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The current study proposes an alternative feasible Bayesian algorithm for the

three-parameter logistic model (3PLM) from a mixture-modeling perspective, namely, the

Bayesian Expectation-Maximization-Maximization (Bayesian EMM, or BEMM). As a new

maximum likelihood estimation (MLE) alternative to the marginal MLE EM (MMLE/EM)

for the 3PLM, the EMM can explore the likelihood function much better, but it might

still suffer from the unidentifiability problem indicated by occasional extremely large item

parameter estimates. Traditionally, this problem was remedied by the Bayesian approach

which led to the Bayes modal estimation (BME) in IRT estimation. The current study

attempts to mimic the Bayes modal estimation method and develop the BEMM which,

as a combination of the EMM and the Bayesian approach, can bring in the benefits

of the two methods. The study also devised a supplemented EM method to estimate

the standard errors (SEs). A simulation study and two real data examples indicate that

the BEMM can be more robust against the change in the priors than the Bayes modal

estimation. The mixture modeling idea and this algorithm can be naturally extended to

other IRT with guessing parameters and the four-parameter logistic models (4PLM).

Keywords: 3PL, Bayesian EMM, Bayesian EM, mixture modeling, estimation

INTRODUCTION

The field of educational testing has witnessed successful development and implementation
of a great variety of test item formats, including multiple-choice questions, constructed
response questions, and complex performance-based questions. For the past decades, however,
multiple-choice questions have been the dominant item format, especially in standardized testing.
One major downside of this item format is that examinees may exploit various specific test-taking
strategies to improve their performance such as guessing, especially in a low-stakes test (Lord, 1980;
Baker and Kim, 2004; Cao and Stokes, 2008; Woods, 2008; Cui et al., 2018).

Consequently, researchers and practitioners have devised powerful statistical tools to model
dichotomously scored examinee responses to multiple-choice items. As early as in the nascent stage
of IRT, Birnbaum (1968) proposed the three-parameter logistic model (3PLM) and its equivalent
model in the normal ogive form to accommodate this need. Since then, the 3PLM has become
one of the major statistical tools to analyze multiple-choice data. Various more complicated
three-parameter models have been developed and important examples include three-parameter
multilevel models (Fox, 2010), three-parameter multidimensional normal ogive model (Samejima,
1974; McDonald, 1999; Bock and Schilling, 2003), three-parameter multidimensional logistic
model (Reckase, 2009) and three-parameter partially compensatory multidimensional models
(Sympson, 1978).

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.01175
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.01175&domain=pdf&date_stamp=2019-05-31
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:russelzheng@gmail.com
https://doi.org/10.3389/fpsyg.2019.01175
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01175/full
http://loop.frontiersin.org/people/476647/overview
http://loop.frontiersin.org/people/419665/overview


Guo and Zheng BEMM for 3PLM

One major problem that hinders the widespread application
of the three-parameter models is the huge challenge of item
parameter estimation brought by the guessing parameter.
Even for the simplest three-parameter model, the 3PLM,
this caused issues for researchers. The marginal maximum
likelihood estimation (MMLE) with expectation maximization
(EM) algorithm (MMLE/EM) represents the major breakthrough
in the estimation techniques for the full-information item factor
analysis, but it often runs into convergence problem for data
sparseness for the guessing parameter. Mislevy (1986) offered a
practical Bayesian solution, namely, the Bayes modal estimation
(BME) or the Bayesian EM (BEM), for a moderate sample size,
although an MLE solution was not available. Its implementation
in BILOG-MG (Zimowski et al., 2003) paved the way for the
wide application of the 3PLM in practice. The priors in the
Bayesian method can provide extra information and shrink the
estimates back to the conditional mean of item parameter, and
this shrinkage depends on how informative the priors are. In
this case, an informative prior with a smaller variance may have
greater influence on the estimation, while a non-informative
prior with a larger variance would be relatively weak (Baker
and Kim, 2004). However, it is important to emphasize that
an informative prior is not the same as an appropriate prior.
Mislevy (1986) has warned that, a prior with an incorrect mean
and a very small variance is likely to result in a systematic bias.
Moreover, when the likelihood function of the MMLE/EM is
flat, the Bayesian estimates might be highly dependent on the
priors, and lead to a potentially undesirable result. So, it is vital
to specify appropriate priors in the Bayesian EM algorithm and
one crucial element of BILOG-MG is that the default priors
for item parameters are generally uninformative but functional
(Mislevy, 1986).

Recently, Zheng et al. (2017) pursued a different direction and
developed a more powerful MLE algorithm based on a mixture
modeling reformation of 3PLM, namely the Expectation-
Maximization-Maximization (EMM). The EMM essentially is
modified variant of MMLE/EM and its major difference from the
traditional method is to expand the complete data from (U, θ) to

(U,Z, θ) where U and θ are the response and examinee matrices,
and Z is the latent indicator for whether some examinees use
the guessing strategy for one item. EMM can be summarized
conceptually as

a) introducing a new latent variable Z to construct a space one
more dimension than the old one, which appears to be unwise
because the original 3PLM estimation problem has been made
more difficult with one added dimension.

b) invoking the independent assumption of (Z, θ) to
approximate the joint distribution which is one the most
commonly used method in statistics to address high-dimension
space problems.

c) using the approximation as a surrogate of the original 3PLM
likelihood function to obtain item parameter estimate.

Simulation studies indicated that in the expanded space,
one can better explore the likelihood function and thus is
able to obtain the MLE solution with a moderate sample
size. But the EMM is only a partial solution to the possible
unidentifiability issue of the 3PLM, evidenced by occasional

improbable parameter estimates in the simulation study, and thus
further improvement is necessary.

This paper attempts to propose a Bayesian version of the EMM
(BEMM) which will bring in the advantages of both the EMM
and the Bayesian method. On one hand, the BEMM can solve the
unidentifiability issue with the 3PLM by adding additional prior
information as in the BEM; on the other hand, it is expected to
be more robust against the change in the item parameter priors
than the Bayesian EM due to its power in exploitation of the
likelihood function.

The rest of the paper is organized as follows: First, the mixture
modeling approach to the 3PLM in IRT literature are carefully
summarized and an alternative mixture modeling reformulation
of the 3PLM with less stringent assumptions is presented.
Then, two BEMM algorithms (BEMM-P and BEMM-C) and the
estimating method for standard errors (SEs) are derived. One
simulation study is carried out to demonstrate the feasibility of
the BEMMs, compared to the Bayesian EM and the EMM; and
two real data calibrations are presented to show the advantage of
the BEMM algorithms. Lastly, future directions are discussed.

MIXTURE-MODELING APPROACH TO THE
3PLM

Mixture modeling is a powerful statistical tool for
accommodating heterogeneity among an overall population.
The similar idea for the 3PLM is not even entirely new. A two-
process theory on the 3PLM, a p-process which represents the
answering behavior based on examinee’s ability and a g-process
for the guessing strategy, was mentioned by Hutchinson (1991).
Later this idea was extensively discussed by San Martín et al.
(2006) to justify the development of IRT models of ability-based
guessing, and by Maris and Bechger (2009) to demonstrate the
identifiability and interpretability issue of the 3PLM. Although
von Davier (2009) provided a clear summary of the status quo,
differences on the nature of the two processes are far from
being settled.

The current paper focus on taking advantage of the two-
process reformulation to address the item parameter estimation
difficulty of the 3PLM, but the discussion on the conceptual
differences is beyond its scope. Two arrangements of these
processes can be identified: the g-process comes first or the way
around, and thus two different versions of reformulation of the
3PLM can be developed. Interesting enough, the one proposed
by Zheng et al. (2017) corresponds to the one with the g-process
coming first and Béguin and Glas (2001) proposed an ability-
based reformulation for the three-parameter normal ogive model
(3PNO) which coincides with the one with the p-process coming
first. The two reformulations are briefly reviewed here as the
starting point of the two BEMM algorithms

The basic formulation of the 3PLM is defined as:

P
(

uij = 1|θj, ai, bi, ci
)

≡ Pi(θj) = ci +
1− ci

1+ exp(−Dai(θj − bi))

(1)
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where uij represents the response of examinee j
(

j = 1, 2, ...,N
)

on item i (i = 1, 2, ..., n); ai, bi, and ci are the discrimination,
difficulty, and guessing parameters for the ith item, respectively;
θj is the ability parameter of the examineej; and D is the
scaling constant, 1.702. Let ξi =

(

ai, bi, ci
)

represents the item

parameter vector for ith item, the function P(uij = 1|θj, ξi)
can be abbreviated as Pi(θj), which is the probability of the
correct response uij = 1 to item i given θj. The 3PLM can be
conceived as an extension of the 2PLM with an item-specific
guessing parameter:

Pi(θj) = ci + (1− ci)× P∗i (θj) (2)

with

P∗i (θj) =
1

1+ exp
(

−Dai(θj − bi)
) (3)

as the 2PLM. Following Béguin and Glas (2001)’s ability-based
representation for the three-parameter normal ogive model
(3PNO), the 3PLM can also be written as

Pi(θj) = P∗i (θj)+
[

1− P∗i (θj)
]

× ci. (4)

A reformulation of the ability-based 3PLM, similar to Zheng
et al. (2017), can be derived readily. Following Culpepper (2015),
we may introduce a latent variable vij ∈ V, and vij ∼

Bernoulli
(

P∗i (θj)
)

:

vij =

{

1, if examinee j has ability to answer item i correctly;

0, if examinee j does not have ability to answer item i correctly.

Reasonably, vij follows a Bernoulli distribution with parameter
P∗i (θj), or P

(

vij = 1, uij = 1|ξi, θj
)

= P
(

uij = 1|ξi, θj
)

= P∗i (θj).
From the mixture-modeling perspective, depending on the value
of vij, the possibilities of 3PLM can be decomposed into two
irrelevant parts: 1 and ci.

Furthermore, the conditional possibilities P(uij|vij, θj, ξ i) can
be easily obtained as:

P(uij = 1|vij = 1, θj, ξ i) = 1, P(uij = 1|vij = 0, θj, ξ i) = ci,
P(uij = 0|vij = 1, θj, ξ i) = 0, P(uij = 0|vij = 0, θj, ξ i) = 1− ci.

(5)

By the multiplication rule, P(uij, vij|θj, ξi) = P(uij|vij, θj, ξi)P(vij),
the joint distribution of uij and vij can be calculated as:

P(uij = 1, vij = 1|θj, ξ i) = P∗i (θj),
P(uij = 1, vij = 0|θj, ξ i) = ci

(

1− P∗i (θj)
)

,
P(uij = 0, vij = 1|θj, ξ i) = 0,

P(uij = 0, vij = 0|θj, ξ i) = (1− ci)
(

1− P∗i (θj)
)

.

(6)

Note that P∗i (θj) + ci
(

1− P∗i (θj)
)

+ (1− ci)
(

1− P∗i (θj)
)

= 1,
so P(uij = 0, vij = 1|θj, ξi) = 0 is actually redundant and
can be omitted from the probability density function. From this
distribution law of

(

uij, vij
)

conditional on
(

θj, ξ i
)

, the marginal
likelihood function of the EMM is

L(U,V|ξ ) =

N
∏

j=1

∫

θj

{

n
∏

i=1

P∗i (θj)
uijvij ×

[

ci
(

1− P∗i (θj)
)]uij(1−vij)

×[(1− ci)
(

1− P∗i (θj)
)

]
(1−uij)(1−vij)

}

g(θj|τ )dθj.

(7)

where U is the n × N response matrix with uij as its elements;
V is defined, with respect to vij, in analogy to U and uij;
ξ = (ξ1, ξ2, ..., ξi, ..., ξn) is the matrix for item parameters;
g
(

θj|τ
)

is a density function for examinees’ ability, and τ is the
vector containing the parameters of the examinee population
ability distribution.

Zheng et al. (2017) proposed the EMM algorithm based on
the new likelihood function derived from the reformulation
with the g-process coming first (see Appendix A). The EMM
can solve the convergence problem of MMLE/EM in a modest
sample size of about 1,000 examinees, but it cannot eliminate
occasional improbably large estimates. In fact, this is still a
symptom of the 3PLM being possibly unidentifiable, though
much more alleviated than in the original MMLE/EM, and this
can be resolved by additional prior information which leads to
the Bayesian EMM algorithms.

Please note that Béguin and Glas (2001) did not develop an
EM algorithm similar to the EMM for the 3PNO because the
integral in the ogive model introduces additional difficulty for
the E-step which can be conveniently addressed by a MCMC
algorithm. An EM algorithm and its variants are a much more
natural alternative for the 3PLM which is the main topic of the
current paper.

THE BAYESIAN EMM ALGORITHMS

Take the first reformulation as an example to illustrate how
to derive the BEMM algorithm. Following Mislevy (1986)’s
parameterization to take logarithmic form of ai, the 3PLM can
be rewritten as:

pi(θj) = ci + (1− ci)× p∗i (θj), (8)

with

p∗i (θj) =
1

1+ exp
(

−Deln ai (θj − bi)
) . (9)

Mislevy (1986) also has given a general Bayesian formulation
for the 3PLM which we may apply to the BEMM as well. Let
ψi represents any item parameter for item i in ξ i, and then the
first derivative of the general Bayesian formulation for each item
parameter can be obtained as:

∂ ln L

∂ψi
+
∂ ln g(ψi|η)

∂ψi
, (10)

with

L(U,V|ξ ) =

N
∏

j=1

∫

θj

{

n
∏

i=1

P∗i (θj)
uijvij ×

[

ci
(

1− P∗i (θj)
)]uij(1−vij)

×[(1− ci)
(

1− P∗i (θj)
)

]
(1−uij)(1−vij)

}

g(θj|τ )dθj

(11)
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where L is the likelihood of the EMM (Equation 7) with the
logarithmic form of ai, and g(ψi|η) is the item parameter
prior distribution for item i. Mislevy (1986) suggested
that ln ai and bi follow a normal distribution and ci a beta
distribution, specifically,

ln ai ∼ N(µln ai , σ
2
ln ai

), bi ∼ N(µbi , σ
2
bi
), ci ∼ Beta(αi,βi)(12)

in which µln ai ,µbi , σ
2
ln ai

, and σ 2
bi

are the means and variances

for the corresponding normal distribution and αi,βi are the
parameters for the beta distribution for the guessing parameter.
They may be specified as in the BILOG-MG default setting (Du
Toit, 2003):

ln a ∼ N(0, 0.52), b ∼ N(0, 22), c ∼ Beta(4, 16). (13)

The first and second derivatives for the three priors are given by
Mislevy (1986) as:

∂ ln g(ln ai|µln ai
,σ 2
ln ai

)

∂ ln ai
= −

ln ai−µln ai

σ 2
ln ai

,
∂2 ln g(ln ai|µln ai

,σ 2
ln ai

)

∂ ln ai∂ ln ai
= − 1

σ 2
ln ai

,

∂ ln g(bi|µbi
,σ 2
bi
)

∂bi
= −

bi−µbi

σ 2
bi

,
∂2 ln g(bi|µbi

,σ 2
bi
)

∂bi∂bi
= − 1

σ 2
bi

, (14)

∂ ln g(ci|αi ,βi)
∂ci

= αi−1
ci

−
βi−1
1−ci

,
∂2 ln g(ci|αi ,βi)

∂ci∂ci
= −αi−1

c2i
−

βi−1

(1−ci)
2 .

With the prior distribution component explained, the next will
describe the Bayesian EMM method in which the likelihood
component will be carefully delineated.

Expectation Step and Artificial Data
The expectation step boils down to the calculation of the
conditional expectations of V and θ. From the joint distribution
in Equation (5), one can calculate the expectation of vij
conditional on uij and the marginal distribution of vij. By the
Bayesian rule,

P(vij = 1|uij = 1, θj, ξ i) =
P∗i (θj)

Pi(θj)
,

P(vij = 1|uij = 0, θj, ξ i) = 0
(15)

can be yielded from Equations (5, 6). Then, the conditional
expectation of vij is

E(vij|uij, θj, ξ i) =
P∗i (θj)

Pi(θj)
× uij + 0×

(

1− uij
)

. (16)

As for θ, by using summation over a fixed grid of equally-spaced
quadrature points Xk

(

k = 1, 2, ..., q
)

with an associated weight
A (Xk) to approximate integration, one can have the quadrature
form of the first derivative of the expected log-likelihood function
for each item parameter (see Appendix B for detail):

∂ lnE [L]

∂ψi
≈

N
∑

j=1

q
∑

k=1















uijE(vij |uij ,Xk ,ξi)

P∗i (Xk)

∂P∗i (Xk)

∂ψi

−
1−E(vij |uij ,Xk ,ξi)

1−P∗i (Xk)

∂P∗i (Xk)

∂ψi

+
uij(1−E(vij |uij ,Xk ,ξi))

ci
∂ci
∂ψi

−
(1−uij)(1−E(vij |uij ,Xk ,ξi))

1−ci
∂ci
∂ψi















P
(

Xk|uj, vj, τ , ξ
)

(17)

with

P
(

Xk|uj, vj, τ , ξ
)

= P
(

Xk|uj, τ , ξ
)

=
P(uj|Xk ,ξ )×A(Xk)

∑q

k=1
P(uj|Xk ,ξ )×A(Xk)

,

P(uj|Xk, ξ ) =
∏n

i=1 Pi(Xk)
uij × (1− Pi(Xk))

1−uij ,
(18)

where P
(

Xk|uj, vj, τ , ξ
)

is the posterior probability
of θj evaluated at Xk given uj, vj, τ , and ξ . Then,
P

(

Xk|uj, vj, τ , ξ
)

equals P
(

Xk|uj, τ , ξ
)

because P
(

uij = 1|ξi, θj
)

=

P
(

vij = 1, uij = 1|ξi, θj
)

= P∗i (θj). Furthermore, P
(

Xk|uj, vj, τ , ξ
)

can be used to compute the “artificial data”. The “artificial data”
is essentially various expected frequencies of examinees under
the posterior probability of θj and can be expressed as different
linear combinations of the posterior probability of θj. Since it is
“created” from the posterior probability, the IRT literature terms
them as the “artificial data”. For instance, Bock and Aitkin (1981)
has provided two fundamental artificial data for traditional EM
algorithm as:

f̄k =
∑N

j=1 P
(

Xk|uj, τ , ξ
)

=
∑N

j=1 P
(

Xk|uj, zj, τ , ξ
)

,

r̄ik =
∑N

j=1 uij × P
(

Xk|uj, τ , ξ
)

=
∑N

j=1 uij × P
(

Xk|uj, zj, τ , ξ
)

,
(19)

in which f̄k is the expected number of examinees with ability
Xk. Thus, the sum of f̄k for every ability point Xk equals the
total number of examinees N, and r̄ik is the expected number of
examinees with ability Xk answering item i correctly.

Then, as can be seen from Table 1, the EMM algorithm
introduced a new latent variable V, so there are two new artificial
data as

f̄
(V)
ik

= r̄
(V)
ik

=
∑N

j=1 E(vij|uij,Xk, ξ )P
(

Xk|uj, vj, τ , ξ
)

,
(20)

in which f̄
(V)
ik

is the expected number of examinees with ability

Xk who have employed their ability to answer item i and r̄
(V)
ik

is
the expected number of examinees with ability Xk who are able
to answer it correctly. Please note that the expected number of
examinees with ability Xk who have answered the item i based on

their ability but incorrectly is zero, so f̄
(V)
ik

= r̄
(V)
ik

. Moreover, it
is easy to obtain the expected number of examinees with ability
Xk who have not employed their ability (in another words, used

the guessing strategy) to answer item i, f̄k − f̄
(V)
ik

, and that of
examinees among them who are able to answer it correctly,

r̄ik − r̄
(V)
ik

.
After the E-step and calculation of the artificial data, the next

steps are to compute the first and second derivatives of Equation
(17) with respect to each item parameter.

Maximization Step-1 for c Parameter
From Equation (17), the first derivative for the guessing
parameter is

λci =
∂ lnE[L]
∂ci

+
∂ ln g(ci|αi ,βi)

∂ci

≈ αi−1
ci

−
βi−1
1−ci

+
∑N

j=1

∑q

k=1
[

uij(1−E(vij|uij ,Xk ,ξ i))

ci
−
(1−uij)(1−E(vij|uij ,Xk ,ξ i))

1−ci

]

P
(

Xk|uj, zj, τ , ξ
)

= αi−1
ci

−
βi−1
1−ci

+

∑q

k=1

(

r̄
ik
−r̄

(V)
ik

)

ci
−

∑q

k=1

(

f̄
k
−r̄

ik

)

1−ci

(21)
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Set Equation (21) to 0 and solve for the estimate of ci which leads
to a closed solution. The derivation is as follows:

⇒
αi−1+

∑q

k=1

(

r̄
ik
−r̄

(V)
ik

)

ci
=

βi−1+
∑q

k=1

(

f̄
k
−r̄

ik

)

1−ci

⇒ ci =
αi−1+

∑q

k=1

(

r̄
ik
−r̄

(V)
ik

)

αi+βi−2+
∑q

k=1

(

r̄
ik
−r̄

(V)
ik

+f̄
k
−r̄

ik

)

=
αi−1+

∑q

k=1

(

r̄
ik
−r̄

(V)
ik

)

αi+βi−2+
∑q

k=1

(

f̄
k
−f̄

(V)
ik

)

(22)

The estimate for the guessing parameter is contributed by
two components: the prior and the data. The magnitude
of the prior parameters αi and βi determines the influence
of the prior through the two terms (αi − 1) and (βi − 1).
By ignoring the prior terms (αi − 1) and (βi − 1), the
data component of the estimate offers a very intuitive
interpretation of the guessing parameter: It is calculated
as the proportion of examinees who answer item i
correctly using the guessing strategy in the total sample.
This interpretation nicely fits into general philosophy of
mixture modeling, drastically different from the traditional
interpretation which is defined as the lower bound for
the probability with which an examinee answers an
item correctly.

Since an analytical solution can be easily
obtained, the calculation of the corresponding second
derivative and implementation of Newton-Raphson
or Fisher-scoring algorithm, as in the traditional EM
algorithm, are unnecessary. However, the second
derivative is still useful for estimating SEs and is
given below:

λcci = E[ ∂
2 lnE[L]

∂2c2i
|uij]+

∂2 ln g(ci|αi ,βi)

∂2c2i

≈ E[ ∂
∂ci

q
∑

k=1

[
(

r̄
ik
−r̄

(V)
ik

)

ci
−

(

f̄
k
−r̄

ik

)

1−ci

]

|uij]−
αi−1

c2i
−

βi−1

(1−ci)
2

= E[−

∑q

k=1

(

r̄
ik
−r̄

(V)
ik

)

c2i
−

∑q

k=1

(

f̄
k
−r̄

ik

)

(1−ci)
2 |uij]−

αi−1

c2i
−

βi−1

(1−ci)
2

= −

∑q

k=1 (1−p∗i (Xk))f̄k
ci(1−ci)

− αi−1

c2i
−

βi−1

(1−ci)
2

(23)

since

E[uij|Xk] = pi(Xk)
E[E(vij|uij,Xk, ξ ) |uij]=E(vij)=p

∗
i (Xk)

(24)

and

E[f̄
k
|uij] = E[

∑N
j=1 P

(

Xk|uj, vj, τ , ξ
)

|uij] =
∑N

j=1 P
(

Xk|uj, vj, τ , ξ
)

= f̄
k
,

E[r̄
ik
|uij] = E[

∑N
j=1 uijP

(

Xk|uj, vj, τ , ξ
)

|uij]

= pi(Xk)
∑N

j=1 P
(

Xk|uj, vj, τ , ξ
)

= pi(Xk)f̄k,

E[f̄
(V)
ik

|uij] = E[r̄
(V)
ik

|uij] = E[
∑N

j=1 E(vij|uij,Xk, ξ )P
(

Xk|uj, vj, τ , ξ
)

|uij]

= p∗i (Xk)
∑N

j=1 P
(

Xk|uj, vj, τ , ξ
)

= p∗i (Xk)f̄k.

(25)

TABLE 1 | The definition of four kinds of artificial data.

Item i vi = 1 vi = 0 Marginal of vi

ui=1 r̄
(V)
ik

r̄
ik
− r̄

(V)
ik

r̄ik

ui=0 0 f̄k − r̄
ik

Marginal of ui f̄
(V)
k

f̄k − f̄
(V)
ik

f̄k

Artificial data: The expected number of examinees.

Maximization Step-2 for a and b

Parameters
The second Maximization step is to execute the Fisher-scoring
procedure to obtain estimates forln ai and bi. The required first
derivatives for ln ai and bi are

λai = Deln ai
∑q

k=1
[(r̄

(V)
ik

− f̄
k
× p∗i (Xk))(Xk − bi)]−

ln ai−µln ai

σ 2
ln ai

,

λ
bi
= −Deln ai

∑q

k=1
[r̄
(V)
ik

− f̄
k
× p∗i (Xk)]−

bi−µi

σ 2
bi

.
(26)

The corresponding expectation of second derivatives are:

λaai = −D2e2 ln ai
∑q

k=1
(Xk − bi)

2w∗
ik
× f̄

k
− 1

σ 2
ln ai

,

λ
bbi

= −D2e2 ln ai
∑q

k=1
w∗
ik
× f̄

k
− 1

σ 2
bi

,

λ
abi

= D2e2 ln ai
∑q

k=1

[

(Xk − bi)w
∗
ik
× f̄

k

]

,

(27)

where

w∗
ik = p∗i (Xk)× (1− p∗i (Xk)), (28)

which lead to the Fisher-scoring algorithm for the BEMM:

[

ln a
(t+1)
i

b
(t+1)
i

]

=

[

ln a
(t)
i

b
(t)
i

]

−

[

λaai λabi
λ
abi

λ
bbi

]−1
[

λai
λ
bi

]

. (29)

In this case, the estimation of the c parameter is separated
from that of a and b, so the BEMM has a simplified 2-
by-2 Hessian matrix (negative information matrix) in the
iteration formulation.

To summarize, the flow chart of the BEMM has been given
in Figure 1.

The same line of reasoning can be used to develop a BEMM
for the second reformulation and the details are presented
in Appendix A.

Standard Errors (SEs) of Parameter
Estimation
Both the BEMM and the Bayesian EM are members of the EM
family and it is well recognized that one drawback of the EM
algorithms is that estimation SEs are not the natural products
of their implementation, so we still need a practical method to
obtain SEs (McLachlan and Krishnan, 2007). In detail, SEs can
be calculated via the Fisher information matrix (Thissen and

Frontiers in Psychology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 1175

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Guo and Zheng BEMM for 3PLM

FIGURE 1 | The flow chart of the BEMM.

Wainer, 1982), empirical cross-product approximation (Jones
andGeoffrey, 1992), the supplemented EM (SEM)method (Meng
and Rubin, 1991; Cai, 2008), the forward difference method and
the Richardson extrapolation method (Jamshidian and Jennrich,
2000), or sandwich covariance matrix (Kauermann and Carroll,
2001). Recently, the SEM method has been extended to various
IRT models (Cai, 2008; Cai and Lee, 2009; Tian et al., 2013) and
proved to flexible enough to handle complex models in IRT. The
current study, therefore, will focus on how to apply the SEM to
the BEMM.

Cai and Lee (2009) has given a general SEM formulation for
the large-sample covariance matrix as:

V(ξ̂ i|Y) = 8−1(ξ̂ i|Y) = 8−1
c (ξ̂ i|Y){Ed −1(ξ̂ i)}

−1
, (30)

where 8−1(ξ̂ i|Y) is the inverse of item information matrix, Ed
is the identity matrix with 3 dimensions, and 1(ξ̂ i) can be
calculated from the Fisher-scoring execution. Please note that
from Equation (10), in Bayesian approach (both Bayesian EM

and Bayesian EMM), 8−1(ξ̂ i|Y) involves not only the likelihood
component but also the prior component. Refer to Cai and Lee
(2009) for additional details. It is worth noting that the likelihood
function for the BEMM algorithms are different the one for the
3PLM due to mixture modeling reformulation, so the SEs for the
BEMM are different from those for the BME.

Firstly, the item information matrix of the BEMM can be
obtained from Equations (23, 27) as:

8c(ξ̂ i|Y) =





−λaai −λabi
0

−λ
abi

−λ
bbi

0

0 0 −λcci



 . (31)

Then, the 1 matrix was also simplified due to the covariance
between c and (a, b) equaling 0:

1(ξ̂ i)=





δaai δabi
0

δ
abi

δ
bbi

0

0 0 δcci



 . (32)

Finally, SEs of the Bayesian EMM can be obtained from:

(SEai , SEbi , SEci ) =

√

diag{8−1
c (ξ̂ i|Y)[E3 −1(ξ̂ i)]

−1
}. (33)

Obviously, the covariance elements between the guessing
parameter and other two parameters are not zero in the
traditional MLE/EM and BEM, but due to the setup of two
maximization steps in EMM, these elements can be legitimately
set to zero. The zero covariance removes undesirable fluctuation
in the item parameter estimation and thus makes the estimated
SEs smaller than the counterparts, especially the guessing
parameter, than in the Bayesian EM.

SIMULATION STUDY

The simulation study intends to demonstrate how different priors
impact the Bayesian EMM algorithms, and compares it with
the Bayesian EM in BILOG-MG under two different priors for
c parameters. One prior in this study comes from BILOG-MG
default setting, c ∼ Beta (4, 16) with µ = 0.2, σ 2 = 0.008, the
other is a more non-informative prior from the flexMIRT (Houts
and Cai, 2015) default setting, c ∼ Beta(1, 4) with µ = 0.2,
σ 2 = 0.027.
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To implement these algorithms, we developed a MATLAB
toolbox, IRTEMM, to obtain the BEMM estimates. IRTEMMalso
offers several different options for estimating SEs including SEM.

Data Generation
Following Mislevy (1986)’s setting for data generation, the
current study simulated the item parameters a, b, c for 10 and 20
items from an independent normal distribution follows ln a ∼

N (0, 0.5) where (0.3 ≤ a ≤ 2.5); b ∼ N (0, 1)where (−3 ≤

b ≤ 3); andlogit c ∼ N (−1.39, 0.16). Three sample sizes of
examinees (1,000, 1,500 and 2,000) were simulated from the
standard normal distribution. For each condition, we ran 50
replications for each condition in the fully crossed 4 (two BEMM
methods vs. two BILOG-MG methods) × 3(1,000 vs. 1,500 vs.
2,000)× 2(10 vs. 20) design.

Evaluation Criteria
The evaluation criteria for item parameter recovery are bias and
the root mean squared error (RMSE), which are calculated as:

bias =

∑S=50
s=1 (ψ̂is − ψi)

S
, RMSE =

√

∑S=50
s=1 (ψ̂is − ψi)

2

S
.

Due to space constraint, the complete results have been
summarized in Appendix C and only that for the condition of
1,000 examinees and 20 items here will be shown here since the
others conditions presented a very similar pattern.

Results
As can be seen fromTable 2: The biases across the four conditions
for a and b parameters seem very similar, but for c parameters,
these biases are highly influenced by priors. Both the absolute
values of biases from the Bayesian EMM for c parameters are
smaller than the Bayesian EM in BILOG-MG when changing
priors. A more intuitive conclusion can be drawn from Figure 2:
The RMSEs of c parameters from the right plot shows the
Bayesian EMM has lower RMSE than the Bayesian EM in
BILOG-MG. Furthermore, the difference of RMSEs produced
by the Bayesian EMM between two prior conditions are much
smaller than the Bayesian EM, which means the Bayesian EMM
tends to be less affected by priors and yields more stable estimates
than the Bayesian EM.

With the increasing of examinees from 1,000 to 2,000, the item
parameter recovery of the Bayesian EMM and the Bayesian EM
in BILOG-MG is obviously improved, and the difference between
two priors for both methods is also decreased. However, some
relatively large biases and RMSEs of the Bayesian EM still exist
due to changing priors even in the largest sample size of the
current study (e.g., 2,000 examinees and 20 items), while those
from the Bayesian EMM are more stable (see Appendix C for
details). In addition, the increase of the item number from 10 to
20 has no obvious influence for majority of item parameters.

Thus, it can be concluded that the Bayesian EMM inherits
the advantages of both the EMM and the Bayesian method, and
yields better estimates than the Bayesian EM. In other words,
the Bayesian EMM has the most stable solutions among the
two methods.

TWO EMPIRICAL EXAMPLES

Two empirical examples of different sample sizes and item
numbers are given here to demonstrate feasibility of the BEMM
in practice: The first dataset represents a case where the numbers
of items and examinees are relatively large while the other small.
The estimates of the BEMM and the EMM can be obtained
from the MATLAB toolbox, IRTEMM. As for the Bayesian EM,
in addition to BILOG-MG, we also use two of the most recent
IRT programs flexMIRT (Houts and Cai, 2015) and IRTPRO
(Cai et al., 2011) to carry out a cross-implementation validation.
The complete results of two examples are summarized in the
tables and figures in Appendix D. Only two figures (Figure 3
for flexMIRT data and Figure 4 for IRTPRO data) are presented
here to compare with the results of the BEMM and BILOG-
MG analyses.

The Dataset From flexMIRT
The first dataset is the flexMIRT example “g341-19.txt,” which
consists of the responses to 12 items from 2,844 examinees. This
example aimed at demonstrating whether the BEMM is more
robust against the differential effects of priors than the Bayesian
EM. The default settings for guessing priors in BILOG-MG and
flexMIRT [c∼ Beta (4,16) vs. c∼ Beta (1,4)] have been applied to
the BEMM and both software implementations.

The results are presented in Figure 3. The estimates for both a
and b parameters are in each other’s proximity for all different
implementations. The estimates for c parameters present non-
negligible divergence for different guessing priors for the BILOG-
MG and flexMIRT: the estimates of these implementations cluster
in two groups based on the guessing prior setting. The BEMM,
in contrast, produced almost identical estimates under different
prior setting. This cross-software validation shows that (1) the
divergence in point estimates is possibly inherent in the Bayesian
EM algorithm, but not due to different software executions; (2)
the BEMM algorithm can provide stable point estimates that are
robust against change in priors; and (3) correspondingly, there is
noticeable difference in SEs for different priors for BILOG-MG
and flexMIRT while there is no such difference for the BEMM.

The Dataset From IRTPRO
The dataset of the second example is from the IRTPRO example
“lsat6.csv,” which consists of responses to 5 items from 1,000
examinees. The dataset originally came from the Law School
Admissions Test Section 6 (LSAT6) and has been widely
used as an example in the item response theory (Bock and
Lieberman, 1970; McDonald, 1999; Du Toit, 2003; Chalmers,
2012). More importantly, this dataset presents a case with
realistically small number of examinees in educational testing
scenarios and Bayesian EMM’s performance with this dataset
testify its applicability in practice. Following the IRTPRO default
setting, the priors for the a and b parameters as: ln a ∼ N(0, 1)
and b ∼ N(0, 3).

Figure 4 shows that, all of the item point estimates for a and
b parameters among seven conditions which are very similar and
relatively low (0.40 ≤ a ≤ 0.77;−3.18 ≤ b ≤ 0.37). In this
adverse situation, the c parameters estimated by the Bayesian EM
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FIGURE 2 | The RMSEs for 1000 examinees with 20 items.

FIGURE 3 | Item parameter calibration for flexMIRT data.

are obviously unstable and they are highly affected by priors.
However, the Bayesian EMM estimates under two priors are
comparatively accordant and very close to the MLE solutions. As
regards SEs, the four lines of BILOG-MG and IRTPRO can be
divided into two groups according to their priors, while there is
no obvious difference in both results of the Bayesian EMM.

To summarize, these two examples illustrate that the Bayesian
EMMwas less affected by priors since they take the full advantage
of the EMM and the Bayesian method.

DISCUSSION AND FUTURE DIRECTIONS

Based on the results of the simulation study and real-world
examples, the conclusions can be summarized as follows: (1)

the BEMM can yield at least comparable or even better item
estimates than the Bayesian EM; (2) the BEMM is less sensitive
to change in item priors than the Bayesian EM, despite of
the implementations; both point estimates and SEs, especially
for the guessing parameters, are subjected to less fluctuation
than BILOG-MG, flexMIRT and IRTPRO when different priors
are used.

Obviously, the BEMM takes full advantage of the EMM and
the Bayesian approach. On the one hand, the EMM itself is a
more powerful MMLE method than the EM, so the BEMM can
explore the likelihood function as thoroughly as the EMM before
turning to priors to “shrink” the estimates; on the other hand,
the Bayesian approach can naturally be used to solve the issue
of estimate inflation for some troublesome items even when the
EMM cannot produce reasonable MLE estimates. The simulation
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FIGURE 4 | Item parameter calibration for IRTPRO data.

study and the two real dataset examples are of limited scopes,
so the conclusions based on their results should be interpreted
with caution. It is not the intent of this paper to advocate for
the elimination of the usage of other methods. The BEMM can
be used to check with the Bayesian EM in the IRT programs in
practice. Due to the high complexity in real-world 3PLM data,
a combination of the Bayesian EM in different implementations,
the BEMM and even the naked MLE solution, the EMM, might
lead to a more sophisticated and nuanced understanding of data.

Several questions deserve further attention. Firstly, the BEMM
can be readily extended to other IRT models with guessing effect.
A case in point is the IRTmodel with covariates model (Tay et al.,
2013). According to Tay et al. (2016), it needs at least a sample
of 20,000 examinees to fit a 3PLM with covariates successfully. In
this case, the BEMMmay offer a better alternative to reducing the
required sample sizes for the 3PLM with covariates.

Secondly, the mixture modeling approach and the BEMM
can be naturally accommodated for the 4PLM (Barton and
Lord, 1981). There is a renewed interest in the 4PLM (Rulison
and Loken, 2009; Loken and Rulison, 2010; Liao et al., 2012;
Ogasawara, 2012; Feuerstahler and Waller, 2014; Culpepper,
2015) for its usefulness in achievement test and psychological
datasets. But, the estimation challenge posed by the 4PLM is
greater than the 3PLM due to the additional slipping parameter

in the model (Loken and Rulison, 2010; Culpepper, 2015, 2017;
Waller and Feuerstahler, 2017). Adaption of the BEMM for the
4PLM is a promising direction.
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