranging from word sense
disambiguation (Schütze, 1998; Kartsaklis and Sadrzadeh, 2013)
and semantic similarity ratings (Hill et al., 2015) to more
conceptually structured problems such as analogy completion
(Mikolov et al., 2013; Pennington et al., 2014).

A preponderance of computational schemes for traversing
corpora and generating mathematically tractable vector-space
representations have been developed (see Clark, 2015, for a
fairly recent and inclusive survey). However, the basic insight
can be captured by imagining a large matrix in which each
row is a vector corresponding to a word in our vocabulary.
The columns of this matrix—the co-occurrence dimensions—
correspond to words which have been observed co-occurring
with a vocabulary word. The value of the entry at row w and
column c represents the probability of observing vocabulary
word w in the context of c. Words with similar meanings have
similar co-occurrence profiles, and thus similar row vectors,
and this similarity can now be measured in mathematical
terms. Many variants exist: matrix values are often chosen not
as raw probabilities but pointwise mutual information values
(normalizing the raw probabilities for those expected due to
the words’ overall frequency); matrices are often factorized to
reduce dimensionality and smooth the estimates, or learned
using neural networks rather than direct statistics (Mikolov
et al., 2013). Co-occurrence can be defined at the level of
sentence or whole documents, of words or characters, or in terms
of syntactic dependency or other semantic relations (Schütze,
1992; Padó and Lapata, 2007; Kiela and Clark, 2014; Levy and
Goldberg, 2014a); although it is usually taken as simple lexical
co-occurrence within a fixed-width window of words within
sentences. Even this simple version can vary in terms of the co-
occurrence window width, with some evidence that the slide
from small to large co-occurrence windows might correspond
to shifts along semantic spectra such as that of concreteness to
abstractness (Hill et al., 2013).

In terms of modeling metaphor, distributional semantic
models have been used to generate contextually informed
paraphrases of metaphors (Shutova et al., 2012b), have played
a role as components in more complex classifiers (Tsvetkov
et al., 2014), and have even been used to interface between
linguistic and visual data (Shutova et al., 2016). The linear
algebraic structure of distributional semantic representations
lends itself to composition, in that mathematical operations
between word-vectors can be mapped to sequences of words, and
interpretations of larger linguistic compositions can therefore
potentially be pushed into a computational model (Coecke
et al., 2011). Gutiérrez et al. (2016) have exploited this
aspect of high-dimensional semantic representations to model
metaphoric adjective-noun phrases as operations between a
vector (representing a noun) and a second-order tensor
(representing an adjective), by which the adjective-tensor
projects the noun-vector into a new region of a semantic space.
So, for instance, brilliant child is represented by a composed
vector that we might expect to find in the vicinity of words like
intelligent rather than words like glowing.

2.3. The Role of Context
These approaches, however, give little attention to the role of
gradedness and context in the processing of metaphor; but many
theoretical approaches point out that these play a vital role.
The relevance-theoretic deflationary account of Sperber and
Wilson (2008), for example, proposes that metaphor can be
understood as occupying a region within a spectrum (or perhaps
more properly, a region in a multi-dimensional landscape) of
various linguistic phenomena that come about in the course
of communication. Metaphoricity thus exists not as a binary
distinction but on a scale, and as part of a larger scale (and we
will see this reflected the data described in section 4 below).

Carston (2010b) emphasizes context-specificity: she argues
that there are two different modes of metaphor processing,
and that what might be thought of as the more basic and on-
line mode involves the construction of ad hoc concepts. So,
to process a metaphoric verb-object phrases such as murder
wonder, an ephemeral concept of an activity MURDER* has to
be formulated on the spot, and in the context of the application
of the phrase. Furthermore, the propositional content of the
phrase, to the extent we embrace the idea that language is
propositional, begins to become blurred as components of
imagery and phenomenology begin to infiltrate language. The
idea that metaphoric language involves an extemporaneous
projection of a new conceptual framework presents a challenge
to cognitivist approaches to metaphor, typified by the theory
of conceptual metaphors (Lakoff and Johnson, 1980; Gibbs and
Tendahl, 2006), in that it requires a capacity for the construction
of ad hoc spaces of lexical semantic representations susceptible
to the influences of a complex and unfolding situation in which
communication between cognitive agents is happening.

This approach therefore questions the idea that metaphor
involves mappings between established concepts. To take an
example from the data we will model below, the conventional
metaphor cut pollution arguably involves the construction of an
ad hoc concept CUT*, which extends the action denoted by the
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verb to something that can be done to pollution, in line with
Carston (2010a). This is in contrast to a cognitive linguistic
perspective on metaphor, which would seek to find a sense in
which a fixed property of CUTTING is transferred to the object
pollution. In the next sections, we show how a computational
method can be developed which follows the ad hoc concept view,
and test its ability to model human judgements.

3. COMPUTATIONAL METHODOLOGY

With a sense of the way that metaphor fits into a broader
range of human semantic representations, we now turn to
the task of modeling metaphor computationally. Our objective
here is to explore whether and how we can apply statistical
analysis of large-scale language corpus data to the problem
of re-representing metaphor. Working from the theoretical
premise that metaphor emerges in a particular semantic context,
we use a methodology for systematically generating on-line
lexical semantic relationships on the basis of contextualizing
information.

3.1. Approach
Our approach is based in the standard distributional semantic
view of geometric semantic representation: construction of word
meanings as vectors or points that are meaningful in terms of
their relationship to one another in some appropriate space,
defined in terms of word co-occurrence statistics across a large
scale corpus. The distinctive feature of our approach, though,
is that the semantic re-representation associated with metaphor
interpretation will be expressed as projection into a series of
geometric subspaces, each determined in an on-line way on
the basis of context. Our model, then, like that of Gutiérrez
et al. (2016), seeks to represent metaphor in terms of projections
in geometric spaces; however, rather than simply use linear
algebraic operations to move or compare word representations
within a single static space, we propose to model every instance
of a metaphoric composition in terms of a newly generated
subspace, specific to the conceptual context in which the
metaphor occurs.

This subspace is based on a particular composition (in
the experiments below, a two-word verb-noun phrase, but the
method is general): its dimensions are chosen as the most salient
features—the strongest statistical co-occurrence associations—
which the words in the phrase have in common. It is thus distinct
in its geometry from the space which would be defined for
other compositions using one or the other but not both words.
We hypothesize that these dimensions will provide us both
an appropriate mechanism for specifying ad hoc contextualized
projections, and adequate measures for modeling the dynamic
production of semantic representations; we test this by learning
statistical models based on the geometric properties of the
subspaces and the relative positioning of the words within
them, and evaluating their ability to predict the metaphoricity
of the compositional phrases. To be clear, our objective is
not to refute the cognitive stance on metaphor; rather, we
seek to provide a methodology that accommodates a pragmatic
interpretation of metaphor as a means for communication about

extemporaneously constructed concepts, an objective that has
proved elusive for computational models.

This context-dependent modeling approach was originally
developed by Agres et al. (2015), and further developed by
McGregor et al. (2015), for the purposes of context-dependent
concept discovery. McGregor et al. (2017) showed that a variant
could provide a model of the phenomenon of semantic type
coercion of the arguments of verbs in sentential context; and
Agres et al. (2016) showed that distances in the contextual
subspaces were more closely associated with human judgements
of metaphoricity than distances in standard static distributional
semantic models. Here, our hypothesis is that this can be used
to provide a model of metaphor more generally: that the on-line
projection of context specific conceptual subspaces can capture
the process of re-representation inherent in the construction
of the ad hoc concepts necessary to resolve the semantics of a
non-literal phrase.

3.2. Data Cleaning and Matrix Building
In order to select subspaces suitable for the geometric analysis of
word-pairs in the context of a set of co-occurrence dimensions,
we begin by building a base space from co-occurrence statics
over a large textual corpus, using standard distributional
semantic techniques. We use the English language component of
Wikipedia, and begin by applying a data cleaning process which
removes punctuation (aside from apostrophes and hyphens),
converts all text into lower case, and detects sentence boundaries.
The resulting corpus consists of almost 1.9 billion word tokens
representing about 9 million word types, spread across just over
87 million sentences.

We consider the 200,000 most frequent word types in the
corpus to be our vocabulary, and our base space will accordingly
be a matrix consisting of 200,000 rows (vocabulary word types)
and some 9 million columns (co-occurrence word types). We
use the standard approach of defining co-occurrence simply as
observation within a fixed window within a sentence; here we use
a symmetric window of 2 × 2 words. While broader windows
have been reported as being suited for capturing specific semantic
properties, small windows have proved particularly good for
modeling general semantic relatedness; as we are seeking to
analyse the paradigmatic relationships inherent in distributional
semantics, rather than the type of syntagmatic relationships that
emerge over a larger number of words, we choose to focus on
smaller co-occurrence windows here (Sahlgren, 2008).

For the matrix values we use a variant of pointwise mutual
information (PMI): given a vocabulary word w and a word
c observed co-occurring with w, a frequency of observed co-
occurrences f (w, c), independent frequencies of f (w) and f (c),
respectively, and a total count of vocabulary word occurrences
W, we define the mutual information between w and c as follows:

PMI(w, c) = log2

(

f (w, c)×W

f (w)×
(

f (c)+ a
) + 1

)

(1)

Here a is a smoothing constant applied to weight against
the selection of very infrequent dimensions in the contextual
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projection procedure that will be described below. This value is
set to 10,000, based on trial and error, but this value also turns out
to be roughly equal to the mean frequency of all co-occurrence
words, meaning that the average ratio of frequencies will be
approximately halved; PMI values associated with very rare co-
occurrence terms will be severely punished, while values for
very common co-occurrence terms will be relatively unaffected.
The addition of 1 to the ratio of frequencies guarantees that all
PMI values will be non-negative, with a value of 0 indicating
that the words w and c never co-occur with one another. It
should be noted that this expression is approximately equivalent
to the logarithm of the ratio of the joint probability of w and
c co-occurring, skewed by the smoothing constant and the
incrementation of the ratio.

This PMI equation is similar to established methods for
weighting co-occurrence statistics, but differs in some important
ways that are designed to accommodate the contextual and
geometric objectives of our own methodology. In a standard
statistical approach to distributional semantics, the information
theoretical insight of a PMI type measure is that frequent
observations of co-occurrences with infrequent words should be
given heavily positive weightings. That idea holds for our own
approach up to a point, but, as we would like a mechanism for
selecting co-occurrence features that are conceptually salient to
multiple words, we would like to avoid giving preference to co-
occurrence terms that are so infrequent as to be virtually exclusive
to a single word or phrase. Adding a balances the propensity for
distributional semantic models to emphasize extremely unlikely
observations, as this factor will have less of an impact on terms
that already have a relatively high overall frequency f (c). By
guaranteeing that all our features are non-negative, we can
reliably project our word-vectors into contextualized subspaces
characterized by not only angular relationships between the
word-vectors themselves, but also with a more informative
geometry including a sense of extent, center, and periphery. The
merits of this approach will be discussed further in section 3.4.

3.3. Projecting Contextualized Subspaces
The procedure described in section 3.2 results in a large and
highly informative but also sparse matrix of co-occurrence
information, where every observed co-occurrence tendency for
all the words in our vocabulary is systematically tabulated.
To give a sense of the scope of this representational scheme,
every one of the 9 million word types that come up in our
corpus becomes the label of a co-occurrence dimensions, but
the distribution of word frequencies is characterized by the long
tail familiar to corpus linguists, with 5.4 million of the 9 million
word types in the corpus co-occurring with one of the 200,000
vocabulary words 10 times or less.

Our next task is to establish a set of techniques
for extrapolating ad hoc representations capturing the
contextualization of the semantics associated with a particular
denotation, something that is crucial to metaphoric re-
representation. The premise we will work off of is the
distributional hypothesis, namely, that consistencies in co-
occurrence between two lexical semantic representations
correspond to semantic relatedness between the words being

represented. Building off of this idea, we propose that there
should be subsets of co-occurrence dimensions which are salient
to particular conceptual contexts. Given the looseness and
ambiguity inherent in word use, and the relationship between
this and the drift from literal to figurative language, we suggest
that there are groups of co-occurrence dimensions that can
collectively represent either observed or potential contexts in
which a word can take on particular semantic aspects.

Consider the sets of co-occurrence terms with the highest
average PMI values for the words brilliant diamond and
brilliant child, the first of which is likely to be interpreted as
a literal phrase, the second of which is a metaphor, albeit a
conventionalised one:

1. brilliant diamond carat, koh-i-noor, carats, diamonds,
diamond, emerald, barbra, necklace, earrings, rose-cut

2. brilliant child prodigy, precocious, prodigies, molestation,
sickly, couple’s, destiny’s, intellectually, unborn, imaginative

Here we can see how the alteration in the noun modified by
brilliant skews the profile of co-occurrence terms with the highest
joint mean into two different conceptual spaces. For the literal
phrase brilliant diamond, we see co-occurrence terms which
seem logically associated with denotations and descriptions of
gems, such as emerald and carat, as well as applications such as
earrings and specifications such as rose-cut. In the case of brilliant
child, on the other hand, we see words which could stand in
as interpretations of the metaphor brilliant, such as prodigy, or,
perhaps with some license, precocious, as well as terms related
generally to children.

In both cases we also note some unexpected terms
creeping in. In the case of brilliant child, an analysis of the
corpus suggests that the inclusion of destiny’s is a reference
to the music group Destiny’s Child, who are sometimes
described by critics cited in our corpus as “brilliant.” A
similar analysis of co-occurrences of the name Barbra with
brilliant and diamond across Wikipedia reveals that Barbra
Streisand has periodically performed with Neil Diamond, and
that she is another artist who has often been acclaimed as
“brilliant.” These co-occurrences offer up instances of how
elements of ambiguity can enter into relationships between
distributional semantic representations: while there is always an
explanation for the presence of such dimensions in this type
of analysis, there is not an interpretation that is particularly
coherent conceptually.

One of the strengths of distributional semantic models,
though, is that the high-dimensional spaces they inhabit tend
to be fairly resilient against noise. This propensity for using
dimensionality to support representations that are, overall,
semantically apt aligns with our hypothesis that there should
be subsets of dimensions which, taken collectively, represent
conceptual contexts. We would like to develop a model which
allows for the systematic selection of subspaces of co-occurrence
dimensions, based on input consisting of individual words,
which on the whole capture something of the conceptual
context in which these terms might be composed into a
phrase. These techniques, we propose, will allow us to project
re-representations of the lexical items involved in the phrase
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that will facilitate the analysis of how their semantics could
metaphorically interact.

With this in mind, we propose to explore three different
techniques for selecting subspaces based on an analysis of the
co-occurrence profiles of two different input words:

1. MEAN: We take the co-occurrence terms with the highest
arithmetic mean PMI value across input words;

2. GEOM: We take the co-occurrence terms with the highest
geometric mean PMI value across input words;

3. INDY: We take a concatenation of the co-occurrence terms
with the highest PMI values for each word independently.

For the MEAN technique, given two input words w1 and w2, the
value for any candidate co-occurrence term cj is simply:

M(c) = (PMI(w1, cj)+ PMI(w2, cj))/2

We can take the value for every co-occurrence term and then
select the top k such terms and project our input words into the
corresponding space. For the GEOM technique, we similarly apply
the equation for the geometric mean of PMI values:

G(cj) =
√

PMI(w1, cj)× PMI(w2, cj)

Here it should be noted that, while this equation is strictly
defined to include PMI values of 0, the outputs for any such
terms would be 0, and so we are in practice only interested in
co-occurrence terms with non-zero PMI values for both input
words. There is not a rational definition for the geometric mean
of a set of inputs containing negative numbers, but, returning
to Equation (1) above, we recall that our matrix contains only
non-negative elements, anyway.

For the INDY technique, we apply an additional constraint
to avoid selecting a co-occurrence term that has a high PMI
value for both input terms twice. We iteratively select the co-
occurrence term with the top PMI value for each input, and, if
we encounter a term for one input that was already selected for
the other input, we move to the next highest scoring term that
hasn’t already been selected. We carry this process on until we
have established a subspace with k dimensions.

The final parameter of this component of our model is k
itself, the dimensionality of the subspaces selected using any of
the techniques now defined. For the purpose of experiments
reported here, we will use a value of 200. This value is low
enough to guarantee that we can define spaces for the GEOM

technique that involve dimensions with non-zero values for both
input words, but on the other hand large enough to hopefully
build subspaces that are robust against noise and capture some
of the conceptual nuance inherent in the interaction between
the input terms as a composed phrase. Other values for k have
been explored elsewhere (McGregor et al., 2015, 2017), and 200
has generally returned good results. In the present work, our
objective is to focus on the alignment of our methodology with
theoretical stances on semantic re-representation; there is clearly
room for further exploration of the model’s parameter space in
future work.

FIGURE 1 | Two word-vectors projected into a contextualized subspace, and

the unit sphere intersecting the normalized version of each vector.

An example of a subspace with two word-vectors projected
into it is illustrated in Figure 1. Some of the primary element of
such a space are also indicated here: in addition to the distance
from the origin of each of the word-vectors (represented by
the points V and N), the distance between the vectors VN is
also an essential measure of the semantic relationship between
the two words labeling these vectors, indicating the degree of
overlap between these words in the context of the projection they
jointly select. Furthermore, a standard technique in distributional
semantics is to consider the normalized vectors. To this end, a
unit sphere intersecting the vectors is illustrated, and we note
that the distance between the normalized vectors V ′ and N′

correlates monotonically with the angle 6 VON. These will now
serve as a basis for amuchmore involved analysis of the statistical
geometry of a contextualized subspace.

3.4. Geometric Analysis of Contextualized
Projections
The techniques for analyzing co-occurrence terms associated
with potentially metaphoric phrases described in the previous
section result in the projection of subspaces in which the word-
vectors corresponding to the input words, and for that matter any
other word-vector in our base space, maintain a fully geometric
aspect. The dimensions of the subspace are labeled by the co-
occurrence terms selected, and the values for a word-vector along
these dimensions are simply specified by the corresponding value
in the full base space.

Because our base space is not normalized, there is, for any
word-vector, a notion of distance from the origin of a subspace:
the value for any given coordinate of word-vector wi for co-
occurrence dimension dj will be PMI(wi, dj), which could range
from 0 if the word never co-occurs with that term to something
quite large if the word is on the one hand frequent and on the
other hand often co-occurs with a term that is similarly frequent.
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So, in a given subspace, if a particular word has high PMI values
across a number of the co-occurrence dimensions, we would
expect it to be far from the origin. Conversely, a word withmainly
low and zero PMI values would be close to the origin.

Furthermore, because our subspaces consist only of elements
with non-negative values, there is a sense of center and periphery
to them. So, for instance, a word-vector with high PMI values
for a few co-occurrence dimensions in a given space but low
values for most of the dimensions would be skewed away from
the center. On the other hand, a word-vector with consistent
values across dimensions would be relatively close to the center
of the space (though not far from the origin if these values were
consistently low).

Word-vectors will naturally have relationships to one another,
as well. There is a Euclidean distance between them, an angle
between them, and relative distances from the origin. There will
also be a number of what we will term generic vectors in the
space, meaning points corresponding to values characteristic of
the space overall rather than any particular word-vector projected
into that space. In particular, we define a mean-vector, where
each element of the vector is the mean value of all word-vectors
with non-zero values for each corresponding co-occurrence
dimension, amaximum-vector, where each element is the highest
value for any word-vector along each corresponding dimension,
and a central-vector, which is simply a uniform vector in which
each element is the mean of the mean-vector.

We suggest that these geometric features provide a basis for
an analysis of the way in which co-occurrence observations
across a large-scale corpus can map to information about
metaphoricity and attendant re-representation. In addition to
properties such as centrality within the space and distance from
the origin discussed above, the relationship between two word-
vectors relative to a central or maximal point in a subspace
should tell us something about the way that they interact with
one another semantically: words with similarly lopsided co-
occurrence profiles within a subspace will be skewed in the same
direction, for instance, and somay be expected to share an affinity
within the conceptual context being modeled. Relative distances
from generic vectors and also from the origin might also be
expected to predict semantic relationships between words. And
finally, the characteristics of the space itself, potentially inherent
in the generic vectors and their interrelationships outside any
analysis of actual word-vectors, might tell us something about
the underlying context of the generation of the space in the first
place.

Figure 2 illustrates a subspace with all its characteristic
features: the word vectors V and N which generate and then
are subsequently projected into the subspace along with the
mean, maximum, and central vectors, and then the various
relationships which we propose to analyse in the context of
metaphoricity. (V and N stand for verb and noun; as will
be seen in section 4, the input to our space will be the
components of potentially metaphoric verb-object phrases.)
In addition to the aforementioned vectors, we also consider
the normalized versions of each these vectors, which should
provide us with a basis for considering the centrality of
word-vectors. For instance, a verb-vector and noun-vector

FIGURE 2 | The geometry of a contextually projected subspace. V and N are

verb and noun vectors, while M, X, and C are the mean, maximum, and

central vectors. V ′, N′, M′, X ′, and C′ are their norms, where they intersect the

unit sphere.

might have quite different lengths, and so could potentially
form an obtuse angle with the mean-vector as a vertex
( 6 VMN), but they might both be to the same side of M
in the space and so form an acute angle on a unit sphere
( 6 V ′M′N′).

We define a total of 48 geometric features in any given
subspace. These encompass distances, means of distances, ratios
of distances, angles, areas of triangles defined by distances,
and a number of these features taken at the surface of the
hypersphere representing normalization of vectors. They are
itemized in Table 1. Distances comprise the norms of vectors
and the Euclidean distances between vectors, while means are
the averages of some pairs of these distances. Ratios involve the
fraction of the lower of a pair of distances over the higher, and are
intended to provide a comparative measure of the relationship
between vectors without presuming one as the numerator and
the other as the denominator of a fraction. Fractions do take
one vector norm or one mean of vector norms as an absolute
denominator. Angles are taken both at the origin and at the
vertices of generic vectors, and areas measure the triangles
indicated by a subset of these angles.

Collectively, these measures describe all the components
of the geometry of a contextualized distributional semantic
subspace which we will explore for indications of metaphoric re-
representation. In the experiments described in section 5, they
will become the independent variables defining a set of models
that will seek to learn to predict metaphoricity, meaningfulness,
and familiarity in verb-object phrases. They will likewise serve as
tools for interpreting the behavior of these models: the ability to
trace these features back to co-occurrence phenomena will prove
to be a useful mechanism for understanding the ways in which
statistics derived from a large collection of text can be mapped
to semantic phenomena associated with the contextualization
inherent in conceptualisation.
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TABLE 1 | List of measures for geometric analysis of subspaces, with reference to Figure 2.

full vectors normalized vectors

distances V,N,VN,M,X,C V ′N′

means
µ(VM,NM),µ(VX,NX ),µ(VC,NC) µ(V ′M′,N′M′),µ(V ′X ′,N′X ′),

µ(V ′C′,N′C′)

ratios
(VM :NM), (VX :NX ), (VC :NC) (V ′M′

:N′M′), (V ′X ′ :N′X ′),

(V ′C′
:N′C′)

fractions

V/N,VM/NM,VX/NX,VC/NC,
µ(V,N)/M,µ(V,N)/X,µ(V,N)/C,
C/M,C/X,M/X

V ′M′/N′M′,V ′X ′/N′X ′,V ′C′/N′C′

angles
6 VON, 6 VMN, 6 VXN, 6 VCN,
6 MOC, 6 MOX, 6 COX

6 V ′M′N′, 6 V ′X ′N′, 6 V ′C′N′

areas △VMN,△VXM,△VCM △V ′M′N′,△V ′X ′M′,△V ′C′M′

3.5. Establishing a Baseline
In order to compare our dynamically contextual distributional
semantic methodology, which has been specifically designed to
capture the way that re-representation occurs in a cognitive
and environmental context, with more standard distributional
semantic techniques, we model our data using the word-
vectors output by the widely reported word2vec methodology
(Mikolov et al., 2013). This approach involves building a neural
network which learns word-vectors by iteratively observing the
ways that words co-occur in a corpus. The algorithm begins by
randomly assigning each word in its vocabulary a word-vector in
a normalized vector space, and then, each time a word is observed
in a particular context, it adjusts the values of the corresponding
word-vector slightly to pull it toward vectors corresponding to
words observed in similar contexts.

The word2vec technique is different from our dynamically
contextual approach in two important ways. First of all, it
projects word-vectors into a normalized hypersphere of arbitrary
dimensionality, meaning that the only measure for comparing
two lexical semantic representations to one another is cosine
similarity (which will correlate monotonically with Euclidean
distance in a normalized space). This means that there is no
mechanism for extracting the wider range of geometric features
we use to examine the nuances of semantic phenomena, such as
distance from origin, centrality, or relation to generic vectors.

Second, and perhaps even more importantly, because the
word-vectors learned by a neural network are abstract in
the sense that their dimensions are just arbitrary handles for
making slight adjustments to relationships between vectors,
there is no way to meaningfully select dimensions for the
projections of lower dimensional subspaces corresponding
to particular conceptual contexts. In fact, Levy and Goldberg
(2014b) make a compelling case for considering this approach
as being commensurate with the matrix factorization
techniques for building semantic representations described
by Deerwester et al. (1990), enhanced with a large number of
modeling parameters.

We build a word2vec model based on the same corpus

described in section 3.2, applying the contextual bag-of-words
procedure outlined by Mikolov et al. (2013) to generate a 200
dimensional vector space based on observations within a 2

× 2 word co-occurrence window.1 This model will serve as
a point of comparison with our own dynamically contextual
distributional semanticmethodology, offering up a singular space
in which lexical semantic representations are simply compared in
terms of their universal relationship to one another, without any
mechanism for generating ad hoc relationships in a contextually
informed way.

4. HUMAN METAPHOR JUDGEMENTS

In this study, we seek to develop a computational model of
the way that metaphor emerges in a particular conceptual
context, as a linguistic artifact situationally endowed with an
unfamiliar meaning. Our empirical objective will be to predict
the extent to which multi-word phrases would be perceived
as metaphoric. In order to generate data for this modeling
objective, and also to understand the relationship between
metaphor and other semantic categories, we introduce a dataset
of verb-object compositions evaluated by human judges, and
perform some preliminary analyses on correlations between the
human judgements.

4.1. Materials
The materials are verb-noun word dyads, which were originally
selected for an ERP study on metaphor comprehension in
bilinguals (Jankowiak et al., 2017). Five normative studies were
performed prior to the ERP experiment to confirm that the word
pairs fell within the following three categories: novel metaphors
(e.g., to harvest courage), conventional metaphors (e.g., to gather
courage), and literal expressions (e.g., to experience courage).
Based on the results of the normative studies, the final set of
228 English verb-noun word dyads (76 in each category) was
selected for the purpose of the current study. The main results
of the four normative studies performed prior to the EEG study
will be reported here; for a more detailed discussion of the
materials see Jankowiak et al. (2017). Mixed-design analyses of
variance (ANOVAs) with utterance type as a within-subject factor
and survey block as a between-subject factor were conducted.
There was no significant main effect of block. Significance

1This is implemented using the Gensim module for Python.
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TABLE 2 | Demographic characteristics of participants of the four normative

studies, including the number of participants (number of female participants) and

mean age.

Normative study type Number of participants(female) Mean age

Cloze probability 140 (65) 23

Meaningfulness ratings 133 (61) 22

Familiarity ratings 101 (55) 23

Metaphoricity ratings 102 (59) 22

values for the pairwise comparisons were corrected for multiple
comparisons using the Bonferroni correction. The Greenhouse-
Geisser correction was applied whenever Mauchly’s test revealed
the violation of the assumption of sphericity, and in these cases,
the original degrees of freedom are reported with the corrected
p-value. Participation statistics are reported in Table 2.

4.1.1. Cloze Probability
To ensure that expectancy effects caused by participants
anticipating the second word in a given word dyad would not
impact the results of the EEG study, a cloze probability test was
performed. Participants received the first word of a given word
pair, and provided the second word, so that the two words would
make a meaningful expression. If a given word pair was observed
more than 3 times in the cloze probability test, the word dyad
was excluded from the final set and replaced with a new one. This
procedure was repeated until the mean cloze probability for word
pairs in all four conditions did not exceed 8% [novel metaphoric,
conventional metaphoric, and meaningless word pairs (M =

0, SD = 0); literal word pairs (M = 0.64, SD = 2.97)].

4.1.2. Meaningfulness
Participants of this normative test rated how meaningful a given
word pair was on a scale from 1 (totally meaningless) to 7 (totally
meaningful). A main effect of utterance type was found, [F(3,387)
= 1611.54, p < 0.001, ǫ = 0.799, η2p = 0.93]. Pairwise comparisons
showed that literal word pairs were evaluated as moremeaningful
(M = 5.99, SE = 0.05) than conventional metaphors (M =

5.17, SE = 0.06) (p < 0.001), and conventional metaphors as
more meaningful than novel metaphors (M = 4.09, SE = 0.08)
(p < 0.001).

4.1.3. Familiarity
Familiarity of each word pair was assessed in another normative
study, in which participants decided how often they had
encountered the presented word pairs on a scale from 1 (very
rarely) to 7 (very frequently). A main effect of utterance type
was found, [F(2,296) = 470.97, p < 0.001, ǫ = 0.801, η2p =

0.83]. Pairwise comparisons showed that novel metaphors (M =

2.15, SE = 0.07) were rated as less familiar than conventional
metaphors (M = 2.97, SE = 0.08), (p < 0.001), with literal
expressions being most familiar (M = 3.85, SE = 0.09), (p <

0.001). Furthermore, conventional metaphors were less familiar
than literal word dyads, (p < 0.001). It should be noted that
all word pairs were relatively unfamiliar, which is evident in the
mean score for literal word pairs. They were evaluated as most
familiar of all three categories, but did not obtain maximum

TABLE 3 | Accuracy scores (for the class targets) and Pearson correlations (for

the graded ratings) for semantic features of verb-noun pairs.

Class Metaphoricity Meaningfulness Familiarity

All others 0.737 0.686 0.734 0.714

Metaphoricity 0.715 - –0.641 –0.613

Meaningfulness 0.579 –0.641 - 0.675

Familiarity 0.583 –0.613 0.675 -

familiarity values on the scale (below 4, while 6 and 7 represented
highly familiar items). Familiarity was low in all three categories
as we intentionally excluded highly probable combinations.

4.1.4. Metaphoricity
In order to assess the metaphoricity of the word pairs,
participants decided how metaphoric a given word dyad was on
a scale from 1 (very literal) to 7 (very metaphoric). A main effect
of utterance type was found, [F(2,198) = 588.82, p < 0.001, ǫ =

0.738, η2p = 0.86]. Pairwise comparisons showed that novel
metaphors (M = 5.00, SE = 0.06) were rated as more metaphoric
than conventional metaphors (M = 3.98, SE = 0.06, p < 0.001),
and conventional metaphors were rated as more metaphoric than
literal utterances (M = 2.74, SE = 0.07, p < 0.001).

4.2. Correlations in Human Judgements
In order to understand the way in which meaningfulness,
familiarity, and metaphoricity interact in the judgements
reported by humans, we model the correlations between each of
these factors, as well as the propensity of each of these factors to
identify the metaphoric class of a phrase (that is, whether it is
literal, conventional, or novel). Results are reported in Table 3.

The accuracy ratings for class are determined by performing
a logistic regression taking the graduated human ratings for
each semantic category as independent variables. Membership
of each of the three candidate classes is determined through a
one-vs.-rest scheme; the results in the class column of Table 3
are based on a leave-one-out cross-validation. In the case of all
others, each of the three different semantic categories serve as
the independent variables in a multi-variable logistic regression.
Unsurprisingly, metaphoricity itself is most predictive of the
metaphoric class of a phrase (p = 0.054 for the difference
between metaphoricity and familiarity, based on a permutation
test). The enhancement in accuracy by adding familiarity and
meaningfulness to the model based only on metaphoricity is, on
the other hand, not significant (p = 0.574).

Figure 3 seeks to visualize the relationship between
metaphoricity and the other two semantic phenomena measured
here by projecting metaphoric classes of verb-object phrases
in terms of meaningfulness and familiarity. The correlation
between increases in familiarity and meaningfulness and the
drift from literal phrases through conventional metaphors to
novel metaphors is apparent, though there is also a good deal
of overlap in the scores assigned to each category, with outliers
from each class to found at all extents of the statistical cluster.

There are plenty of phrases that are consideredmeaningful but
unfamiliar, and these phrases tend to be considered either literal
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FIGURE 3 | The three metaphoric classes as functions of meaningfulness and

familiarity.

or conventionally metaphoric, but there are very few phrases
that are considered familiar and meaningless. It is tempting to
therefore hypothesize that we might construe familiarity as, in
itself, a product of meaning: there is an inherent relationship
by which recognizing a semantic composition is contingent on
recognizing its meaningfulness. More pertinently, we will claim
that the process by which metaphor emerges from a cognitive re-
representation of the world is evident in the way that humans
judge these assessments of semantic categories to play out across
these three classes of verb-object phrases. Those phrases that
veer into the unfamiliar in particular are associated with the
conceptual contortions implicit in novel metaphor.

5. EXPERIMENTAL METHODOLOGY

Building on the methodology for constructing a base space,
projecting contextually informed subspaces from this base
space, and extracting geometric features suitable for semantic
analysis from these subspaces, we now turn to the project of
applying this methodology to a model that captures the semantic
assessments of humans. We apply the techniques outlined in
section 3 to generate geometries associated with input in the
form of verb-object phrases. We are effectively testing the degree
to which human judgements of metaphor can be captured
in statistical observations of word co-occurrences, and then
exploring how these statistical tendencies can be contextually
projected onto geometric features. Our modeling methodology
will involve learning linear mappings between geometric features
and human scores, as well as logistic regressions designed to
predict metaphoric class.

In practice, this involves producing subspaces associated
with each of the verb-object dyads in the dataset described in
section 4. In these subspaces, the words composing the dyad
are represented as vectors, and these vectors have a geometrical
relationship to one another and to the subspace itself which
can be represented as a feature vector (corresponding to the
features described in Table 1). Our hypothesis is that these
geometric features, which are designed to represent the semantics
of the particular context associated with each input dyad, will
map to ratings regarding the metaphoricity, meaningfulness,
and familiarity of the dyad in question. This, returning to the
theoretical background of section 2.3 and model of section 3.1,

is intended to provide a computational mechanism that is
conducive to modeling metaphor as a process of ad hoc concept
construction within a particular communicative context.2

5.1. Modeling Metaphoric
Re-representation From Geometries of
Subspaces
We begin our experiments by building a base space of
word-vectors based on a statistical analysis of Wikipedia, as
described in section 3.2: this results in a matrix of information
theoretical co-occurrence statistics. This matrix will serve as
the basis for projections contextualized by particular verb-
object compositions. In order to model the relationship between
lexical semantic representations re-represented in potentially
metaphoric contexts, we take each word pair in the dataset
described in section 4.1 as input to each of the three subspace
projection techniques described in section 3.3, working off the
base space to generate 200 dimensional subspaces. We project
the word-vectors associated with each input word into each
subspace, and also compute the mean-vector, maximum-vector,
and central-vector for each subspace. Based on these projections,
we calculate the 48 geometric features listed in Table 1.

These features are then used as independent variables in least
squares regressions targeting the human ratings for each of the
three semantic categories assessed for each verb-object phrase:
metaphoricity, meaningfulness, and familiarity.3 We pre-process
the geometric measures by performing mean-zero, standard-
deviation-one normalization across each feature. We similarly
perform a logistic regression on the same normalized matrix of
geometric features to learn to predict themetaphoric class (literal,
conventional, or novel) of each dyad in our data. As with the
model mapping from semantic ratings to classes described in
section 4.2, we employ a one-vs.-rest scheme, so in effect we
fit three different models, one for each class, and then classify
a phrase based on the model for which that phrase scores
highest.4 We once again employ a leave-one-out cross-validation
technique.

The objective here is to evaluate the extent to which the
geometric features of the subspaces we project collectively
capture the contextual semantics of a particular dyad. By
evaluating each dyad d on a regression of the 227 × 48 matrix
of independent variables D′, defined such that d /∈ D′ (227 for
all the dyads in our datasete except d, and 48 for the entire set of
geometric features defined in Table 1), and then aggregating the
average correlation scores across all dyads, we can get a general

2Scripts for building dynamically contextual distributional semantic

models, as well as for using these models to project context-specific

subspaces and use these subspaces to model human metaphor

judgements, are available at https://github.com/masteradamo/metaphor-

geometry. The data on human metaphor judegements is available at

https://figshare.com/articles/To_Electrify_Bilingualism_Electrophysiological_

Insights_into_Bilingual_Metaphor_Comprehension/4593310/1; this data is

described in detail by Jankowiak et al. (2017).
3This is implemented using the sklearn LinearRegression module for

Python.
4This is implements using the sklearn LogisticRegression module for

Python.
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picture of the degree to which these features collectively correlate
with human judgements.

5.2. Semantic Geometry
The full-featured approach described above offers a good overall
sense of the way that statistical geometry maps to semantic
features. There will, however, be a good deal of collinearity at
play in the geometric features we have defined for our model. The
angle between the verb and noun vectors, for instance ( 6 VON in
Figure 2) would be expected to correlate somewhat with VN, the
Euclidean distance between the vectors. Likewise, the ratio of the
smaller to the larger of distances between the word-vectors and
the mean-vector VM :NM will in many subspaces be identical to
the fraction VM/NM.

To address this, we undertake a feature-by-feature analysis
of our data. We isolate each of the 48 geometric features listed
in Table 1 and calculate the Pearson correlation between the
feature and the human ratings for each of the three semantic
phenomena under consideration. This move provides the basis
for an analysis of the way that specific aspects of the geometry
of a contextualized subspace map to human judgements, which
in turn allows us to tease out the specific correlations between
co-occurrence statistics observed in a large-scale corpus and
the re-representational processes associated with metaphor
interpretation. In this sense, our subspace architecture becomes
a geometric index mapping from the unstructred data available
in a corpus to the dynamics of language in use.

5.3. Eliminating Collinearity
As mentioned above, there is inevitably collinearity between the
geometric features we use to give analytical structure to our
subspaces. Among other things, features corresponding to points
of the normalized component of the geometry (so, V ′, C′, M′,
X′, and C′) will in many cases correlate with corresponding
features associated with the non-normalized component of the
geometry. In order to overcome this aspect of our geometric
data, we apply a variance inflation factor to construct a reduced
set of truly independent variables (O’Brien, 2007). This is
effectively a statistic computed to iteratively build up a vector
of adequately non-correlated geometric features by assessing the
degree of covariance each additional feature would introduce to
the aggregating set of features.

Our process begins by seeding an input matrix with the
measures for each verb-object phrase for the top ranking
geometric feature for a given semantic phenomena. We then
move down the list of features, calculating the coefficient of
determination R2 for a least squares linear regression between
the established matrix and the measures associated with the
next variable. We concatenate the next variable to our list of
independent variables only if the following criterion is met:

1

1− R2
< fac (2)

We set the model parameter fac at the quite stringent level of 2,
and then select up to 5 out of the 48 features outlined in Table 1

as the independent variables for a linear regression trained on

human ratings for three different semantic categories.We use this
non-collinear set of features to run linear and logistic regressions
to learn to predict semantic phenomena and metaphoric class
respectively, applying once again leave-one-out cross-validations.
This process results in a set of geometric features that we expect
to be optimally informative in terms of correlations with human
semantic judgements. This should offer us an opportunity to
analyse in more detail the interactions between different features.

6. RESULTS

Having established our experimental methodology, we apply the
three different empirical stages outlined in section 5: a full-
featured cross-evaluation of linear models mapping from the
geometries of subspaces to human judgements of metaphoricity,
meaingfulness, and familiarity; cross-evaluations of feature-by-
feature linear models; and finally cross-evaluation of linear
models constructed based on an iterative analysis designed to
minimize collinearity between selected geometric features. Here
we present results, with statistical significance calculated where
appropriate, in terms of Fisher r-to-z transforms for rating
correlations and permutation tests for classification f-scores.

6.1. Multi-Feature Correlations
Results for experiments involving linear models mapping all 48
geometric features of subspaces to graded human judgements
of metaphoricity, meaningfulness, and familiarity are reported
in the first three rows of Table 4. In the last row, labeled
“class,” accuracy results for a logistic regression mapping from
the full set of geometric features to human classifications
of verb-object dyads as literal non-metaphors, conventional
metaphors, or novel metaphors are reported. For these multi-
feature correlations, we report results for all three subspace
projection techniques: subspaces delineated by co-occurrence
features independently selected based on the profile of each word
in a dyad, and then subspaces selected based on the arithmetic
and geometric means of co-occurrence features between the
input words in a dyad.

Interestingly, the features generated by the INDY technique
most closely reflect human judgements for all three semantic
categories (though, even for the largest difference between
the INDY and MEAN techniques for familiarity, significance is

TABLE 4 | Pearson correlations for leave-one-out cross-validated linear

regressions predicting semantic judgements based on geometric features

extrapolated using three different subspace selection techniques, as well as with

cosine similarity for the word2vec baseline.

INDY MEAN GEOM w2v Single-class

baseline

metaphoricity (correlation) 0.442 0.348 0.419 –0.288 -

meaningfulness (correlation) 0.430 0.380 0.290 0.215 -

familiarity (correlation) 0.452 0.283 0.391 0.224 -

class (accuracy) 0.447 0.447 0.442 0.458 0.333

This is followed by accuracy for predicting the correct metaphoric class for each phrase.
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marginal at p = 0.038 for a Fisher r-to-z transform). This is
a bit less evident in terms of metaphoricity, where the GEOM

technique achieves an appreciable correlation; nonetheless, it
would appear that subspaces generated from the conjunction
of dimensions independently salient to each of the two words
involved in a phrase provide the most reliable geometric basis for
predicting how humans will judge the phrase.

The results for predicting class are not significantly above the
baseline accuracy score of 0.333 (indicated in the fifth column
of Table 4), which would entail, for instance, predicting every
phrase to be literal (p = 0.092 for the difference between this
baseline and the INDY output, based on a permutation test).
Beyond that, the different subspace selection techniques are
more or less in line with one another, suggesting that, more
than for graduated human ratings of semantic phenomena,
there is not much to choose between the different geometries
generated here—at least when they are taken as a relatively high
dimensional set of features entered into a regression model.

We compare these results with correlations and a logistic
regression derived from the word2vec model described in
section 3.5. As cosine similarity is the singular measure for
judging the relationship between two words, we simply calculate
the Pearson correlation between pairs of words in our input
phrases and human ratings for the three graded semantic
phenomena. We likewise perform a one-vs.-rest multi-class
logistic regression to learn to predict the metaphoric class for
each phrase. Results are reported in the fourth column of Table 4.
The difference in metaphoricity scores between correlations
with the INDY technique and the word2vec baseline are not
significant (p = 0.059 based on a Fisher r-to-z transform).
Furthermore, word2vec is actually better at predicting the
metaphoric class of a phrase than the model trained on all the
geometric features of our model.

6.2. Single-Feature Correlations
There are a very large number of single-feature correlations
to analyse: 48 separate ones, one for each component of the
geometric feature map illustrated in Figure 2 and detailed
in Table 1, multiplied by three different subspace projection
techniques. We focus on the features extracted from subspaces
generated using the INDY technique, as the initial results
from Table 4 suggest that these subspaces might be the most
interesting from a semantic perspective. The top five features, in
terms of the absolute value of correlation, are reported in Table 5,
using the geometric nomenclature from Table 1 with reference
to Figure 2.

Not surprisingly, there is a degree of symmetry here: the
results for metaphoricity and meaningfulness in particular
come close to mirroring one another, with strongly positive
correlations for one phenomena being strongly negative for
the other, in line with the negative correlations between these
phenomena as reported by humans inTable 3. The angle between
the word-vectors, for instance ( 6 VON), correlates negatively with
metaphoricity and positively with meaningfulness. This makes
sense when we consider that a cosine relatively close to 1 between
two vectors means that they are converging in a region of a
subspace (regardless of their distance from the vector), and

TABLE 5 | Top independent geometric features for three semantic phenomena as

found in indy subspaces, ranked by absolute value of Pearson correlation.

Metaphoricity Meaningfulness Familiarity

6 VON –0.524 6 VON 0.451 6 VMN 0.431

V ′N′ 0.519 V ′N′ –0.447 6 VCN 0.425

µ(V ′C′;N′C′) 0.509 µ(V ′M′;N′M′) –0.437 µ(VC;NC) –0.418

µ(V ′M′;N′M′) 0.506 △VXN –0.435 V ′N′ –0.407

△VXN 0.504 µ(V ′C′;N′C′) –0.433 6 VON 0.406

aligns with the strong results for cosine similarity achieved by
our word2vec model, accentuated by the contextualization
afforded by the INDY contextualization technique.

What is perhaps surprising about these results is that there is
such a clear, albeit inverse, correlation between the features that
indicate metaphoricity and meaningfulness in these subspaces,
while familiarity is associated with a slightly different geometric
profile. This finding in regard to familiarity seems to stem
from the non-normalized region of the subspace, suggesting
that word-vectors that are not only oriented similarly but also
have a similar relationship to the origin are more likely to
be considered familiar. It would seem, then, that, in terms of
the relationships between metaphoricity and meaningfulness,
directions in a subspace are indicative of the semantic shift from
the meaningful and known to metaphoric re-representation.

6.3. Optimized Correlations
Moving on from the single-feature analysis of each geometric
feature of a particular type of subspace projection, we now turn
to models built using multiple independent geometric features
selected based on their independent performance constrained
by a variance inflation factor, as described in section 5.3. To
recapitulate, this involves adding one-by-one the top features
as returned by the single-feature analysis reported above, so
long as each additional feature does not exceed a value of 2
for the measure fac formulated in Equation 2, until at most
five features are included in the optimized space of geometric
features. Overall results for each subspace projection technique
are reported in Table 6.

Once again, the INDY projection technique outperforms the
other two techniques, as well as the word2vec baseline on all
counts, including now accuracy of classification of verb-object
dyads. There is a marked improvement for both the INDY and
MEAN techniques (p = 0.080 for the difference between the
non-optimized and optimized INDY metaphoricity predictions).
The INDY results are also improvements on the best scores
for individual geometric features reported in Table 5, though
the difference here is less pronounced. But on the whole,
for these two techniques, there is clearly some advantage to
discovering a set of non-collinear geometric features in order
to understand how distributional statistics can be mapped to
semantic judgements. Moreover, this refined version of our
model outperforms the word2vec baseline in all regards,
including prediction of metaphoric class, though the difference is
not statistically significant (p = 0.247 for the difference between
the INDY technique and word2vec).
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TABLE 6 | Pearson correlations for leave-one-out cross-validated linear

regressions predicting human judgements based on geometric features

extrapolated using three different subspace selection techniques with up to 5

independent geometric features selected based on a variance inflation factor.

INDY MEAN GEOM w2v Single-class

metaphoricity (correlation) 0.565 0.447 0.305 –0.288 -

meaningfulness (correlation) 0.492 0.428 0.255 0.215 -

familiarity (correlation) 0.464 0.383 0.318 0.224 -

class (accuracy) 0.531 0.465 0.412 0.458 0.333

It is nonetheless interesting that a reduction in features
motivated by observations about particular aspects of semantic
geometry actually gives us a more productive model. As Guyon
and Elisseeff (2003) point out, this is possibly an indicator of
an underlying non-linearity between the geometric features of
our subspaces and the human judgement of semantic properties.
Given this, we may expect further improvement in results
using for instance a neural modeling technique, but here our
intentions are to explore the geometry of the subspaces in a
straightforward and interpretable way, so we leave explorations
of more computationally complex modeling for future study.

Table 7 focuses on the top features for each phenomenon
as selected for the INDY technique in particular. There are
some telling trends here: where distance V ′N′ was independently
predicative of all three semantic criteria in Table 5, this is
hedged out by the even more predictive cosine measure 6 VON
for metaphoricity and meaningfulness, because the correlation
between V ′N′ and 6 VON is too high to satisfy fac. That these
measures both correlate positively with meaningfulness is telling
us that word-vectors detected to the same side of the middle of a
subspace are more likely to form a meaningful composition and
less likely to form a metaphorical one, but the presence of both of
them in our analysis doesn’t tell us much that the presence of one
or the other wouldn’t. A similar story can be told for the positive
correlation of the angles at the vertices of both non-normalized
mean and central vectors in the case of familiarity ( 6 VMN vs.
6 VCN). Again, it’s not particularly surprising to see features like
the mean distance between normalized word vectors and both
normalized mean and central vectors achieving similar scores
(µ(V ′M′;N′M′) vs. µ(V ′C′;N′C′)).

To assess this final step in our modeling process in a little
more detail, we consider the features themselves, along with the
coefficients assigned to them in an all-in linear regression. These
values are listed for the INDY technique inTable 7. We once again
note a strong negative correlation between the features that select
for metaphoricity vs. the features that select for meaningfulness,
with word-vectors that are found at wide angles (based on the
6 VON feature) and at relatively different distances from generic
vectors (based on the VX/NX and VX :NX features) more likely
to form a metaphoric composition.

Familiarity indicates a somewhat similar profile of features:
like with meaningfulness, subspaces where the verb-vector
and noun-vector are, on average, closer to the maximum
extent of the space (X) tend to indicate a composition which
humans will consider more familiar. The positive correlation

TABLE 7 | Top geometric features for three semantic phenomena as found in indy

subspaces, ranked in the order that they are selected based on a variance inflation

factor criterion, along with coefficients assigned in an all-in linear regression.

Metaphoricity Meaningfulness Familiarity

6 VON –0.297 6 VON 0.134 6 VMN 0.296

µ(VX;NX ) 0.067 µ(VX;NX ) –0.111 µ(VX;NX ) –0.168

6 V ′X ′N′ –0.150 6 V ′X ′N′ 0.157 △VMN 0.005

VX/NX 0.217 VX/NX –0.249 VC/NC 0.184

VX :NX 0.162 V ′C′
:N′C′ –0.205 VX/NX –0.050

of the fraction VC/NC actually makes sense in relation to
the (marginally) negative correlation with the fraction VX/NX,
because we can expect to generally find the word-vectors that
select these subspaces in the region between the central-vector
C and the maximum-vector X. So it would seem that, as with
meaningfulness, as the verb-vector grows relatively closer to X
compared to the noun-vector, phrases are more likely to be
familiar to humans.

7. DISCUSSION

Having established the results of our dynamically contextual
methodology’s ability to model human judgements of
metaphoricity, meaningfulness, and familiarity, we turn to
an analysis of the components of our experimental set-up. In
addition to an overall assessment of the methodology and a
consideration of performance of certain parameter settings and
particular geometric features, we would like to emphasize the
way that the combination of subspace projection and linear
feature mapping works to provide the framework for a more
nuanced consideration of the relationship between corpus
analysis and the cognitive and linguistic components of semantic
phenomena. Our overall claim is that the context-specific and
geometrically nuanced approach we have endorsed here shows
promise as a way for using computational modeling to explore
language as a fundamental component of human behavior.

7.1. Model Parameters
One of the findings that emerges from the results presented in
section 6 is an opportunity to compare different modeling
parameters, and to consider the relationship between
these components of our methodology and metaphoric re-
representation. The modeling feature that is of most interest here
is the difference between the INDY, MEAN, and GEOM subspace
projection techniques, and the primary thing to note is the
superior performance of the INDY technique in modeling human
considerations of all three semantic phenomena investigated
here: metaphoricity, meaningfulness, and familiarity.

We begin by recalling that, as mentioned in section 3.3, the
MEAN and GEOM techniques are really two different ways of
computing average values of co-occurrence features potentially
shared between different input words, while the INDY technique
produces a subspace that is a mixture of co-occurrence features
that are independently salient to one word or the other—or
possibly, but not necessarily, both. In fact, what we might be
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seeing in the strong correlations between geometric features
of the INDY subspaces and human judgements is, in part, the
identification of instances where the co-occurrence profiles of
input words tend to converge of diverge. This claim is supported
by the strong negative correlation between metaphoricity and
cosine ( 6 VON) in Table 7, along with the positive correlation
with the mean distance of the vectors from the maximal
point X, and the opposite set of correlations for the same
features observed formeaningfulness. As the set of independently
selected co-occurrence features evidence less overlap for the
two components of the verb-object input dyad, the angle of
the contextually projected word-vectors corresponding to these
inputs drift apart in the subspace, and the regions of the
projection become less correspondent with one another.

Additionally, the GEOM methodology actually realizes
lower Pearson correlations for non-collinear combinations of
geometric features than it does for the full set of geometric
features. The definitive aspects of this technique are that it
only selects co-occurrence dimensions with non-zero values
for both input words, and that it furthermore tends to favor
dimensions where the value is pretty high for both input words
rather than very high for one and not so high for the other [the
geometric mean of (5,5) is 5, but for (9,1) it is only 3]. These
subspaces therefore should already exhibit a good degree of
information about both word-vectors of a verb-object phrase,
so there is perhaps less to be discovered in measures such as
angular divergences relative to generic vectors near the center
of a subspace. On the other hand, the requirement for mutually
non-zero co-occurrence dimensions means that co-occurrences
with relatively common words will eventually have to be selected,
and so we might find information about co-occurrence features
that are not in any sense conceptually salient, but instead
just happen to come up quite often in our corpus. We could
hypothesize that a larger co-occurrence window would yield
stronger predictions for these subspaces, since there would be
more observations of co-occurrences in the corpus for any given
word-vector. We leave further experimentation along these lines
for future work.

7.2. Using Geometry to Interpret Semantics
The analysis offered above of the strong performance of the
INDY subspace selection technique is indicative of the general
way in which we would like to suggest that statistical geometries
can be mapped to semantic phenomena. The combination of
interpretable projections and nuanced analysis of the way that
input word-vectors tend to move around relative to contexts
associated with a set of graded semantic measures turns the list of
geometric features enumerated in Table 1 into a set of semantic
indices, providing traction for using modeling techniques that
move from statistics about word co-occurrences to commitments
about the way that humans use metaphor. In this way, geometric
analysis maps to cognitive phenomena, elevating the model from
something thatmerely learns to predict correlations to something
that captures the way concepts are manipulated and indeed
generated in response to an unfolding environment.

The divergence between the relatively congruent, albeit
converse, features that model metaphoricity and meaningfulness

as compared to the features that model famliarity offers a case in
point. There is a close semantic relationship between metaphor
and meaning: we might argue that a metaphor involves shifting
a concept to suit a situation, and new meaning is produced
as a result of this shifting. Familiarity, on the other hand, is
an epistemological phenomenon with a frequentist connotation,
and so is not expected to map neatly to this relationship
between metaphor and meaning. This disconnect seems to play
out in the interpretable geometry of context specific subspaces
projected by our model. In the geometric features that provide
traction to our model, the non-linear tension between familiarity
and meaningfulness as reported by humans and illustrated in
Figure 3 is teased out in terms of the distinct set of geometric
features associated with familiarity. In particular, in Tables 5,
7, we see that familiarity has a relationship with the mean
pointM in contextual subspaces, suggesting that the relationship
between projected word-vectors relative to the typical non-zero
characteristics of a projection tell us something about how readily
accepted a composition will be to humans.

7.3. The Dynamic Geometry of
Representation
In order to examine more closely the nature of re-representation
by way of contextualized projections of statistical geometry,
we look at two case studies. Each case involves one noun
applied to three different verb-object phrases, one judged to
be literal, one conventionally metaphoric, and one a novel
metaphor, as outlined in section 4.1. Our objective is to offer a
qualitative, visually grounded analysis of the way that the typical
geometry of projections shifts as we move across the spectrum of
metaphoricity.

Our two examples are presented in Figure 4, where the
word-vectors and generic vectors as projected into 200
dimensional subspaces using the INDY subspace selection
technique are further projected into perspectives on three-
dimensional renderings. These instances have been selected
because the ratings output for metaphoricity by our model follow
a regular progression as we move from literal to conventional
to novel compositions. The first example involves the phrases
wish happiness, raise happiness, and collect happiness; the second
example involves the phrases enjoy wonder, provoke wonder, and
murder wonder. With each noun, metaphoricity as rated by our
model progressively increases with each successive composition,
and meaningfulness and familiarity conversely decrease.

Along with this progression, we observe a gradual expansion
of the complexes of vectors as we move from the literal to the
overtly metaphoric. This is in line with the widening of the
angle 6 VON, as statistically observed in Table 6. We also note an
extension of the maximal-vector X away from the other points of
interest in a subspace, a characteristic predicted by the increase
of the mean distance between the word vectors and the maximal-
vector µ(VX :NX). In terms of the spreading of the angle 6 VMC
characteristic of decreasing familiarity, this is harder to perceive
in this visualization, but there is a detectable flattening of the
already wide vertices at bothM and C by the time we get to collect
happiness in particular.
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FIGURE 4 | Subspaces, including word-vectors and generic features, for two different nouns composed with three verbs each, ranging from literal on the left to novel

metaphor on the right. These three-dimensional projections have been derived through a regression designed to preserve the norms of all vectors, the distances

between the word vectors, and the distances between each word-vector and all the generic vectors. The ratings assigned by our model are indicated below each plot.

In the end, it is difficult to make any very precise observations
about these figures. They are necessarily lossy projections from
much higher dimensional spaces, and the tricks of perspective
when rendering three dimensions onto a plane also means
that information about angular relationships even in these
low-dimensional projections is easily lost. The purpose of
these last illustrations is not so much to provide a tool for
rigorous quantitative analysis, which has been provided above,
as to show in a more general and qualitative sense that
there is a spatial quality to the way that metaphor emerges
as we edge away from the familiar and the meaningful. We
argue that this quality corresponds to the re-representation
inherent in constructing novel ways of talking about situations
in the world.

Perhaps the appropriate way to think about metaphoric
re-representation is in terms of a discovery of unfamiliar
meaning in a particular context. So, while both humans
and our computational model tend to identify a negative
correlation between meaningfulness and metaphoricity, we
could imagine how phrases like collect happiness and murder
wonder could gain potent semantics in the right situation. Our
computational model, underwritten by concrete and quantifiable
observations of the way that words tend to be used, is
designed to extrapolate a more general geometric way of
capturing the process by which contextualization leads to the
ad hoc construction of new representations with very specific

communicative potentialities. Without wanting to make too
strong a claim about what we can expect from computational
models, we suggest that this geometric mode of representing
metaphor in terms of statistical information about large-scale co-
occurrence tendencies hints at a move toward a computational
methodology for capturing some of the non-propositional
and phenomenological components of figurative language
(Davidson, 1978; Reimer, 2001; Carston, 2010b).

8. CONCLUSION

We argue here that dynamically projecting context-specific
conceptual subspaces into new representations captures the
mapping process that is necessary for conceptually resolving
the semantics of non-literal language. We hypothesized that
the geometry defining these subspaces (which reflects lexical
co-occurrence relationships in a large-scale textual corpus)
can be thought of as a quantification of the process of re-
representation. This allows us to examine how the conceptual
re-mappings underlying metaphoric language perception are
related to underlying mathematically-tractable lexical semantic
representations. By examining features of contextualized
subspaces, our novel methodology can be used to assess the
way that the overall geometric quality of a representation in
our model maps to metaphoric shifts in meaning. We believe
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that this aspect of our approach may point the way toward the
computational modeling of some of the more elusive theoretical
properties of figurative language as a cognitive mechanism for
moving away from propositional content.

Our methodology has been designed to accommodate
pragmatic accounts of metaphor, by which figurative
compositions involve the construction of an ad hoc conceptual
space: the subspaces projected by our dynamically contextual
model correspond to these extemporaneously projected
semantic relationships. This facility is not intended to come
at the expense of other accounts of metaphor; rather, we have
been motivated by exploring ways that a theoretical stance that
has typically proved challenging for computational semantic
modeling can be addressed within the broader paradigm of
distriubtional semantics.

With this in mind, we can imagine ways that future
development of our methodology might lend itself to practical
applications in neurolinguistic and clinical contexts. For instance,
experimental evidence indicates major deficits in metaphoric
language in conditions such as schizophrenia (Bambini et al.,
2016): our methodology could provide a quantitative tool
for introducing this pragmatic component to predict clinical
diagnosis, as proposed for other aspects of language (Foltz
et al., 2016). More generally, our approach can be counted
as a contribution to a growing body of literature that
seeks to use data-drive techniques to make links between
neurolinguistic studies and some of the more complex aspects
of language in use (Jacobs and Kinder, 2017), epitomized by
the contextually situated re-representation at play in the use
of metaphor.

AUTHOR CONTRIBUTIONS

SM: lead author, primary architect of computational model;
KA: contributed to overall article, particularly psycholinguistic
research; KR: contributed writing in psycholinguistic section of
paper, also responsible for the dataset we used; MP: contributed
to overall article, particular sections describing distributional
semantic methods; GW: contributed to overall article,
particularly regarding modeling commitments and results.

ACKNOWLEDGMENTS

This research was partially supported by the project ConCreTe,
which acknowledges the financial support of the Future
and Emerging Technologies (FET) programme within the
Seventh Framework Programme for Research of the European
Commission under FET grant number 611733; and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825153, project
EMBEDDIA (Cross-Lingual Embeddings for Less-Represented
Languages in European News Media). The results of this
publication reflect only the authors’ views and the Commission is
not responsible for any use that may be made of the information

it contains. This research has also been supported by EPSRC
grant EP/L50483X/1 and by the CHIST-ERA project ATLANTIS.

REFERENCES

Agres, K., McGregor, S., Purver, M., and Wiggins, G. (2015). “Conceptualising

creativity: From distributional semantics to conceptual spaces,” In Proceedings

of the 6th International Conference on Computational Creativity (Park City,

UT), 118–125.

Agres, K. R.,McGregor, S., Rataj, K., Purver,M., andWiggins, G. (2016). “Modeling

metaphor perception with distributional semantics vector space models,” in

Proceedings of the ESSLLI Workshop on Computational Creativity, Concept

Invention, and General Intelligence (C3GI), eds T. R. Besold, O. Kutz, and C.

Leon (Bolzano-Bozen), 1–14.

Arzouan, Y., Goldstein, A., and Faust, M. (2007). Brainwaves are stethoscopes:

ERP correlates of novel metaphor comprehension. Brain Res. 1160, 69–81.

doi: 10.1016/j.brainres.2007.05.034

Bambini, V., Arcara, G., Bechi, M., Buonocore, M., Cavallaro, R., and Bosia, M.

(2016). The communicative impairment as a core feature of schizophrenia:

Frequency of pragmatic deficit, cognitive substrates, and relation with quality of

life. Comprehen. Psychiatry 71, 106–120. doi: 10.1016/j.comppsych.2016.08.012

Bambini, V., Canal, P., Resta, D., and Grimaldi, M. (2019). Time course and

neurophysiological underpinnings of metaphor in literary context. Discourse

Proc. 56, 77–97. doi: 10.1080/0163853X.2017.1401876

Barnden, J. A. (2008). “Metaphor and artificial intelligence: Why they matter

to each other,” in The Cambridge Handbook of Metaphor and Thought, ed

R. W. Gibbs (New York, NY: Cambridge University Press), 311–338.

Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behav. Brain Sci. 22,

637–660. doi: 10.1017/S0140525X99532147

Bowdle, B. F., and Gentner, D. (2005). The career of metaphor. Psychol. Rev.

112:193. doi: 10.1037/0033-295X.112.1.193

Brouwer, H., Crocker, M. W., Venhuizen, N. J., and Hoeks, J. C. (2017). A

neurocomputational model of the n400 and the p600 in language processing.

Cogn. Sci. 41, 1318–1352. doi: 10.1111/cogs.12461

Brouwer, H., and Hoeks, J. C. (2013). A time and place for language

comprehension: mapping the n400 and the p600 to a minimal cortical

network. Front. Hum. Neurosci. 7:758. doi: 10.3389/fnhum.2013.

00758

Carston, R. (2010a). Lexical pragmatics, ad hoc concepts andmetaphor: a relevance

theory perspective. Ital. J. Linguist. 21, 153–180.

Carston, R. (2010b). Metaphor: ad hoc concepts, literal meaning

and mental images. Proc. Aristotelian Soc. CX, 297–323.

doi: 10.1111/j.1467-9264.2010.00288.x

Clark, S. (2015). “Vector space models of lexical meaning,” in The Handbook of

Contemporary Semantic Theory, 2nd Edn, eds S. Lappin and C. Fox (Wiley-

Blackwell), 493–522.

Coecke, B., Sadrzadeh, M., and Clark, S. (2011). Mathematical foundations for a

compositional distributed model of meaning. Linguist. Anal. 36, 345–384.

Coulson, S., and Van Petten, C. (2002). Conceptual integration and

metaphor: an event-related potential study. Mem. Cogn. 30, 958–968.

doi: 10.3758/BF03195780

Davidson, D. (1978). What metaphors mean. Crit. Inq. 5, 31–47.

doi: 10.1086/447971

De Grauwe, S., Swain, A., Holcomb, P. J., Ditman, T., and Kuperberg, G. R.

(2010). Electrophysiological insights into the processing of nominal metaphors.

Neuropsychologia 48, 1965–1984. doi: 10.1016/j.neuropsychologia.2010.03.017

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.

(1990). Indexing by latent semantic analysis. Jo. Am. Soc. Inf. Sci. 41, 391–407.

doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

Frontiers in Psychology | www.frontiersin.org 17 April 2019 | Volume 10 | Article 765

https://doi.org/10.1016/j.brainres.2007.05.034
https://doi.org/10.1016/j.comppsych.2016.08.012
https://doi.org/10.1080/0163853X.2017.1401876
https://doi.org/10.1017/S0140525X99532147
https://doi.org/10.1037/0033-295X.112.1.193
https://doi.org/10.1111/cogs.12461
https://doi.org/10.3389/fnhum.2013.00758
https://doi.org/10.1111/j.1467-9264.2010.00288.x
https://doi.org/10.3758/BF03195780
https://doi.org/10.1086/447971
https://doi.org/10.1016/j.neuropsychologia.2010.03.017
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


McGregor et al. Re-Representing Metaphor

Foltz, P. W., Rosenstein, M., and Elvevåg, B. (2016). Detecting clinically significant

events through automated language analysis: quo imus?Npj Schizophr. 2:15054.

doi: 10.1038/npjschz.2015.54

Gibbs, R. W., and Tendahl, M. (2006). Cognitive effort and effects in metaphor

comprehension: relevance theory and psycholinguistics. Mind Lang. 21, 379–

403. doi: 10.1111/j.1468-0017.2006.00283.x

Goldstein, A., Arzouan, Y., and Faust, M. (2012). Killing a novel metaphor and

reviving a dead one: ERP correlates of metaphor conventionalization. Brain

Lang. 123, 137–142. doi: 10.1016/j.bandl.2012.09.008

Gutiérrez, E. D., Shutova, E., Marghetis, T., and Bergen, B. K. (2016). “Literal

and metaphorical senses in compositional distributional semantic models,” in

Proceedings of the 54th Meeting of the Association for Computational Linguistics

(Berlin: Association for Computational Linguistics), 183–193.

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature

selection. J. Mach. Learn. Res. 3, 1157–1182. doi: 10.1162/153244303322753616

Harris, Z. (1957). Co-occurrence and transformation in linguistic structure.

Language 33, 283–340. doi: 10.2307/411155

Hill, F., Kiela, D., and Korhonen, A. (2013). Concreteness and corpora: A

theoretical and practical analysis. In Proceedings of the Workshop on Cognitive

Modeling and Computational Linguistics (Sofia), 75–83.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: Evaluating semantic

models with genuine similarity estimation. Comput. Linguist. 41, 665–695.

doi: 10.1162/COLI_a_00237

Jacobs, A. M., and Kinder, A. (2017). “The brain is the prisoner of

thought”: a machine-learning assisted quantitative narrative analysis of literary

metaphors for use in neurocognitive poetics. Metaphor Symbol 32, 139–160.

doi: 10.1080/10926488.2017.1338015
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