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Evidence-centered design (ECD) is a framework for the design and development of 
assessments that ensures consideration and collection of validity evidence from the onset 
of the test design. Blending learning and assessment requires integrating aspects of 
learning at the same level of rigor as aspects of testing. In this paper, we describe an 
expansion to the ECD framework (termed e-ECD) such that it includes the specifications 
of the relevant aspects of learning at each of the three core models in the ECD, as well 
as making room for specifying the relationship between learning and assessment within 
the system. The framework proposed here does not assume a specific learning theory 
or particular learning goals, rather it allows for their inclusion within an assessment 
framework, such that they can be articulated by researchers or assessment developers 
that wish to focus on learning.

Keywords: task design, technology-based assessment, blended assessment and learning, development framework, 
Evidence model

INTRODUCTION

There is a growing need for the development of assessments that are connected and relevant 
to learning and teaching, and several attempts have been made in recent years to focus on 
this topic in conferences and journals. For example, Mark Wilson’s 2016 June and September 
presidential messages in the National Council for Measurement in Education’s newsletter 
addressed Classroom Assessment, and this topic was also the conference theme for the 
following 2  years, 2017 and 2018. The journal Assessment in Education: Principles, Policy & 
Practice recently devoted a special issue on the link between assessment and learning (volume 
24, issue 3, 2017). The issue focused on the developments in the two disciplines which, 
despite mutual influences, have taken distinctly separate paths over time. In recent years, 
systems that blend learning and assessment have been proposed all over the world  
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(e.g., Razzaq et  al., 2005; Shute et al., 2008; Feng et  al., 
2009b; Attali and Arieli-Attali, 2014; Straatemeier, 2014). 
While within the educational measurement field, there are 
established standards and frameworks for the development 
of reliable and valid assessments, those rarely take learning 
aspects into account. As part of our own effort to develop 
a blended learning and assessment system, we  identified a 
need for a formal framework of development that includes 
aspects of learning at the same level of detail and rigor as 
aspects of testing. This paper describes our general approach 
at expanding an assessment framework, with some examples 
from our system to better illustrate the abstract concepts.

Our approach at expanding a principled assessment design 
is primarily concerned with the inclusion of three dimensions: 
aspects of learning, such as the ability to incorporate the change 
over time in the skills to be  measured at the conceptual level; 
aspects of interactive and digital instructional content, such as 
simulations, games, practice items, feedback, scaffolds, videos, 
and their associated affordances for the data collection in rich 
logfiles; and measurement models for learning that synthesize 
the complexities of the digital instruction and data features.

The expanded framework proposed here allows for the design 
of systems for learning that are principled, valid, and focused 
on the learner. Systems designed in this framework are 
intrinsically connected with the assessment of the skills over 
the time of instruction, as well as at the end, as summative 
tests, if so desired. This type of systems has an embedded 
efficacy structure, so that additional tests can be  incorporated 
within. Learning and assessment developers, as well as researchers, 
can benefit from such a framework, as it requires articulating 
both the assessment and learning intended goals at the start 
of the development process, and it then guides the process 
to ensure validity of the end-product. The framework proposed 
here does not assume a specific learning theory or particular 
learning goals, rather it allows for their inclusion within the 
assessment framework. The measurement perspective, combined 
with the learning sciences perspective in the development of 

content, provides a new and significant shift in the modern 
development of leaning and assessment systems.

We chose to expand the well-known evidence-centered 
design framework (ECD; Mislevy et  al., 1999, 2003, 2006). 
The ECD formulates the process of test development to ensure 
consideration and collection of validity evidence from the 
onset of the test design. The ECD is built on the premise 
that a test is a measurement instrument with which specific 
claims about the test scores are associated, and that a good 
test is a good match of the test items and the test takers’ 
skills. The ECD framework defines several interconnected 
models, three of which form the core of the framework and 
are relevant to our discussion: the Student model(s), Evidence 
model(s), and Task model(s) (the combination of the three 
models is also called the Conceptual Assessment Framework; 
CAF; see Figure 1). Note that in more recent publications 
of the ECD, the Student model is termed a Proficiency model 
(e.g., Almond et  al., 2015).

The Student or the Proficiency model(s) specifies the 
knowledge, skills, and ability (KSA; which are latent 
competencies) that are the target of the test. This model can 
be  as simple as defining one skill (e.g., the ability θ) or a 
map of interconnected subskills (e.g., fractions addition, 
subtractions, multiplication, and division are interconnected 
subskills that form the map of knowing fractions). The latent 
competencies that are articulated and defined in this model 
establish the conceptual basis of the system, and they are often 
based on a theory or previous findings related to the goal of 
the assessment.

Since we  cannot tap directly into the latent competencies, 
we  need to design tasks/test items such that they will elicit 
behaviors that can reflect on or indicate about the latent 
competencies. This is the role of the Task model(s). The Task 
model specifies the tasks features that are supposed to elicit 
the observables, and only them, such that to allow inferences 
about the latent competencies. For example, if the assessment 
is intended to measure “knowledge of operating with fractions,” 

FIGURE 1 | The core models within the ECD framework (from Mislevy Almond & Lucas, © 2003 Educational Testing Service; used with permission); note that later 
versions term the Student model as Proficiency model.
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the tasks should be designed with care such that reading ability 
is not an obstacle to perform well on the task and express 
one’s fractions knowledge.

The Evidence models then make the connection between 
the latent competencies [specified by the Student/Proficiency 
model(s)] and the observables [behaviors elicited by the Task 
model(s)]. In other words, the Evidence models are the connecting 
link. The Evidence models include the measurement model, 
comprised of the rubrics, the scoring method, and the statistical 
method for obtaining a total score(s). See Figure  1 for a 
diagram of the ECD and specifically the three CAF models 
(note that latent competencies are symbolized as circles, while 
observables as squares; and the connection between the circles 
and squares are shown in the Evidence models).

Two important additional models are the Assembly model 
and the Presentation model (see Figure 1). The Assembly 
model defines how the three models in the CAF (the Student/
Proficiency, Task, and Evidence models) work together and 
specifically determines the conditions for reliability and validity 
of the system. As part of the Assembly model, the developers 
determine the number of items/tasks and their mix 
(“constraints”) such they provide the necessary evidence and 
are balanced to properly reflect the breadth and diversity of 
the domain being assessed. The Presentation models are 
concerned with different ways to present the assessment, 
whether it is a paper-and-pencil test, a computer-based test, 
a hands-on activity, etc. We  will elaborate on and delve 
deeper into each of the models as part of the expansion 
description below; for more details on the original ECD, 
see Mislevy et  al. (2003, 2006).

There are other alternatives frameworks for the design and 
development of assessment that follow a principled approach, 
such as the Cognitive Design System (Embretson, 1998), the 
Assessment Engineering framework (Luecht, 2013), the 
Principled Design for Efficacy framework (Nichols et al., 2015), 
or the Principled Assessment Design framework (Nichols 
et al., 2016). These frameworks may be perceived as alternatives 
to the ECD, and one might find any of them as a candidate 
for a similar expansion the way we  demonstrate executing 
for the ECD in this paper. The reason there were several 
assessment frameworks developed over the years stem from 
the need to ensure validity of assessment tools. Although 
traditional assessments were developed for about half a century 
without a principled approach (i.e., by following an assessment 
manual and specifications) and validity was verified after 
development, the advantage of following a principled framework 
such as the ECD or others is particularly evident when the 
goal is to assess complex competencies (e.g., problem solving, 
reasoning, collaborative work) and/or when using complex 
performance tasks (e.g., multidimensional tasks such as 
performance assessment, simulations or games on computer 
or otherwise). In these cases, it is important to explicitly 
identify the relevant competencies and behaviors and how 
they are connected, because the complexity of the focal 
competencies and/or the rich data that the tasks provide might 
pose difficulties in making inferences from behaviors to 
competencies. ECD has been also successfully applied to 

address the challenges of simulation- and game-based assessment 
(Rupp et  al., 2010a; Mislevy, 2013; Kim et  al., 2016).

MOTIVATION FOR A PRINCIPLED 
APPROACH TO THE DESIGN AND 
DEVELOPMENT OF A LEARNING AND 
ASSESSMENT SYSTEM

Learning and assessment, although both relate to the process 
of determining whether or not a student has a particular 
knowledge, skill, or ability (KSA), differ substantially in the 
way they treat KSAs. The main difference between an assessment 
tool and a learning tool is in the assumption about the focal 
KSA, whether it is fixed or dynamic at the time of interacting 
with the tool. The Student/Proficiency model in the ECD 
describes a map of competencies (KSAs), and as in most 
psychometric models for testing, the assumption is of a latent 
trait, which is “fixed” at the time of taking the test. The purpose 
of an assessment is thus to “detect” or “diagnose” that fixed 
latent KSA at a certain point in time, similar to any measurement 
tool (e.g., a scale measuring a person’s weight at a particular 
point in time). On the other hand, the main purpose of a 
learning tool, such as a computer tutoring system, is to “move” 
the learner from one state of knowledge to another – that is, 
the concern is first and foremost with the change in KSAs 
over time, or the transition. Of course, an assessment tool 
per se cannot drive the desired change unless deliberate efforts 
are implemented in the design of the system (similar to a 
scale which will not help with weight loss unless other actions 
are taken). Thus, systems that aim at blending assessment and 
learning cannot implement ECD as is, since ECD is inherently 
a framework to develop assessments and not learning.

Moreover, the availability of rich data collected via technology-
enhanced learning and assessment systems (e.g., trial and error 
as part of the learning process, hint usage) poses challenges, 
as well as promises, for assessment design and the decision 
process of which actions to allow and what to record, either 
to promote efficient learning or to enable the reliable assessment 
of the learning in order to make valid inferences about KSAs. 
Computational Psychometrics (von Davier, 2017), an emerging 
discipline, blends theory-based methods and data-driven 
algorithms (e.g., data mining and machine learning) for measuring 
latent KSAs. Computational Psychometrics is a framework for 
analyzing large and often unstructured data, collected during 
the learning or performance process, on a theoretical learning 
and psychometric basis. We  also combine aspects of 
Computational Psychometrics in our expanded design framework, 
similar to previous accounts that integrated data mining into 
ECD (e.g., Mislevy et  al., 2012; Ventura and Shute, 2013). 
Combining data-driven algorithms into ECD allows knowledge 
discovery and models’ update from data, thereby informing 
the theory-based Student/Proficiency model and enriching the 
Evidence model.

Attempts to develop innovative assessments within games 
or as part of complex skills assessment and learning also 
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brought about variations or expansions to ECD (e.g., Feng 
et  al., 2009a; Conrad et  al., 2014; Grover et  al., 2017). One 
characteristic of ECD variants focuses on the task and its 
connection to the Evidence model. Since game-play and the 
rich data from complex assessments often result in sequences 
of actions, not all of which are relevant to the target competencies, 
researchers may follow an ECD approach with expansion with 
respect to the action-data, to specify which actions are relevant 
and should be  included in the Evidence model and in what 
way (i.e., expansion on the scoring rules or both scoring and 
Task model). Such an attempt was done by Grover et al. (2017). 
Grover and her colleagues expanded on the scoring rules by 
employing data driven techniques (e.g., clustering, pattern 
recognition) in addition to theory-based hypotheses, to guide 
the definition of the scoring rules. Another interesting variation 
is the experiment-centered design by Conrad et  al. (2014), 
which illustrated an expansion on the scoring and the Task 
model. This approach uses an ECD-like process to simultaneously 
encode actions of players in one way for game design and 
another way for assessment design. Because the game design 
dictates feedback on actions, and subsequent game options 
may depend on student’s actions, the game designer needs to 
encode the actions differently than a researcher or an assessment 
designer, who is primarily interested in estimating whether a 
student possesses the focal skill. In this procedure, the model 
is first postulated around the task (experiment), and then 
applied separately as two models (versions), one for the game 
designer, and one for the researcher, each focused on a different 
encoding of student actions. However, there is only one Evidence 
model for inferring KSAs, derived from the researcher’s version 
of the task encoding (the assessment variant scoring rule). In 
this way, the adaptation of the ECD allowed adding the 
assessment as a “layer” on top of the game design (stealth 
assessment), while ensuring coordination between these 
two layers.

Work by Feng et  al. (2009a) is particularly relevant in this 
context. The authors examine an adaptation of the ECD for 
learning data (ECDL), applied retroactively to the ASSISTments 
data (Heffernan and Heffernan, 2014). The ECDL is an ECD 
with an augmented pedagogical model, which has links to all 
three models of the CAF (Proficiency, Evidence, and Task). 
The pedagogical model refers to the learning and learners’ 
characteristics, including learning effectiveness and efficiency 
(e.g., reducing cognitive load, increasing difficulty gradually 
during presentation, adapting the presentation of content, and 
decomposing multistep problems to sub-steps), as well as 
learner engagement factors. Since ASSISTments was initially 
developed without ECD in mind, the analysis retroactively 
checks which claims can support a validity argument that 
an item with its hints and scaffolds serves the learning goal. 
This is done by identifying (within each item) the KSAs 
required to answer it correctly, tagging each as “focal” or 
“unfocal.” The focal KSAs are the ones which the hints/scaffolds 
should address. The relation between the focal and unfocal 
also serves as an indication of the system’s efficacy [a system 
with a high proportion of unfocal KSAs is less efficient than 
a system with a low proportion, because this reflects the 

proportion of KSAs not taught (scaffolded)]. In sum, Feng 
and his colleagues demonstrated how an existing learning 
product can be  analyzed (and potentially improved) using 
an ECDL framework.

Common to the various adaptations of ECD is that they 
were task driven. First came the tasks; then came the ECD 
analysis, which resulted in adapting the ECD to address the 
complexity and intuition that were built into the tasks, expressed 
as an expansion on one of the three models in the CAF. 
While in the first two examples of Conrad et  al. (2014) and 
Grover et  al. (2017), the revised ECD focused on how to 
encode the task data to feed into the Evidence model, Feng 
et  al.’s (2009a) study goes further, suggesting a pedagogical 
model that is feeding and being fed by all three CAF models – 
Proficiency, Evidence, and Task. However, this pedagogical 
model seems somewhat like a “black box” that retroactively 
includes the intuitions that specified the product design (e.g., 
how hints and scaffolds were determined). Additionally, it 
neither specifies the nature of the connections with the original 
ECD models nor does it inform how to design a learning 
product from scratch (i.e., a principled approach to development).

We offer a comprehensive expansion of the ECD framework, 
such that learning aspects are specified for each of the three 
models in the CAF and are determined a priori to the system 
design. We  describe the expanded full CAF first, followed by 
a focus on each expanded model with examples. We  then 
discuss the Assembly model, which allows for the specification 
of the relationship between assessment and learning. We conclude 
with ramifications of the expanded framework for the 
development of adaptive systems. We include examples to better 
illustrate the general ideas, along with directions for alternative 
decisions, to emphasis the generalizability of the 
expanded framework.

THE EXPANDED ECD MODEL

In our expanded ECD framework (e-ECD), we find it necessary 
to expand on all three Student/Proficiency, Evidence, and Task 
models. We  do so by adding a learning layer, in parallel to 
the assessment layer. This learning layer can be  viewed as a 
breakdown of a pedagogical model (Feng et  al., 2009a) to 
three components, the conceptual (student/proficiency), 
behavioral (task), and statistical (evidence) components. Thus, 
each original ECD model now has an additional paired learning 
model, culminating in six models. We  call each assessment-
learning pair an expanded model (e-model), i.e., the e-Proficiency 
model, the e-Task model, and the e-Evidence model (see 
Figure 2). Note that we refer to the original Proficiency model 
as the KSA model (Knowledge, Skills, and Ability), which is 
now part of the e-Proficiency model.

Within each e-model, we  denote an “observational” layer for 
the assessment aspect (these are the original ECD models with 
slight title change; the KSA model, Task model, and Observational-
Evidence model) and a “transitional” layer for the learning aspect 
(these are the new models that address learning). The three 
new learning models include the following: (1) at the conceptual 
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latent level and part of the e-Proficiency model – the transitional 
layer specifies learning processes as the latent competency that 
the system targets. We  denote it as the KSA-change model;  
(2) at the behavioral level and part of the e-Task model – the 
transitional layer specifies principles and features of learning 
support that guides the design of tasks (customized feedback, 
scaffolds, hints, solved examples, solution, or guidance to digital 
instructional content such as animation, simulation, games, and 
videos). We  denote it as the Task-support model; and (3) at 
the statistical level and part of the e-Evidence model – the 
transitional layer specifies the links between the learner’s support 
usage and the target learning processes, to allow inferring from 
behaviors to latent learning (e.g., the efficiency of the support 
used in achieving learning). The data could be  large process 
data and may reveal behavior patterns that were not identified 
by the human expert in the original e-Proficiency model. In 
this framework, the e-Proficiency model and the e-Evidence 
model are supposed to “learn” in real time (be updated) with 
the new knowledge inferred from the data. We  denote it as 
the Transitional-Evidence model.

We include also an expansion on the Assembly model, 
denoted e-Assembly model. In addition to determining the 
number and mix of tasks, the e-Assembly model also includes 
the specification about the relationship between the assessment 
component and the learning component of the system and 
determines how they all work together. In other words, the 
assembly model determines the “structure” of the system, e.g., 
when and how learning materials appear and when and how 
assessment materials appear, and the rules for switching between 
the two.

Consider the following situation: a student is using a system 
for learning and assessment to learn and practice scientific 
reasoning skills. At some point, the student gets an item wrong. 
In a regular assessment system, another item will follow (often 
without any feedback about the correctness of the response)  – 
and if the system is an adaptive testing system, the student 
will receive an easier item, but not necessarily with the same 
content as the item with the incorrect response. In a blended 

learning and assessment system, the approach is different. 
Detecting a “weakness” in knowledge is a trigger to foster learning. 
How should the system aim at facilitating learning? There are 
several different options, from providing customized feedback 
and hints on how to answer that specific item, presenting 
scaffolds for the steps required or eliciting prior knowledge 
that is needed to answer that item, addressing specific 
misconceptions that are known to be prevalent for that specific 
node of KSA, up to re-teaching the topic and showing worked 
examples, and/or presenting similar items to practice the skill. 
In many learning products today, this process of defining the 
learning options is conducted using content experts according 
to implicit or explicit learning goals. Using a principled approach 
to development will dictate that the definition of the options 
for learning should be  explicitly articulated at the level of the 
Task-support model, and these features are to be  in line with 
the explicit conceptual learning/pedagogical model that describes 
how to make that shift in knowledge, i.e., the KSA-change 
model. The links between the supports and the conceptual 
KSA-change are defined in the Transitional-Evidence model 
via statistical models, which provide the validity learning 
argument for the system.

In the development of an assessment system that blends 
learning, we  wish to help students learn, and to validate the 
claim that learning occurred, or that the system indeed helped 
with the learning as intended. The KSA-change specifies the 
type of changes (learning/transitions) the system is targeting, 
and based on that, the tasks and the task supports are defined. 
In other words, the first step is to define the “learning shifts” 
or how to “move” in the KSA model from one level/node to 
the next. The next step is to define the observables that need 
to be  elicited and the connections between the learning shifts 
and the observables. We  elaborate on each of the expanded 
models below.

Our expanded framework shows how to incorporate a learning 
theory or learning principles into the ECD and can be  applied 
using different learning approaches. We  illustrate this process 
by using examples from Knowledge-Learning-Instruction 

FIGURE 2 | Expanded ECD (e-ECD) for learning and assessment systems.
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(Koedinger et  al., 2012) among others, but this process can 
be  applied using other learning approaches (and we  provide 
some directions).

Expanded Proficiency Model
In the ECD framework, the Student/Proficiency model defines 
the Knowledge, Skills, and Ability (KSA) that the assessment 
is targeting. Although in early publications of the ECD, it is 
called a Student model, in recent contexts, it is called a 
“Proficiency model” (e.g., Feng et al., 2009a; Almond et al., 2015), 
or referred to as a “Competency model” (e.g., Arieli-Attali and 
Cayton-Hodges, 2014; Kim et  al., 2016), and it can also 
be  perceived as a “Construct map” (Wilson, 2009). A similar 
notion in the field of Intelligence Tutoring Systems is a “Domain 
model” (Quintana et al., 2000), a “Knowledge model” (Koedinger 
et  al., 2012; Pelánek, 2017), or a “Cognitive model” (Anderson 
et  al., 1995). In the Intelligence Tutoring Systems’ literature, 
the term “Student model” is reserved to a specific map of 
skills as estimated for a particular student – which is an overlay 
on the domain model (aka the expert model). Within ECD, 
the Student/Proficiency model includes both the desired skills 
(that an expert would possess) and the updated level of skills 
for each particular student following responses on assessment 
items. To avoid confusion, within our expanded ECD, we  refer 
to it by the general name of a KSA model.

The KSAs are assumed to be  latent, and the goal of the 
assessment is to infer about them from examinee’s responses 
to test items. When the assessment tool is also intended to 
facilitate learning (i.e., the system provides supports when the 
student does not know the correct answer), the assumption 
is that the student’s level of KSA is changing (presumably 
becoming higher as a result of learning). In the e-ECD, 
we define a “KSA-change model” that together with the original 
KSA model creates the expanded-Proficiency model 
(e-Proficiency model). The KSA-change model specifies the 
latent learning processes that need to occur in order to achieve 
specific nodes in the KSA model. Each node in the KSA 
model should have a corresponding learning-model in the 
KSA-change model, which may include prerequisite knowledge 
and misconceptions, and/or a progression of skills leading up 
to that KSA node, with the pedagogical knowledge of how 
to make the required knowledge-shift. Some examples of 
learning models are learning progressions (National Research 
Council (NRC), 2007; e.g., Arieli-Attali et al., 2012) a Dynamic 
Learning Map (Kingston et  al., 2017), or learning models 
based on the body of work on Pedagogical Content Knowledge 
(Posner et  al., 1982; Koehler and Mishra, 2009; Furtak et  al., 
2012). The importance of Pedagogical Content Knowledge is 
in considering the interactions of content information, pedagogy, 
and learning theory. Another approach from the learning 
sciences and artificial intelligence is the Knowledge-Learning-
Instruction framework (KLI; Koedinger et  al., 2012), which 
provides a taxonomy to connect knowledge components, learning 
processes, and teaching options. We  will illustrate our 
KSA-change model specification using the KLI framework, 
but we  will define the e-Proficiency model in a general way 
such that any other learning theory can be  applied instead.

Specifying and explicitly articulating the latent learning 
processes and progressions that are the target of the learning 
is a crucial step, since this is what will guide the specification 
of both the e-Task model and the e-Evidence model. In the 
following sections, we  elaborate and illustrate the KSA and 
KSA-change models that constitute the e-Proficiency Model.

The Assessment Layer of the e-Proficiency 
Model – The KSA Model
A KSA model includes variables that are the features or attributes 
of competence that the assessment is targeting. The number 
of variables and their grain size are determined by the potential 
use of the assessment, and it can range from 1 (e.g., the θ 
in college admission tests such as the GRE, SAT, and ACT) 
to several subskills arranged in a map or a net (e.g., a net 
example, see Mislevy et  al., 1999; a math competency map, 
see Arieli-Attali and Cayton-Hodges, 2014; two versions of a 
game-based physics competency model, see Kim et  al., 2016). 
These variables can be  derived by conducting a cognitive task 
analysis of the skill by experts, analyzing the content domain, 
or relying on a theory of knowledge and research findings. 
The variables and their interconnections create a map in which 
each variable is a node connected by a link with other nodes 
(variables). Following analysis of data from student responses 
(and using the statistical models), values on these variables 
define the level of mastery or the probability that a particular 
student possess those particular sub-skills (nodes), i.e., a value 
will be  attached to each node.

As part of our development of a learning and assessment 
system, called the Holistic Educational Resources & Assessment 
(HERA) system for scientific thinking skills, we  developed a 
KSA model for data interpretation skill. Figure 3 depicts part 
of the model. Specifically, we  distinguish three main skills of 
data interpretation depending on the data representation (Table 
Reading, Graph Reading, and the skill of interpreting data from 
both tables and graphs), and each skill is then divided to several 
subskills. For example, in Table Reading skill, we  distinguish 
between locating data points, manipulating data, identifying trend, 
and interpolation and extrapolation. Note that these same subskills 
(albeit in a different order) appear also under Graph Reading 
skill, but they entail different cognitive ability. The skill of 
Tables and Graphs includes comparing, combining, and translating 
information from two or more different representations.

Although KSA models often specify the links between nodes, 
and may even order the skills in a semi-progression (from 
basic to more sophisticated skills) as in the example of the 
HERA model in Figure 3, a knowledge model often does not 
specify how to move from one node to the next, nor does it 
explicitly define learning processes. To that end we  add the 
learning layer in the e-Proficiency model – the KSA-change model.

The Learning Layer in the e-Proficiency  
Model – The KSA-Change Model
Defining a learning layer within the e-Proficiency model makes 
room for explicit articulation of the learning processes targeted 
by the learning and assessment system. The idea is for these 
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specifications to be  the result of purposeful planning, rather 
than a coincidental outcome of system creation. In the Intelligence 
Tutoring literature, developers consider what they call the 
“Learner model” (Pelánek, 2017) or the “Educational model” 
(Quintana et al., 2000) or more generally, processes for knowledge 
acquisition (Koedinger et  al., 2012). This model can also 
be  viewed as the “pedagogical model” and apply principles of 
Pedagogical Content Knowledge (Koehler and Mishra, 2009; 
Furtak et al., 2012). We call this model the “KSA-change Model” 
for generalizability and to keep the connection with the original 
KSA model, with the emphasis on the change in KSA. Using 
the title “change” makes room also for negative change (aka 
“forgetting”), which albeit not desirable, is possible.

A KSA-change model is the place to incorporate the specific 
learning theory or learning principles (or goals) that are at 
the basis of the systems. Similar to the way a KSA map is 
created, the KSA-change map should specify the learning aspects 
of the particular skills. Here we  provide a general outline for 
how to specify a KSA-change model, but in each system this 
process may take a different shape.

A KSA-change model may include variables of two types:

 1. Sequences of knowledge components, features or attributes
 2. Learning processes within each sequence

These two types of variables define the learning sequences 
and processes that are needed to facilitate learning. The 
KSA-change variables are derived directly from the KSA model, 
such that each node/skill in the KSA model has a reference 
in the KSA-change model in the form of how to “move” 
students to learn that skill.

Given a specific skill (node in the map), this may be  done 
in two stages: (1) the first step is to define the (linear) sequence 
of pre-requisites or precursors needed to learn that target 

skill (node). For example, Kingston and his colleagues (Kingston 
et al., 2017) developed Dynamic Learning Maps in which each 
of the target competencies are preceded with three levels of 
precursor pieces of knowledge (initial precursor, distal precursor, 
and proximal precursor) and succeeded by a successor piece 
of knowledge, together creating what they called “Linkage 
levels.” When defining the sequence of precursors attention 
should be given to the grain size, as well as to specific features 
or attributes of these precursors. In KLI terminology (Koedinger 
et  al., 2012), this would mean to characterize the Knowledge 
Components of the subskills. Some Knowledge Components 
are: fact, association, category, concept, rule, principle, plan, 
schema, model, production; and whether it is verbal or 
non-verbal, declarative or procedural; or integrative knowledge 
(2) the second step is to characterize the learning sequence 
by which kind of learning process is required to achieve the 
learning. For example, applying the KLI taxonomy (Koedinger 
et  al., 2012), we  can assign to each precursor (knowledge 
component) a specific learning process that is presumed to 
make the desired knowledge shift. The KLI framework 
characterizes three kinds of learning processes: memory and 
fluency building, induction and refinement, and understanding 
and sense-making. Specifying which kind of process is needed 
in the particular learning sequence is necessary for subsequent 
decisions about the supports to be  provided. For example, if 
the focal learning process is fluency building, this implies that 
the learning system should provide practice opportunities for 
that KSA. In contrast, if the focal learning process for a different 
KSA is understanding and sense making, then the learning 
system should provide explanations and examples. Figure 4 
illustrates a general e-Proficiency model with an artificial example 
of adding-on the learning processes to a knowledge sequence 
built off of three prerequisites and a successor piece.

FIGURE 3 | The KSA model for the HERA system for scientific reasoning skills.
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Applying the above approach to the HERA learning and 
assessment system, let us focus on the subskill of interpolation 
and extrapolation from data in a graph (the last red circle 
in the progression of Graph Reading skill in Figure 3). Based 
on our guidelines above, the first step would be  to determine 
a sequence of subskills/precursors and to characterize them, 
and then as a second step to specify the cognitive process(es) 
that would make the transition from one subskill to the next. 
Figure 5 presents one section of the KSA-change of the HERA 
system for the subskill of interpolation and extrapolation in 
a graph. The model specifies the proximal, distal, and initial 
precursors as follows: the proximal precursor  =  identifying 
the rate of change in the dependent variable (y-variable) as 
the independent variable (x-variable) changes; distal 
precursor  =  being able to locate the y-value for a certain 
x-value point on a graph, and find adjacent points and compare 
the relative values; initial precursor  =  understanding that the 
two variables in a graph are co-related. Now applying the 
KLI knowledge components characterization, the proximal 
precursor (identifying rate of change) may be  characterized 
as “rule”; the distal precursor (locate points and compare) 
as “schema”; and the initial precursor (two variables are 
co-related) as a “concept.”

Next, we  determine the cognitive processes that foster the 
transition from one subskill to the next. For example, given 
an understanding of the co-variation of x and y (the initial 
subskill) students need to practice finding the y-points for 
different x-points to create the mental schema and build fluency 
with locating points and particularly two adjacent points. 
However, to “jump” to the next step of identifying the trend 
and the rate of change requires induction and refinement to 
derive the rule. The last transition from identifying rate of 
change to perform interpolation & extrapolation requires sense 
making and deduction – deducing from the rule to the new 
situation. Given the specific learning processes, we  can later 
define which learning supports would be  most appropriate 
(e.g., practice for fluency building, worked example and 
comparisons for induction, and explanation for sense making 
and deduction). The model in Figure 5 shows the different 
learning processes as the transitions (arrows) required between 

the subskills in the sequence. This is the learning model for 
the specific skill in focus, and is usually derived based on 
expert analysis. The model in Figure 5 also specifies particular 
misconceptions that students often exhibit at each level. 
Specifying misconceptions may also help determine which 
feedback and/or learning aid to provide to students. We  show 
in the next section how to define Task and Task-support models 
based on this example.

There are several decisions that are taken as part of the 
model specifications. One of them is the grain-size of each 
precursor. An alternative KSA-change model can be determined 
with smaller or larger grain size subskills. Another decision 
is whether to adopt a three-level precursor skill structure, or 
alternatively focus on only one precursor and the different 
misconceptions students may have. Researchers and developers 
are encouraged to try different approaches.

We propose to derive the KSA-change variables by conducting 
a learning process analysis by experts, i.e., an analysis of the 
pedagogical practices in the content domain or relying on a 
theory of learning in that domain, similar to the way we illustrated 
above (by using the KLI taxonomy). This is also parallel to 
the way a KSA model is derived based on cognitive task analysis 
or domain analysis. The KSA-change model constitutes a collection 
of sequences (and their processes), each addressing one node 
in the KSA model (as illustrated in Figures 4, 5). This can 
also be  viewed as a two-dimensional map, with the sequences 
as the second dimension for each node.

Similar to updating the KSA model for a student, here 
too, following analysis of data from student responses and 
student behaviors in using the learning supports, values on 
the KSA-change variables indicate level or probability that a 
particular student has gone through a particular learning process 
(or that a particular knowledge shift was due to the learning 
support used). We  will discuss this in more detail in the 
e-Evidence model section.

Expanded Task Model
In the original ECD framework, the Task model specifies the 
features of tasks that are presumed to elicit observables to 
allow inference on the target KSA. An important distinction 

FIGURE 4 | A general diagram of the e-Proficiency model (the orange node in the KSA model is specified in the KSA-change model for learning sequence and 
learning processes). Similarly, we can construct a sequence for each of the other nodes (the blue, pink, and red nodes).
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introduced in ECD is between a task model design based on 
a Proficiency model and a task-centered design (Mislevy et  al., 
1999). While in task-centered design, the primary emphasis 
is on creating the task with the target of inference defined 
only implicitly, as the tendency to do well on those tasks, in 
defining a task model based on a Proficiency (and Evidence) 
model, we make the connections and possible inferences explicit 
from the start, making the design easier to communicate, easier 
to modify, and better suited to principled generation of tasks 
(Mislevy et  al., 1999, p.  23). Moreover, basing a task model 
on Proficiency and Evidence models allows us to consider 
reliability and validity aspects of task features, and particularly 
the cognitively or empirically based relevance of the task 
features. In other words, considerations of item reliability and 
validity guide the development of items to elicit the target 
observables and only them (minimizing added “noise”). This 
means that at the development stage of a task, all features of 
the task should stand to scrutiny regarding relevance to the 
latent KSA. As mentioned above, if reading ability is not 
relevant as part of the mathematics KSA, items or tasks that 
may impede students with lower reading skills should be avoided. 
Thus, defining a task model based on a Proficiency model 
resembles the relationship between the latent trait and its 
manifestation in observable behavior. The more the task relates 
to the target KSA, the better the inference from the observable 
to the latent KSA.

For assessment precision purposes per-se, there is no need 
to provide feedback to students; on the contrary, feedback 
can be  viewed as interference in the process of assessment, 
and likewise scaffolds and hints introduce noise or interference 
to a single-point-in-time measurement. However, when the 
assessment tool is also intended for learning, the goal is to 
support learners when a weakness was identified, in order 
to help them gain the “missing” KSA. In the e-ECD we define 
a “Task-support model” that together with the original Task 
model creates the expanded-Task model (e-Task model). The 
Task-support model specifies the learning supports that are 
necessary and should be  provided to learners in order to 
achieve KSA change. Similar to basing the Task model on 
the KSA model, the Task-support model is based on the 
KSA-change model. The supports may include customized 
feedback, hints and scaffolds, practice options, worked examples, 

explanations, or guidance to further tailored instruction derived 
from the latent learning processes specified in the KSA-change 
model. In other words, the supports are determined according 
to the focal knowledge change. We  elaborate and illustrate 
on Task and Task-support models below.

The Assessment Layer Within the e-Task  
Model – The Task Model
The Task model provides a framework for describing the 
situation in which examinees are given the opportunity to 
exhibit their KSAs, and includes the specifications of the stimulus 
materials, conditions and affordances, as well as specifications 
for the work product (Mislevy et  al., 1999, p.  19). The 
characteristics of the tasks are determined by the nature of 
the behaviors that provide evidence for the KSAs. Constructing 
a Task model from the latent KSA model involves considering 
the cognitive aspect of task behavior, including specifying the 
features of the situation, the internal representation of these 
features, and the connection between these representations and 
the problem-solving behavior the task targets. In this context, 
variables that affect task difficulty are essential to take into 
account. In addition, the Task model also includes features of 
task management and presentation.

Although the Task model is built off of the Proficiency 
model (or the KSA model in our notation), multiple Task 
models are possible in a given assessment, because each  
Task model may be employed to provide evidence in a different 
form, use different representational formats, or focus evidence 
on different aspects of proficiency. Similarly, the same Task 
model and work product can produce different evidence; i.e., 
different rules could be  applied to the same work product, 
to allow inferences on different KSAs. Thus, it is necessary 
to define within each Task model the specific variables to 
be  considered in the evidence rules (i.e., scoring rules; 
we  elaborate on this in the next section).

Consider the abovementioned KSA from the HERA model: 
“Perform an extrapolation using data from a graph.” As part 
of a scientific reasoning skills assessment, this skill is defined 
in a network of other skills related to understanding data 
representations, as seen in Figure 5. One possible Task model 
can be: “Given a graph with a defined range for the x-axis 
variable [a,b] and y values corresponding to all x values in 

FIGURE 5 | A specification diagram of the KSA-change model for one node/skill of interpolation/extrapolation in a graph in the HERA’s KSA-model.
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the range, find the y-value for an x-value outside the range.” 
That is, we  present the learner with a graph (defined by its 
x- and y- axes) and a function or paired coordinates (x, y) 
for a limited domain. The question then asks learners to predict 
the y-value of an x point which is outside the domain presented 
in the graph. Because extrapolation assumes the continuation 
of the trend based on the relationship between variables, a 
required characteristic of the question is to include this 
assumption, explicitly or implicitly via the context (e.g. stating 
other variables do not change, or the same experimental 
procedure was used for a new value). Articulating the assumption 
is part of the Task model. Another option for an extrapolation 
Task model could be: “Given a graph with two levels of the 
dependent variable, both showing a linear relationship with 
the x-variable (i.e., same relationship trend) but with different 
slopes, find the y-value for a third level of the dependent 
variable.” That is, we  present the learner with a graph with 
two linear relationships (two line-graphs), one for level a and 
one for level b (for example, a, b are levels of weight of 
different carts, and the linear relationship is between speed 
and time). The question then asks learners to predict the 
y-value for level c (c  >  a, b; larger weight car) for an x- point 
for which we  know the y-values of level a and b; that is, 
extrapolation beyond the data presented. This Task model is 
more sophisticated than the first one, due to the complexity 
of the data representation, and thus is tapping into a higher 
level of the skill.

Another aspect is the operationalization of the Task model 
in a particular item. Given a Task model, the question can 
take the form of a direct non-contextualized (what we  may 
also call a “naked”) question, (e.g., asking about a value of y 
given a specific x), or it can be  contextualized (or “wrapped”) 
within the context and terminology of the graph (e.g., “suppose 
the researcher decided to examine the speed of a new cart 
that has greater weight, and suppose the trend of the results 
observed is maintained, what would you expect the new result 
to be?”). The “naked” and “dressed” versions of the question 
may involve change in the difficulty of the item; however, 
this change needs to be  examined, to the extent that it is 
construct- relevant or irrelevant. If it is construct-relevant, 
then it should be  included in the Task model as part of the 
specifications. Other factors may affect the difficulty as well 
– the type of graphic (bar-graph, line-graph, multiple lines, 
scatter plot) and the complexity of the relationships between 
variables (linear, quadratic, logarithmic, increasing, decreasing, 
one y-variable or more), the familiarity of the context of the 
task (whether this is a phenomenon in electricity, projectile 
motion, genetics, etc.), the complexity of the context (commonly 
understood, or fraught with misconceptions), the response 
options (multiple choice, or open-ended), the quality of the 
graph and its presentation (easy or hard to read, presented 
on a computer, smartphone or a paper, presented as a static 
graph or interactive where learners can plot points), etc. These 
factors and others need to be  considered when specifying the 
Task model, and their relevance to the construct should 
be  clearly articulated.

The Learning Layer Within the e-Task  
Model – The Task-Support Model
Tasks for assessment and tasks for learning differ in the 
availability of options that support learning. When we  design 
tasks for learning, we  need to consider the type of “help” or 
“teaching” that the task affords, with the same level of rigor 
that we  put into the design of the task itself. The Task-support 
model thus specifies the learning supports that might 
be  necessary and should be  provided to students in order to 
achieve the desired KSA-change (i.e., increase in KSA). Similar 
to basing the task model on the KSA model, the Task-support 
model is based on the KSA-change model.

Making room for the specification of the task support 
in  connection to the learning processes/goals (the focal 
KSA-change) is the innovative core of the proposed e-ECD 
and its significant contribution to the design of learning and 
assessment systems. Many learning systems include scaffolds 
or hints to accompany items and tasks, often determined by 
content experts or teacher experience and/or practices. These 
hints and scaffolds help answer the particular item they accompany, 
and may also provide “teaching,” if transfer occurs to subsequent 
similar items. However, in the design process of the hints and 
scaffolds, often no explicit articulation is made regarding the 
intended effect of hints and scaffolds beyond the particular 
question, or in connection to the general learning goals. Often, 
the hints or scaffolds are task-specific; a breakdown of the task 
into smaller steps, thus decreasing the difficulty of the task. 
This is also reflected in the approach to assigning partial credit 
for an item that was answered correctly with hints, contributing 
less to the ability estimate (as evidence of lower ability; e.g., 
Wang et  al., 2010). Specifying a Task-support model per each 
Task model dictates a standardization of the scaffolds and hints 
(and other supports) provided for a given task. How do we specify 
task supports connected to the focal KSA-change?

If for example, we  define a particular (as part of the 
KSA-change model) learning model similar to the one depicted 
in Figure 5, we  may provide as a task support a “pointer” to 
the precursors, in the form of a hint or a scaffold. Thus, the 
scaffolds are not a breakdown of the question to sub-steps, 
but rather each scaffold points to one of the precursor pieces 
of knowledge (initial, distal, or proximal precursor). In addition, 
since we  defined the kind of knowledge change between each 
precursor, we  can provide the corresponding support per each 
desired change. If the knowledge change is related to memory 
and fluency-building, we  may provide more practice examples 
instead of the scaffold. Similarly, if the knowledge change is 
related to understanding and sense-making, we  may provide 
an explanation or reasoning, or ask the student to provide 
the explanation or reasoning (self-explanation was found to 
be  beneficial in some case, Koedinger et  al., 2012). It may 
very well be  the case that similar scaffolds will result from 
explicating a Task-support model following an e-ECD compared 
to not doing so, however in following this procedure, the 
design decisions are explicit and easy to communicate, justify, 
modify, replicate, and apply in a principled development 
of scaffolds.
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Similarly, other features of task support, such as feedback, 
visuals, and links to a video or wiki page, can be  supported 
by the articulation of the KSA-change and the connection 
between the two.

Let us illustrate specifying a Task-support model for the 
example item from HERA described in the previous section. 
Recall that the item targeted the latent KSA “Perform an 
extrapolation using data from a graph,” and the task materials 
included a graph with a specified function, asking students 
to extrapolate a point beyond the given range (i.e., predict 
the value of y for a new x-value). Also, recall Figure 5 that 
depicts the KSA-change model for this particular subskill. Given 
the proximal, distal, and initial precursors, we can now specify 
each scaffold to address each of these three precursor skills. 
Alternatively, we can decide to address only the closest precursor 
(the proximal) as a scaffold, and if that does not help with 
answering the question correctly, then refer the student to 
“learn” the more basic material (e.g., in a different section of 
the system, or by presenting items/content that target the initial 
and distal precursor skills). These decisions depend on the 
system design (e-Assembly model) and may vary from system 
to system.

As part of our development of the HERA system for scientific 
thinking skills, we  developed an item model that can be  used 
to collect evidence for both assessment and learning, termed 
an Assessment and Learning Personalized Interactive item 
(AL-PI). This item looks like a regular assessment item, and 
only after an incorrect response, the learners are given “learning 
options” to choose from. We  offer three types of learning 
supports: (1) Rephrase – rewording of the question; (2) Break-
it-down – providing the first step out of the multi-steps required 
to answer the question; and (3) Teach-me – providing a text 
and/or video explanation of the background of the question. 
Figure 6 presents a screenshot of an AL-PI item from a task 
about height-restitution of a dropped-ball, targeting the skill 
of extrapolation.

Using the terminology above, the Rephrase-option provides 
the learner with another attempt at the question, with the 
potential of removing the construct irrelevance that may stem 
from the item-phrasing (for learners who did not understand 
what the question is asking them, due to difficulty with the 
wording). In this example, a Rephrase of the question is: “The 
question asks you  to find the “Height attained” (the y-value) 
for a new x-value that does not appear on the graph” (see 
Figure 6 upper panel). Note that the Rephrase is practically 
“undressing” (decontextualizing) the question, pointing out the 
“naked” form, or making the connection between the context 
and the decontextualized skill.

The second learning support is Break-it-down which takes 
the form of providing the first step to answer the question. 
In the example in Figure 6 the Break-it-down states: “The 
first step to answer this question is to evaluate the rate of 
change in y as a function of a change in the x-variable” with 
additional marks and arrows on the graph to draw the leaner’s 
attention where to look. The Break-it-down option may look 
like a hint, signaling to learners where to focus, and in our 

terminology, it refers to the proximal precursor (recall: proximal 
precursor  =  identifying the rate of the change in the dependent 
variable as the independent variable changes).

The third type of support that we  offer in an AL-PI item 
is Teach-me. The Teach-me option in this case includes the 
following components: (1) a general statement about the skill; 
i.e., a graph presents data for a limited number of values, yet 
we  can estimate or predict about new values based on the trend 
in the data presented; (2) an explanation of how to identify 
the trend in a graph, i.e., locating adjacent points; and (3) an 
illustration of how once the trend was identified, we  can 
perform extrapolation.

In our system we  provide an illustration on a different 
value than the one in the question in order to avoid revealing 
the correct answer and leaving room for the learner to put 
mental effort into applying the method taught. In the Task-
support model terminology and in relation to the KSA-change 
model, the Teach-me option addresses all three precursors.

Specifying the task support based on the learning goal and 
the desired change in KSA gives direction but does not limit 
the options. On the contrary, it enriches the space of the 
decision and opens-up new options. In addition, constructing 
task support by following the e-ECD framework gives rise to 
the hypothesis that this way of structuring scaffolds may enhance 
transfer, because the scaffolds do not address the particular 
question, but rather address the latent skill and its precursor 
skills. Empirical evidence of transfer is of course needed to 
examine this hypothesis.

Expanded Evidence Model
The links made between the e-Proficiency model and the e-Task 
model need explication of the statistical models that allow 
inferences from the work products on the tasks to the latent 
KSAs. In the ECD framework, the Evidence model specifies 
the links between the task’s observables (e.g., student work 
product) and the latent KSAs targeted by that task (termed 
here as Observational-Evidence model). The Observational-
Evidence model includes the evidence rules (scoring rubrics) 
and the statistical models. The Evidence model is the heart of 
the ECD, because it provides the “credible argument for how 
students’ behaviors constitute evidence about targeted aspects 
of proficiency” (Mislevy et  al., 1999, p.  2).

In a system designed for learning, data other than the work 
product is produced, i.e., the data produced out of the task 
support (e.g., hints and scaffolds usage), which may be  called 
process data. The task support materials are created to foster 
learning; thus, learning systems should have a credible argument 
that these supports indeed promote learning. Partial evidence 
for that can be  achieved by inferences about knowledge or 
what students know and can do from their work product in 
the system, following and as a result of the use of the supports, 
and this can be  obtained by the statistical models within the 
Evidence model. However, the efficacy of the task supports 
themselves (i.e., which support helps the most in which case), 
and drawing inferences from scaffolds and hint usage about 
“learning behavior” or “learning processes” (as defined in the 
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KSA-change model) may need new kind of models and evidence. 
The Transitional-Evidence model within the e-Evidence model 
addresses the data produced from the task support.

The Assessment Layer Within the Evidence 
Model – The Observational-Evidence Model
In the original ECD, the Observational-Evidence model addresses 
the question of how to operationalize the conceptual target 
competencies defined by the Proficiency model, which are 
essentially latent, in order to be  able to validly infer from 
overt behaviors about those latent competencies. The 
Observational-Evidence model includes two parts. The first 
contains the scoring rules, which are ways to extract a “score” 
or an observable variable from student actions. In some cases, 
the scoring rule is simple, as in a multiple-choice item, in 

which a score of 1 or 0 is obtained corresponding to a correct 
or incorrect response. In other cases, the scoring rule might 
be more complex, as in performance assessment where student 
responses produce what we  call “process data” (i.e., a log file 
of recorded actions on the task). A scoring rule for process 
data can take the form of grouping a sequence of actions into 
a “cluster” that may indicate a desired strategy, or a level on 
a learning progression that the test is targeting. In such an 
example, a scoring rule can be  defined such that a score of 
1 or 0 is assigned corresponding to the respective strategy 
employed, or the learning progression level achieved. Of course, 
scoring rules are not confined to dichotomous scores and they 
can also define scores between 0 and 1, continuous (particularly 
when the scoring rules relies on response time) or ordered 
categories of 1-to-m, for m categories (polytomous scores).

FIGURE 6 | An example of an Assessment & Learning Personalized & Interactive item (AL-PI item) from the HERA system.
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The second part of the Observational-Evidence model contains 
the statistical model. The statistical model expresses how the 
scores (as defined by the scoring rules) depend, probabilistically, 
on the latent competencies (the KSAs). This dependency is 
probabilistic, that is, the statistical model defines the probability 
of certain “scores” (observables) given specific latent competencies 
(combination of values on the KSAs). In other words, at the 
point in time at which the student is working within the 
system, that student is in a “latent state” of knowledge, and 
given that latent state, there is a certain probability for the 
observable variables, which if observed, are evidence for the 
latent ability. However, all we  have are the student observable 
variables, and what we  need is a psychometric model that 
allows us to do the reverse inference from the given observables 
to the latent competencies.

There are various statistical models that can be  used here. 
Since we are talking about an assessment and learning system, 
let us consider a multi-dimensional latent competency, i.e., 
multiple skills are targeted by the system both for assessment 
and learning. If we  assume the latent competencies to 
be continuous, we can use a multi-dimensional Item Response 
Theory models (e.g., MIRT; Reckase, 2009) or Bayes-net 
models (Pearl, 1988, 2014; Martin and VanLehn, 1995; Chang 
et  al., 2006; Almond et  al., 2015). In the case where the 
latent competencies are treated as categorical with several 
increasingly categories of proficiency in each (e.g., low-, 
medium-, and high-level proficiency, or mastery/non-mastery 
levels), we  can use diagnostic classification models (DCM; 
Rupp et al., 2010b). What these models enable is to “describe” 
(or model) the relationship between the latent traits and the 
observables in a probabilistic way, such that the probability 
of a certain observable, given a certain latent trait, is defined 
and therefore allow us to make the reverse inference – to 
estimate the probability of a certain level of a latent trait 
given the observable.

In order to make the link between the items/tasks (the 
stimuli to collect observables) and the latent KSAs, we  can 
use what is called a Q-matrix (Tatsuoka, 1983). A Q-matrix 
is a matrix of <items  ×  skills> (items in the rows; skills in 
the columns), defining for each item which skills it is targeting. 
The Q-matrix plays a role in the particular psychometric model, 
to determine the probability of answering an item correctly 
given the combination of skills (and whether all skills are 
needed, or some skill can compensate for others; 
non-compensatory or compensatory model, respectively). The 
Q-matrix is usually determined by content experts, but it can 
also be  learned from the data (e.g., Liu et  al., 2012).

Recent developments in the field of psychometrics have 
expanded the modeling approach to also include models that 
are data driven, but informed by theory, and is referred to 
as Computational Psychometrics (von Davier, 2017). 
Computational Psychometrics is a framework that includes 
complex models such as MIRT, Bayes-net and DCM, which 
allow us to make inferences about latent competencies; however, 
these models may not define a priori the scoring rules, but 
rather allow for a combination of the expert-based scoring 

rules with those that are learned from the data. In particular, 
the supervised algorithms – methodologies used in machine 
learning (ML) – can be  useful for identifying patterns in the 
complex logfile data. These algorithms classify the patterns by 
skills using a training data set that contained the correct or 
theory-based classification. The word supervised here means 
that the “correct responses” were defined by subject-matter 
experts and that the classification algorithm learns from these 
data that were correctly classified to extrapolate to new 
data points.

In a learning and assessment system, the Observational-
Evidence model may also take into account the scaffolds and 
hints usage to infer about the KSA model. Since the scaffolds 
and hints reduce the difficulty of the items/tasks, they also 
change their evidentiary value of the observables. This can 
be  done via either using only responses without hint usage 
to model KSA or applying a partial credit scoring rule for 
items that were answered correctly with hints, thus assigning 
them less credit as a reflection of their evidentiary value (e.g., 
Wang et  al., 2010; Bolsinova et al., 2019a,b).

To summarize, any and all statistical models that allow us 
to define the connection between overt observables and latent 
competencies can be used in the Observational-Evidence model.

The Learning Layer Within the Evidence  
Model – The Transitional-Evidence Model
Similar to the way the Observational-Evidence model connects 
the Task model back to the KSA model, the Transitional-
Evidence model uses the task supports data to infer about 
learning, and to link back to the KSA-change model. Recall 
that the KSA-change model includes pedagogical principles 
which are reflected in the task supports. Similar to the assessment 
layer of the Evidence model, the Transitional-Evidence model 
also includes two parts: the scoring rules and the 
statistical models.

The scoring rules define the observable variables of the 
Transitional-Evidence model. If task supports are available by 
choice, student choice behavior can be  modeled to make 
inferences about their learning strategies. The data from the 
task supports usage (hints, scaffolds, videos, simulations, 
animations, etc.) as well as number of attempts or response 
time, should first be coded (according to a scoring or evidence 
rule) to define which of them should count and in what way. 
As before, scoring rules can be  defined by human experts or 
can be  learned from the data.

The statistical models in the Transitional-Evidence model 
need to be  selected, such that they allow us to infer about 
change based on observables over time. A popular stochastic 
model for characterizing a changing system is a Markov model 
(cf. Norris, 1998). In a Markov model, transition to the next 
state depends only on the current state. Because the focus 
here is on latent competencies, the appropriate model is then 
a hidden Markov model (HMM; e.g., Visser et al., 2002; Visser, 
2011), and specifically an input-output HMM (Bengio and 
Frasconi, 1995). A HMM would allow us to infer about the 
efficacy of the learning supports in making a change in the 
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latent state (proficiency level). In addition, the input-output 
HMM will allow us to make the association between learning 
materials (as input) and the change in KSA (latent) based 
on the observables (output), to estimate the contribution 
(efficacy) of each particular support to the desired change in 
proficiency (i.e., learning). Figure 7 illustrates this model for 
a single latent skill (KSA at time t1 and t2), a single observation 
(O at time t1 and t2) and a single learning support (l at 
time t1 and t2). The observation dependency on the skill 
(i.e., O given KSA; the arrow/link from KSA to O) is modeled 
by the Observational-Evidence model (the model from the 
original ECD), while the skill dependency on the learning 
support (i.e., KSA given l; the arrow/link from l to KSA) is 
modeled by the Transitional-Evidence model.

Working with the above example, let us assume a student 
does not know how to identify a data trend from a graph, 
and thus cannot extrapolate a new data point (incorrectly 
answers a question that requires extrapolation). Suppose a 
task support is provided, such that it draws the student’s 
attention to the pattern and trend in the data. We  now want 
to estimate the contribution of this support in helping the 
student learn (and compare this contribution to other task 
supports). We  have the following observables: the student’s 
incorrect answer in the first attempt, the student’s use of the 
particular task support, and the student’s revised answer in 
the second attempt (whether correct or not). Using an input-
output HMM will allow us to estimate the probability of 
transitioning from the incorrect to the correct latent state 
(or in other cases from low proficiency to high proficiency), 
given the use of the task support. Of course, the model will 
be  applied across questions and students in order to infer 
about latent state.

The above example of a single latent skill can be  extended 
to a map of interconnected skills using dynamic Bayesian 
network (DBN; Murphy and Russell, 2002). DBN generalizes 
HMM by allowing the state space to be  represented in a 
factored form instead of as a single discrete variable. DBN 
extends Bayesian networks (BN) to deal with changing situations.

How do we link the learning materials (defined in the Task-
support model) to the learning processes/goals (defined in the 
KSA-change model)? Similar to the Q-matrix in the 
Observational-Evidence model, here too we need a matrix that 
links the learning materials (task supports) with the associated 
skills-change. We  can use an S-matrix (Chen et  al., 2018), 
which is a matrix of <supports  ×  skills> (supports in the 
rows; skills in the columns), defining for each support which 
skills/process it can improve. In that sense, and similar to the 
Q-matrix, an S-matrix is a collection of “evidence” that explicate 
the connection between the supports and the desired learning 
shifts. For example, providing a worked example is a learning 
support that may be  connected to several knowledge shifts 
(corresponding to subskills in the learning models), and providing 
opportunities for practice is another learning support that may 
be connected to different desired knowledge shifts (corresponding 
to different subskills). The S-matrix will specify these connections. 
The S-matrix will then play a role in the HMM, to determine 
the probability that a particular knowledge shift (learning 
process) occurred given the particular learning supports. Similar 
to the Q-matrix, the S-matrix should be determined by content 
experts, and/or learned or updated from the data.

THE e-ASSEMBLY MODEL

In the original ECD, the Assembly model determines how to 
put it all together and specifies the conditions needed for 
obtaining the desired reliability and validity for the assessment. 
In other words, it determines the structure of the test, the 
number and the mix of the desired items/tasks. The Assembly 
model is directly derived from the Proficiency model, such 
that it ensures, for example, the appropriate representation of 
all skills in the map. Going back to the HERA example and 
the KSA-model in Figure 3, if we  were to build an assessment 
with those target skills, we would have to ensure that we sample 
items/tasks for each of the skills and subskills specified on the 
map, and the Assembly model will specify how much of each.

FIGURE 7 | An input-output hidden Markov model (HMM).
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For the expanded ECD, we  do not create a parallel model 
to the Assembly model as we  did for the three core models, 
because in a blended learning and assessment system we  do 
not assemble the assessment separately and the learning separately. 
Rather, in the process of developing a system, after we specified 
the six core models of the e-ECD, we  assemble it all together 
in what we  call the e-Assembly model.

The role of e-Assembly model is to specify how to put it 
all together. It will include the specifications of number and 
mix of items/tasks, but it will also include how and when to 
present the learning support materials. This can be  seen as 
determining how to switch between the “assessment” mode 
of the system and the “learning” mode of the system.

The e-Assembly model provides an opportunity to take into 
account additional pedagogical principles that are relevant to 
the combination of items and tasks, such as the importance 
of reducing cognitive load for learning; focusing on one skill 
at a time; gradual increased difficulty presentation; adaptive 
presentation of content, among others. Conditions to ensure 
the validity of the system may also specify pedagogical principles 
such as learning via real-world authentic tasks or learning by 
doing, as well as learner engagement factors, as relevant. 
Pedagogical Content Knowledge principles that include 
knowledge of student misconceptions regarding specific 
phenomena, if articulated as part of the KSA and KSA-change 
model, should be also considered here in selecting and designing 
tasks, such that the misconceptions are either accounted for 
or avoided so the KSAs can be  validly addressed.

The e-Assembly model is also the place to take into account 
considerations from other relevant approaches, such as the 
learner-centered design approach (LCD; Soloway et  al., 1994; 
Quintana et  al., 2000), which argue that student engagement 
and constructivist theories of learning should be  at the core 
of a computerized learning system. Adopting such an approach 
will affect the combination and/or navigation through the 
system. For example, the system may guide students to be more 
active in trying out options and making choices regarding their 
navigation in the system.

An important aspect of systems for learning and assessment 
is whether they are adaptive to student performance and in 
what way. This aspect within the e-Assembly model ties directly 
to the e-Evidence model. The statistical models in the Evidence 
model are also good candidates for determining the adaptive 
algorithm in adaptive assessments. For example, if a 2PL IRT 
model is used to estimate ability; this model can also be  used 
to select the items in a Computer Adaptive Test (CAT), as 
is often done in large-scale standardized tests that are adaptive 
(e.g., the old version of the GRE). Similarly, if a Bayes-net is 
used to estimate the map of KSAs, then the selection of items 
or tasks can be  done based on the Bayes-net estimates of 
skills. Similarly, we  can use the DCM to identify weakness 
in a particular skill and thus determine the next item that 
targets that particular weakness. This is true for any other 
model, also including data-driven models, because the purpose 
of the models is to provide a valid way to estimate KSAs, 
and once this is done, adaptivity within the system can 
be  determined accordingly.

The learning aspect of the system is motivated by the 
goal to maximize learners’ gain and thus needs a more 
comprehensive adaptivity, or what is often called 
“recommendation model.” A recommendation model does not 
only determine the next item to be  presented but it also 
determines which instructional or training material to 
recommend or present to the learner. A good recommendation 
model makes full use of all available information about both 
the learner and the instructional materials to maximize the 
KSA gain for the learner. If we  have a way to estimate 
(measure) the gain for the learner, we can feed this information 
to the recommendation engine to determine the adaptivity 
in the form of the next task support and/or training and 
instructional material needed. Thus, the additional layer of 
an evidence model for the learning materials (i.e., the statistical 
models for estimating the efficacy of the task supports) provides 
a good candidate model for the recommendation engine. 
Which materials were already used by the learner (which 
ones were chosen/preferred), which supports are found more 
effective for that particular learner, which skill is currently 
in focus and which supports are most effective for that 
particular skill (e.g., practice, explained example, video lecture, 
simulation demonstration, providing instructional material for 
a prior/prerequisite skill, etc.) are some of the decisions needed 
to be made by a recommendation engine, and these decisions 
rely on the statistical models that were used to evaluate and 
provide evidence for the efficacy of the task support and 
instructional materials.

CONCLUSION AND FUTURE STEPS

In this paper, we  propose a new way to fuse learning and 
assessment at the design stage. Specifically, we  propose an 
expanded framework we  developed to aid with the creation of 
a system for blended assessment and learning. We  chose the 
ECD framework as a starting point because this is a comprehensive 
and rigorous framework for the development of assessments 
and underlies the development of tests for most testing 
organizations. Incorporating learning aspects, both learning goals 
and learning processes, in the ECD framework is challenging, 
because of fundamental differences in the assumptions and 
approaches of learning and assessment. Nevertheless, we showed 
that the unique structure of Proficiency, Task, and Evidence 
models lends itself to creating parallel models for consideration 
of the corresponding aspect of learning within each model.

We are currently applying this framework in our work. 
In future work, we  hope to show examples of the learning 
and assessment system that we  build following the e-ECD 
framework. We are also working to incorporate other elements 
into the framework, primarily the consideration of motivation, 
meta-cognition, and other non-cognitive skills. Since learners’ 
engagement is a crucial element in a learning system, we can 
think of a way to incorporate elements that enhance engagement 
as part of the assembly of the system, by using reward system 
or gamification in the form of points, coins, badges, etc. 
Adding gamification or engagement-enhancing elements into 
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a system does not currently have a designated model within 
the e-ECD. We  are working to find a way to incorporate 
these elements into the framework.
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