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Every day cognitive and experimental researchers attempt to find evidence in support

of their hypotheses in terms of statistical differences or similarities among groups.

The most typical cases involve quantifying the difference of two samples in terms

of their mean values using the t statistic or other measures, such as Cohen’s d or

U metrics. In both cases the aim is to quantify how large such differences have to

be in order to be classified as notable effects. These issues are particularly relevant

when dealing with experimental and applied psychological research. However, most

of these standard measures require some distributional assumptions to be correctly

used, such as symmetry, unimodality, and well-established parametric forms. Although

these assumptions guarantee that asymptotic properties for inference are satisfied, they

can often limit the validity and interpretability of results. In this article we illustrate the

use of a distribution-free overlapping measure as an alternative way to quantify sample

differences and assess research hypotheses expressed in terms of Bayesian evidence.

Themain features and potentials of the overlapping index are illustrated bymeans of three

empirical applications. Results suggest that using this index can considerably improve the

interpretability of data analysis results in psychological research, as well as the reliability

of conclusions that researchers can draw from their studies.

Keywords: overlapping, distribution free, empirical distributions, effect size, R-package

1. INTRODUCTION

Overlapping can be defined as the area intersected by two or more probability density functions
and offers a simple way to quantify the similarity (or difference) among samples or populations
which are described in terms of distributions. Intuitively, two populations (or samples) are similar
when their distribution functions overlap. The simplicity of the overlapping concept makes the use
of this index particularly suitable for many applications such as, for example, the comparison of
probability distributions by exploring the amount of common area shared on the same domain.
In addition, overlapping can serve as a measure to estimate distances among clusters/networks of
data, or alternatively to measure similarities among datasets (e.g., Goldberg et al., 2010).

Since the first statistical contributions which introduce the idea of overlapping by Gini and
Livada (1943) and Weitzman (1970), the overlapping index has been applied to several research
problems involving, for instance, data fusion (Moravec, 1988), information processing (Viola
and Wells, 1997), applied statistics (Inman and Bradley, 1989), and economics (Milanovic and
Yitzhaki, 2001). The idea of overlapping has also been independently used in psychology, especially
in the definition of some effect size measures. In this regard, overlapping has served as a basis
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for Cohen’s U index (Cohen, 1988), McGraw and Wong’s
CL measure (McGraw and Wong, 1992), and Huberty’s I
degree of non-overlap index (Huberty and Lowman, 2000).
Albeit compelling, these indices require some distributional
assumptions to be properly met (e.g., symmetry of the
distributions, unimodality, same parametric family). While these
assumptions guarantee that asymptotic properties for inference
are satisfied, they can somewhat limit the application of
overlapping-based metrics.

In the current paper, we will describe how overlapping
can be constructed in more general terms without resorting
to the use of strong distributional assumptions (see Inman
and Bradley, 1989), thus allowing us to adopt overlapping
in many real-world applications. Specifically, our aim is two-
fold. First, we introduce a distribution-free overlapping index
which can be used in many data analysis applications, especially
those where researchers need to quantify the magnitude of
some phenomena like differences, distances, and evidence.
Second, we present an R-based software implementation of the
distribution-free overlapping which is index, simple and flexible
enough to be used in statistical analysis of psychological data.
Moreover, we will show how the distribution-free overlapping
index can also be used in a Bayesian perspective, particularly
in posterior data analysis (e.g., when researchers need to
quantify evidence in favor of a particular hypothesis, to assess
the leveraging of prior on posterior conditioned to a given
data sample).

The remainder of this article is structured as follows. First, we
briefly review some statistical definitions and properties of the
overlapping index and shed light on relevant relations with other
effect sizemeasures. Next, we illustrate our implementation of the
overlapping measure, developed for the open source statistical
software R (R Core Team, 2018). Afterwards, we motivate the
need for a distribution-free overlapping index by discussing
three general examples which are applicable to psychological
research studies. Finally, we conclude the article by summarizing
potentials and limitations of our proposal.

2. THE OVERLAPPING INDEX

In this section, we shortly provide statistical definitions and
properties of the overlapping index. To begin with, let us
assume two real probability density functions fA(x) and fB(x).
The overlapping index η :R

n × R
n → [0, 1] is defined

as follows:

η(A,B) =

∫

Rn
min[fA(x), fB(x)] dx (1)

where the integral can be replaced by summation in the discrete
case. As for any measure of association, η(A,B) is normalized
to one, with η(A,B) = 0 indicating that fA(x) and fB(x) are
distinct (i.e., the support of the distributions of A and B does
not present interior points in common). In this sense, η(A,B)
provides a way to quantify the agreement between A and B in
terms of their density functions (Inman and Bradley, 1989). The
index η(A,B) is proven to be invariant under strictly increasing

and differentiable transformation on the supports of A and B
(Schmid and Schmidt, 2006). Moreover, the following alternative
definition sheds light on how overlapping can work as a
dissimilarity measure:

η(A,B) = 1− δ(A,B)

= 1−

(

1

2

∫

Rn
|fA(x)− fB(x)| dx

)

(2)

with | . | indicating the absolute value operator. Interestingly,
Equation 2 links the overlapping index to the well-known
Kullback-Leibler divergence (Kullback and Leibler, 1951) and
Bhattacharyya’s distance (Bhattacharyya, 1943). However, while
the latter metrics require some distributional assumptions to be
correctly applied (e.g., symmetry and uni-modality of the density
functions), the overlapping index, η(A,B), does not strictly
require distributional assumptions about fA(x) and fB(x) (Inman
and Bradley, 1989; Clemons and Bradley, 2000). This makes
η(A,B) flexible enough to be applied in many practical situations.
Additionally, since overlapping is defined on probability density
function, in some circumstances η(A,B) can be interpreted as a
misclassification index (Schmid and Schmidt, 2006), as shown by
the following results:

η(A,B) =

∫

Rn
min[fA(x), fB(x)] dx

=

∫

Rn
fA(x) · IfA(x)<fB(x) dx+

+

∫

Rn
fB(x) · IfB(x)≤fA(x) dx

(3)

with I(.) being an indicator function. In this case, the term
fA(x) < fB(x) represents the case of choosing fB when fA is
the true density, fB(x) ≤ fA(x) indicates the complementary
case, whereas the integrals over the indicator functions I(.)
provide an estimate of error probabilities of the classification.
Note that this definition makes η close to the Vargha and
Delaney’s effect size (Vargha and Delaney, 2000; Peng and Chen,
2014). The overlapping index η(A,B) can be computed either
analytically, when the densities fA(x) and fB(x) are known, or
approximately, when researchers have no particular knowledge
about the parametric form of fA(x) and fB(x). In the particular
case where fA and fB are Normal under the constraint σ 2

A = σ 2
B =

σ 2, the index η(A,B) becomes proportional to Cohen’s d (Inman
and Bradley, 1989), as follows:

η(A,B) =

∫

Rn
min[N (x|µA, σ

2),N (x|µB, σ
2)] dx

= 28

(

−
|µA − µB|

2σ

) (4)

where N means the Normal probability law, µA and µB

indicate the location parameters, σ 2 is the pooled variance
whereas 8(.) is the standard Normal distribution function. It
is worthwhile to note that the argument |µA − µB|/2σ is the
standardized mean difference effect size. Although compelling,
these results cannot be derived when sample data do not
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suggest any reasonable parametric form for fA and fB. In
all these cases, approximations need to be introduced in
order to estimate the unknown densities and compute the
integrals in the η(A,B) formula. In the next paragraph, we will
describe a simple distribution-free approximation to compute
η(A,B), which can be adopted in many practical cases of
data analysis.

2.1. Distribution-Free Approximation of η

Let x = (x1, . . . , xi, . . . , xn) and y = (y1, . . . , yi, . . . , yn) be
realizations of X and Y . Then the unknown densities fX and fY
can be estimated via Kernel density estimators:

f̂X(x) = n−1
n

∑

i=1

K

(

x− xi

β

)

(5)

f̂Y (y) = n−1
n

∑

i=1

K

(

y− yi

β

)

(6)

where K is the Kernel function (e.g., gaussian, epanechnikov,
biweight) and β is the usual bandwidth parameter. Substituting
Equations 5-6 into Equation 1 yields the following approximation
for the overlapping index:

η̂(X,Y) =

∫

Rn
min[f̂X(z), f̂Y (z)] dz (7)

where the integral
∫

R
f (z)dz can be computed numerically (e.g.,

trapezoidal rule, numerical quadrature) or using the average
operator on a discretization of the integration support. The
approximation in Equation 7 depends upon the choice of K and
β . For instance, Clemons and Bradley (2000) have shown that the
Normal Kernel with the normal reference rule for the bandwidth
computation (Silverman, 1986) tends to work adequately with
limited bias. In a similar way, Schmid and Schmidt (2006)
investigated the behavior of η̂ in a more extended simulation
study, assessing bias and standard deviations as a result of
choosing K and β . In a more complicated scenario, like for the
multivariate case, the choice of K and β can be performed via
sensitivity analysis.

To better appreciate the potentials of the index in Equation 7,
consider the following example regarding students’ scores on a
given exam (N = 81, 22 males and 59 females). Figure 1 shows
the frequency distributions of scores for females (left panel)
and males (right panel). A common way to evaluate differences
across samples is to use a test for mean differences (i.e., t-test)
which, in this case, yields the following results: xm = 17.05
(s.d. 6.28), xf = 18.54 (s.d. 6.27), t(79) = 0.96, p = 0.34. An
estimate of effect size is performed by Cohen’s d, obtaining a
small effect: d = −0.24, 95% CI [−0.73, 0.25] (Cohen, 1988).
Figure 2 shows the empirical densities estimated via the Gaussian
Kernel method (shaded colored areas) against the expected
densities based on the normality distribution assumption (solid
colored curves). Interestingly, the overlapping index computed
via Equation 4 is about η = 0.91 even though the empirical
densities show irregular overlaps (i.e., the density for the male
group is more right-skewed then the density for the female

group). Indeed, by using the approximation index in Equation
7 we get η̂ = 0.66, which is lower when compared to the
expected one. This is of particular relevance, for instance, when
working with small and non-Gaussian samples—like those in
the current example—where the true overlapping index tends
to be biased upward. The sample properties of the overlap
estimator have been extensively investigated by Schmid and
Schmidt (2006), who proved its properties under mild regularity
conditions. The reader can refer to these authors for further and
formal details.

COMPUTING THE DISTRIBUTION-FREE η̂

INDEX

The overlapping index in Equation 7 can be easily computed
using the freely-available R-package overlapping (Pastore,
2018), which is downloadable from CRAN (https://cran.r-
project.org/package=overlapping) and includes other utilities
for statistical computing and graphical representations as well
(note that graphics are performed by means of the R-package
ggplot2; Wickham, 2009). We will now shortly describe
how the overlapping package can be used to estimate the
overlapping index.

The main function of the package is overlap(), and it
requires as input a list of at least two elements containing
the observed data and, optionally, the number of equally
spaced points (or bins) for the integral computations (default
is 1,024). Let us consider the following example code for
illustrative purposes:

> set.seed( 1 )

> x <- rnorm( 50 )

> y <- rnorm( 50, 3 )

> data <- list( x = x, y = y )

First, we simulate empirical data by randomly sampling 50 values
from a standardized normal distribution (i.e., vector x) and 50
values from a normal distribution with mean 3 and variance 1
(i.e., vector y). Next, we create a list including these two data
vectors.

Finally, we compute the overlapping index as follows:

> library( overlapping )

> out <- overlap( data )

The command library() loads the package, and the
function overlap() estimates the overlapping area between
the two distributions in the data-list. The function returns
a new object-list, out, which contains three different objects:
DD (a data frame with information used for computing
overlapping), OV (the estimated overlapping index), xpoints
(abscissas of intersection points among the density curves). The
objects can be visualized via the command str(out). For
further details, see the manual at https://cran.r-project.org/web/
packages/overlapping/overlapping.pdf.
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FIGURE 1 | Example: Frequency distributions of exam scores for males and females.

FIGURE 2 | Empirical densities for both male and female groups. Continuous

curves represent the true expected densities under Cohen’s d metrics,

whereas the dotted line indicates the intersection point between these

expected densities.

At this stage, the object OV contains the estimated overlapping
index η̂:

> print( out$OV )

x-y

0.066

Finally, the graphical representation of the overlapping area
between d1 and d2 can be easily produced via the syntax
overlap( ..., plot = TRUE ).

The overlap() function works also when more than two
vectors of data are available (i.e., more than two sample groups),
as shown by the following example, where the overlapping
indices are computed pairwise:

> set.seed( 1 )

> d1 <- rnorm( n = 50, mean = 0, sd = 1 )

> d2 <- rnorm( n = 50, mean = 3, sd = 1 )

> d3 <- rnorm( n = 50, mean = 2.2, sd = 2 )

> d4 <- rnorm( n = 50, mean = 1.1, sd = 0.6 )

> data <- list( d1 = d1, d2 = d2,

+ d3 = d3, d4 = d4)

> out <- overlap( x = data )

> print( out$OV )

d1-d2 d1-d3 d1-d4 d2-d3 d2-d4 d3-d4

0.064 0.309 0.405 0.381 0.177 0.465

More technically, the η̂ index in Equation 7 is computed as

follows. Given a set of K random vectors, the densities f̂1, . . . , f̂K
are first computed via Gaussian-Kernel estimation on a finite
and real support z with N equally spaced points [specified via
the parameter nbins in the function overlap()]. Next, the
indefinite integral in the formula is approximated with a sum
of definite integrals on all the subintervals/classes defined on z.
The definite integrals are finally computed using the well-known
trapezoidal rule. Note that the approximation of the indefinite
integral, which would otherwise be missed in the case of using
more expensive numerical quadrature techniques, is due for the
sake of computational simplicity, and it is valid for large values of
N (as such, we set nbins=1,024 in the overlap() function
by default). More details are available by typing ?density in
the R console.

3. EXAMPLES

In this section we describe three illustrative applications of the
overlapping index. In particular, in the first one we consider a
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typical experimental case of two independent groups with non-
normally distributed scores and different variances. In the second
example, we consider a mediation model in which an indirect
effect is hypothesized to differ in two independent groups.
Finally, in the third example we present a Bayesian application
comparing a (theoretical) prior distribution with a (empirical)
posterior distribution.

3.1. Example 1: Comparing Experimental
Groups With Non-normal Scores
Consider the case of comparing two experimental groups, x and
y, with samples sizes Nx = 35 and Ny = 30. In the x group, the
mean score is about x = 1.57 with s.d. 1.78, whereas in the y
group, y = 3.44 with s.d. 4.32. When comparing the two groups
with a t-test, the result is biased as the groups differ in variance
(i.e., in the y group the variance is about six times higher than
in x).

Figure 3A, shows the pirateplots (Phillips, 2017) of the two
groups. We can note that the two distributions differ also in their
shape (Figure 3B): in this case, the skewness of x is about 1.41,
whereas the skewness of y is about 1.93.

By performing a Welch two sample t-test, we obtain t(37.35) =
−2.21, p = 0.03, leading to a significant result. Cohen’s d
equal to 0.59 indicates a medium effect. However, by computing
the overlapping index on this data we obtain η̂ = 0.64 (see
Figure 3B), which supports the fact that the two groups are
less different than they appeared to be. Hence, in this example,
the estimation of the overlapping index has reduced the risk of
obtaining biased results due to the presence of outliers.

3.2. Example 2: Evaluating Indirect Effects
via Bootstrap
In Figure 4A, a simple mediation model is depicted in which
the effect of predictor X on outcome Y is mediated by
a third variable M (see, for example, Preacher and Kelley,
2011). In this representation, single-headed arrows represent
regression weights, and double-headed arrows represent variance
parameters. Parameter c represents the direct effect of X on Y

FIGURE 3 | Example 1: (A) Score distributions in two simulated experimental

groups (x and y). (B) Estimated densities of the two groups and overlapping

area.

controlling for M, and the product a × b represents the indirect
effect of X on Y .

We can fit the model on a sample of 100 subjects, 41 males
and 59 females. In this case, we are interested in evaluating
whether a gender difference exists in the indirect effect of X
on Y . By using a multivariate model, we obtain the following
maximum likelihood estimate for the parameters: 0.23 (s.e. 0.15)
for males and 0.62 (s.e. 0.26) for females. Now, to estimate
the difference between males and females without any kind
of distributional assumptions, we can produce the standard
bootstrap distributions of the two parameters (for more details,
see Rosseel, 2012) and then compute the η̂ index.

Figure 4B shows the densities of boostrap distributions
based on 1,000 replicates for both males and females. The
shaded (overlapped) area is about 21%, which indicates that the
estimated indirect effect is moderately different in the two groups.
Interestingly, in this case overlapping provides a more direct way
to assess effects in mediation models, a task which is not always
easy to accomplish (e.g., see Wen and Fan, 2015). Moreover, as
the index is normalized and is directly computed using the entire
distributions of the mediation parameters, its interpretation is
simple and straightforward.

3.3. Example 3: A Bayesian Analysis
A Bayesian analysis is usually characterized by three steps. First,
our degree of belief or uncertainty on parameters is modeled by
means of a prior probability distribution. Then, the likelihood
of the observed distribution is computed as a function of the
parameter values. Finally, the prior information is updated to
get the posterior distribution of parameters (e.g., Gelman et al.,
2004; Kruschke, 2010; Lee and Wagenmakers, 2013). In the case
of well-identified parameters and large sample sizes, reasonable
choices of prior distributions will have minor effects on posterior
inferences. By contrast, when sample size is small—or in the case
where the available data provide only indirect information about
the parameters of interest—the prior distribution becomes more
important (Gelman, 2002).

In this example, we will consider the Bayesian problem
of estimating the mean parameter of a typically symmetric
distribution, and we will evaluate how the posterior distribution
changes as a function of the prior. In particular, we can consider
the typical case of a small sample with 10 observations, with
the observed mean being about 0.75. We hypothesize that the
true population mean is about 0.5 with two different degrees of
uncertainty: (i) a strong prior, Normal(0.5, 0.32), which indicates
that we are particularly confident in our hypothesis, and (ii) a
weak prior, Normal(0.5, 0.71), which indicates that we are not
confident about the hypothesis.

Using Stan (Stan Development Team, 2017), two posterior
distributions with 4,000 samples were obtained. The posterior
mean estimates were as follows: 0.62, with 90% credibility interval
[0.41− 0.82], from the strong prior and 0.71, [0.43− 0.98], from
the weak prior.

By using overlapping index we can now compare priors and
posteriors in two different ways. First, considering posterior
obtained as an update of the prior, we can evaluate the plausibility
of our parameters before and after observing data. Second, by
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comparing two different priors (strong and weak) and the two
associated posteriors separately, we can assess how much the
difference computed in terms of priors is the same after having
observed the data.

Figure 5A shows the posterior distributions along with the
two priors. The left panel depicts the strong prior, i.e., smaller
variance, with the related posterior where η̂ = 0.41. In this
case, the difference between prior and posterior is about (1 −

0.41) × 100 = 59%. The right panel shows the weak prior
with its own posterior. In this case, the index η̂ is about
0.29 with the consequence that the prior-posterior difference is
about (1 − 0.29) × 100 = 71%. Figure 5B shows the same
distributions which are now compared in a different way. In
the left panel we can observe the two priors, the overlapping
index is about η̂ = 0.48, and the difference is 52%. The right
panel depicts the two posterior distributions with η̂ = 0.59, and
the difference is equal to 41%. This result suggests that, even
in the presence of a large difference between the two a priori

distributions, results do not differ strongly in terms of posterior
distributions.

In sum, in the presence of small samples, the overlapping
approach can help researchers to assess the impact of their
hypotheses in terms of prior distributions on the posterior
results. Similarly, overlapping can be used when researchers want
to assess posterior distributions of a Bayesian model.

4. CONCLUSION

In this paper, we presented the overlapping index η as a
useful measure for quantifying similarities or differences between
empirical distributions. This index can be considered as an
alternative measure of classical effect size indices, such as Cohen’s
d, Cohen’s U, or McGraw and Wong’s CL. In contrast, with
these indices η does not assume the normality of distributions
nor any other distributional form; in practice, it is usable
with any kind of distribution and works properly even in the

FIGURE 4 | Example 2. (A) Mediation model: the effect of X on Y is mediated by M. Single-headed arrows represent regression weights, and double-headed arrows

represent variance parameters. The product a× b is the estimated indirect effect. (B) Estimated densities of indirect effects in two different groups based on 1,000

bootstrap replicates.

FIGURE 5 | Example 3: Comparisons between distributions of priors and posteriors. (A) Priors vs. posteriors. In the left panel the overlap between a strong prior, i.e.,

smaller variance, and the posterior is about η̂1 = 0.41, consequently the difference is about 59%. In the right panel the overlap between a weak prior, i.e., larger

variance, and the posterior distribution is about η̂2 = 0.29, consequently the difference is more evident (about 71%). (B) Strongs vs. weaks. In the left panel, the

overlap between two different priors (strong and weak) is about η̂3 = 0.48, so the difference is about 52%. In the right panel, the overlap between the associated

posteriors is about η̂4 = 0.59, and the difference is about 41%.
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presence of multimodality. Overlapping can be considered as
a similarity measure, defined from the overlapping area (as
shown in examples one and two), or alternatively as a difference
measure, by considering its complement, 1 − η (as shown in the
third example).

It should be noted that, since the η index is normalized
between zero and one, it can be interpreted similarly to
other normalized indices (e.g., correlations coefficients, R2).
In general, η = 0 means that empirical distributions are
completely separated; by contrast, η = 1 indicates that empirical
distributions are exactly the same. However, for all the other
cases, the interpretation depends on the context as suggested
by Cohen (1988, p. 25)1. Broadly speaking, this index is not
intended to be used for inference in a strict sense (i.e., estimating
overlapping in the populations); however, it is also possible to
obtain uncertainty measures, for instance, using a bootstrap
approach.

The η index can be easily computed with the R-package
overlapping (Pastore, 2018), which is freely available from

1“The terms small, medium, and large are relative, not only to each other, but to

the area of behavioral science or even more particularly to the specific content and

research method being employed in any given investigation.”

the CRAN repository (https://cran.r-project.org/). The package
has been recently used in several publications: (1) to evaluate
group invariance in the factorial structure of questionnaires in
developmental psychology studies using parameter bootstrap
distributions (Lionetti et al., 2018b; Marci et al., 2018); (2)
to compute a distance index in anthropological measures
(Altoè et al., 2018); and (3) to identify group cut-off
scores in personality questionnaires, estimating the intersection
points of density distributions (Lionetti et al., 2018a; Pluess
et al., 2018). Further studies will be needed to analyze the
behavior of the overlap measure in situations where regularity
conditions are not met. We will postpone this to a future
research paper.
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