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Assessments and predictions of driving behavior are very important to improve traffic
safety. We hypothesized that there were some patterns of driving behaviors, and these
patterns had some correlation with cognitive states and personalities. To test this
hypothesis, an evaluation of driving status, based on electroencephalography (EEG) and
steering behavior in a simulated driving experiment, was designed and performed. Unity
3D was utilized to design the simulated driving scene. A photoelectric encoder fixed on
the steering wheel and the corresponding data collection, transmission, and storage
device was developed by Arduino, to acquire the rotation direction, angle, angular
velocity, and angular acceleration of the steering wheel. Biopac MP 150 was utilized
to collect the EEG data simultaneously during driving. A total of 23 subjects (mean age
23.6 ± 1.3 years, driving years: 2.4 ± 1.6 years, 21 males and two females) participated
in this study. The Fuzzy C-means algorithm (FCMA) was utilized to extract patterns of
driving behavior and the cognitive state within the window width of 20 s. The behaviors
were divided into five kinds, i.e., negative, normal, alert, stress, and violent behavior,
respectively, based on the standard deviation of steering wheel data. The cognitive
states were divided into four kinds, i.e., negative, calm, alert, and tension, respectively,
based on the EEG data. The correlation of these data, together with the personality traits
evaluated using Cattell 16 Personality Factor Questionnaire (16PF) were analyzed using
multiclass logistic regression. Results indicated the significance of the cognitive state
and seven personality traits [apprehension (O), rule consciousness (G), reasoning (B),
emotional stability (C), liveliness (F), vigilance (L), and perfectionism (Q3)] in predicting
driving behaviors, and the prediction accuracy was 80.2%. The negative and alert
cognitive states were highly correlated with dangerous driving, including negative and
violent behaviors. Personality traits complicate the relationship with driving behaviors,
which may vary across different types of subjects and traffic accidents.
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INTRODUCTION

With the development of the auto industry and an advanced
driver assistance system, the accident rates caused by car failure
has reduced significantly while human factors play a crucial
role. About 80% of collision accidents were related to distraction
(CDC, 2014), and in a total of 37,133 deaths on American
highways in 2017, more than 35% involved drunk driving
or distraction (NHTSA, 2018). Unsafe driving behaviors such
as drunkenness, fatigue, and distraction could cause serious
accidents and lead to enormous loss of life and property. Effective
monitoring of the driver’s status would be very helpful in
maintaining the reliability of driving behavior, thereby reducing
the occurrence of traffic accidents caused by human error.

Driving is a complex behavior affected by many factors, either
long-term (experience, age, disease and disability, alcoholism,
drug abuse; self-evaluation of capabilities, driving habit, accident
proneness, personality) or short-term (drowsiness, fatigue,
acute alcohol intoxication, acute psychological stress, temporary
distraction; psychotropic drugs, motor vehicle crime, suicidal
behavior, compulsive acts) (Petridou and Moustaki, 2000). The
driver’s personality, such as agreeableness, extraversion, and
neuroticism, has some correlation with driving accidents (Cellar
et al., 2000; Lajunen, 2001; Guo et al., 2016). Drivers with
a low score in extraversion, conscientiousness (Guo et al.,
2016), and a high score in sensation seeking, driver anger,
and normlessness (Brown, 1976) will be more likely related to
risky driving behaviors. Young male drivers’ personality traits
and tendencies play a major role in predicting risky behavior
(Taubman-Ben-Ari et al., 2016).

Fundamentally, driving behavior is controlled by the
underlying cognitive process of the human brain. It can be
considered as the output of the underlying executive function
which regulates thoughts and behaviors including attention,
problem solving, decision making, action monitoring, and
evaluation (Miller et al., 2016). This cognitive process is affected
by many factors, such as consciousness states (attention,
alertness, distraction, fatigue) and emotion states (depression,
nervousness). Consciousness is the state of awareness of the
external or internal object. Attention is the ability to focus
and filter relevant stimuli from irrelevant stimuli, and can be
selective, divided, or sustained (Miller et al., 2016). Distracted,
decreased, or lost attention results in distraction or fatigue.
Drivers’ attentional states are very crucial for traffic safety.
Previous studies found that drivers with attention deficit
hyperactivity disorder such as an impairment in selective
attention (Corbett and Stanczak, 1999; Lovejoy et al., 1999;
Dinn et al., 2001), divided attention (Tucha et al., 2008),
flexibility/set shifting (Hollingsworth et al., 2001; Rohlf et al.,
2012), and vigilance/sustained attention (Epstein et al., 2001)
may have a higher likelihood to cause or, at least, be involved
in traffic accidents. Emotion states such as depression could
affect the selective attention of subjects (Joormann and Quinn,
2014) and driving performance such as standard deviation
of lateral position of driving (SDLP) (van der Sluiszen et al.,
2017). Cognitive processes, which are collective effects on the
human brain, of complex factors from external environment and

physiological states of drivers, could finally affect normal driving
behaviors and stress reactions related to the traffic safety.

Several indexes, such as percent eyelid closure (PERCLOS)
(Liu et al., 2008), pupil diameter (Xiong, 2013), or displacement
of the driver’s head (Aykent et al., 2014), were utilized to
identify cognitive states. Fatigue and high recognition accuracy
was mostly obtained. But these indexes could neither directly
reflect the mental state nor be applied for direct control
of driving behavior. Additionally, fatigue was just one of
the factors affecting the cognitive processes that cause traffic
accidents and accounted for a small ratio in all traffic
accidents, for example, in some countryies like Japan, it
accounted only for 1.0–1.5% (Gu, 2009). Prediction of the
driver’s cognitive states based on electroencephalography (EEG)
signals has been an active area of research in cognitive
ergonomics (Sonnleitner et al., 2014; Xiaoling et al., 2016;
Hajinoroozi et al., 2017; Lacko et al., 2017). Researchers used
EEG to explore the differences of driving behaviors between
young and old people and found that older drivers preferred
either a rather proactive and alert driving strategy, or a
rather reactive strategy (Karthaus et al., 2018). EEG signals
contain plentiful information about the underlying cognitive
function and can be applied to study the complex information
processing procedure (She et al., 2012). Larger 10- to 11-
Hz alpha desynchronization at occipital areas was found to
relate with compound limb motor imagery task (Yi et al.,
2014). EEG has the millisecond-rang temporal resolution, and
can objectively and directly reflect the driver’s complicated
cognitive function.

During driving, the drivers received a large amount of
information. They should adjust their attention, evaluate the
behavior of him/herself and the vehicle, balance the risk of traffic
accidents and the benefit of driving fast, make decisions, and
act accordingly. The frontal gyrus of the human brain plays a
crucial role in cognition function including attention (Hsieh et al.,
2009), decision-making, executive control, and emotions (Volz
et al., 2006), which are all important procedures in driving. The
activities of the frontal gyrus will be a good indicator to reveal
cognitive states of drivers and, hence, to evaluate the safety of
driving behavior.

We hypothesized that there were some patterns of driving
behaviors, and these patterns had some correlation with cognitive
states and personalities. To test this hypothesis, an evaluation
of driving status based on EEG and steering behavior in a
simulated driving experiment was designed and performed.
Unity 3D was utilized to design the simulated driving scene.
A photoelectric encoder fixed on the steering wheel and the
corresponding data collection, transmission, and storage device
were developed by Arduino to acquire the rotation direction,
angle, angular velocity, and angular acceleration of the steering
wheel. Biopac MP 150 (Biopac, United States) was utilized to
collect the EEG data simultaneously during driving. A total of
23 subjects participated in this study. Their personality traits,
evaluated using Cattell 16 Personality Factor Questionnaire
(16PF), together with the EEG data near the frontal area,
and the steering wheel data were analyzed by using fuzzy
C-means algorithm (FCMA) and multiclass logistic regression.
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Results indicated the significance of cognitive state and seven
personality traits in predicting the driving behaviors, and the
prediction accuracy was 80.2%. Our work might be helpful for
driving behavior prediction and precaution by using EEG and
personality traits.

MATERIALS AND METHODS

Method Overview
The workflow of the whole study is shown in Figure 1. The
following steps were included: (i) simulated driving environment
design; (ii) driving data, EEG data acquisition, and personality
evaluation; (iii) clustering by FCMA; and (iv) multiclass logistic
regression analysis.

Experiment Design
Simulated Driving System Designed by Using Unity
3D
We established a simulated driving system using Unity 3D
(Unity Technologies, Denmark) and Logitech G29 (Logitech,
Switzerland). A circular track with total length about 8.5 km
was designed containing two consecutive S-shaped curves, two
large curved roads with a radius of 20 m, and seven other curves
(Figure 2A). The models such as road sign, rock, or vehicle from
opposite lane in the resource library of Unity 3D were utilized
to simulate the reality world and signs of turning direction before
each curve was set to inform the drivers to prepare for the coming
turning (Figure 2B). Logitech G29 simulator is the controller of
the simulated driving system with force feedback steering wheel,
brakes, and clutch.

Driving Task
Each driving task contained four rounds of the track. The
subjects were instructed to keep their attention on driving and
completed two or three driving tasks with a speed limit of
60 km/h. Before the experiment, the subject had enough time
(at least 20 min) to get familiar with the acceleration torque
of the car, the sensitivity of the steering wheel and the seat,
in preparation for the experiment. After each task, the subjects
would rest for at least 5 min. The total driving time for every
subject was above 30 min. The errors that the driver made during
the experiment, including driving out of the lane, colliding with
obstacles in the opposite lane, and losing control of the vehicle,
were recorded. Subjects with the lowest accident rates would
receive extra rewards including a free haircut coupon and a free
and expensive meal. We introduced this incentive mechanism
to make sure that the subjects would drive as seriously as in
their normal states.

A total of 23 subjects (mean age 23.6 ± 1.3 years, driving
years: 2.4 ± 1.6 years, 21 males and two females) were recruited
in this study. All subjects had driving licenses and reported no
neurological or psychiatric problems. All subjects provided prior
written informed consent. The study was approved by the ethical
review committee of Wuhan University of Technology.

Data Acquisition
A driving data acquisition device was developed using Arduino
Mega 2560 and a photoelectric encoder, which was fastened
tightly to the steering wheel using a synchronous belt. The
movement of the steering wheel would trigger the rotation of
the encoder simultaneously, and the signal would be transmitted
to the computer by the serial port at a transmission rate of
128,000 Bd. Subjects’ EEG data were collected by MP 150
with a sampling rate at 1,000 Hz. A total of 16 electrodes
covered by Ag/AgCl with a 10–20 system layout (Fz, F8, Cz,
Pz, T6, T5, C4, C3, T4, T3, O2, O1, P4, P3, Fp1, and Fp2)
were mounted on a recording cap, and one earlobe electrode
was taken as the reference electrode (Figure 2C). After the
driving experiment, each subject was asked to complete the
16PF Questionnaire.

Data Processing
Definition and Extraction of the Feature Vectors
The rotation angle data were restored using linear interpolation.
The transient speed and acceleration were calculated accordingly.
Then, these driving data were segmented using 20 s as the window
width. The mean and standard deviation of each segment was
calculated as feature vectors of driving behavior.

Four channels of EEG data acquired around the
frontal area (Fz, F8, Fp1, and Fp2) were first aligned
temporally with the behavior data, normalized using the
Z-score method, and then segmented using 20 s as the
window width. The mean and standard deviation of each
segment was calculated as EEG feature vectors. MATLAB
(R2017a, MathWorks, Natick, United States) was utilized to
process the data.

Clustering of the Behavioral and EEG Features
Fuzzy C-means algorithm was utilized to cluster the driving
feature vectors and EEG features. FCMA uses the fuzzy theory
to model the data and divide the data (n samples) into K
clusters (mj as the cluster center, j∈{1,2. . .k}). Each sample
xi is evaluated using K membership functions µj(xi), and an
objective function embodying the similarity within the same
cluster and dissimilarity between different clusters is constructed
as follows:

Jf =
k∑

j=1

n∑
i=1

[µj (xi)]
b
‖ xi −mj ‖

2

where b is a weighting exponent on each fuzzy membership
and determines the amount of fuzziness of the resulting
classification. By optimizing the objective function, an
optimal clustering of the data and the membership of
each sample was acquired. The number of clusters can
be determined by some a priori information or using
cluster validity procedures such as the “elbow method”
(Ketchen and Shook, 1996) or Bayesian information criteria
(Neath and Cavanaugh, 2012).
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FIGURE 1 | Research flow chart.
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FIGURE 2 | Simulated driving system. (A) Driving track, (B) driving scenario,
and (C) simulated driving platform. The subject has provided written consent
for the publication of this image.

Multiclass Stepwise Logistic Regression Analysis
Multiclass forward stepwise logistic regression analysis was
performed to determine the correlation between driving behavior
and EEG features, by taking the clustering result of the driving
features as a dependent variable, the clustering result of EEG
features as an independent variable, and scores of the 16PF traits
as the covariates. This analysis was performed using SPSS 22.0
(IBM, United States).

RESULTS

A total of 1,630 samples from 23 subjects were clustered. The
driving data were clustered into five categories and EEG data
into four categories. Each dimension of the feature vector
of the clusters was sorted. The one with the largest value
had five votes, and the one with the smallest value had one
vote. The total vote of each cluster was obtained by summing
these votes together, and the clusters were ordered accordingly.
The driving behavior clusters were ordered and termed as
“Negative,” “Normal,” “Alert,” “Stress,” and “Violent,” respectively.
The EEG clusters were ordered and termed as “Negative,”
“Calm,” “Alert,” and “Tension,” respectively. The details listed
in Tables 1, 2.

Model Fitting Information
The result of multiclass logistic regression analysis is shown
in Table 3. The EEG factor and seven personality traits in
all 16PF [apprehension (O), rule consciousness (G), reasoning
(B), emotional stability (C), liveliness (F), vigilance (L),
and perfectionism (Q3)] were significant (P < 0.05). The

TABLE 1 | Original cluster centers of cognitive states.

Clusters Fz F8 Fp2 Fp1 Total votes

Tension 0.1080 0.1050 0.1020 0.0998 15

Alert 0.1030 0.0948 0.1040 0.0368 13

Calm 0.0583 0.0557 0.0944 0.0329 8

Negative 0.0213 0.0212 0.0301 0.0201 4

model fitting test indicated −2 times log likelihood of
intercept only; the final models were 2,735.193 and 714.291,
respectively, and the model was significant (χ2 = 2,020.902,
df = 40, P = 0.000).

Parameter Estimation
Normal driving behavior and Tension cognitive state in EEG
were taken as the reference category. The estimated parameters
for Negative, Alert, Stress, and Violent driving behavior using
multiclass logistic regression are shown in Figure 3 and
Supplementary Table S1.

Negative behavior had a significant correlation with Negative
cognitive state [Exp(B) = 15.922 P = 0.000], apprehension
(O) [Exp(B) = 8.929, P = 0.000], rule consciousness (G)
[Exp(B) = 8.389, P = 0.000], reasoning (B) [Exp(B) = 0.195,
P = 0.000], emotional stability (C) [Exp(B) = 3.855, P = 0.000],
liveliness (F) [Exp(B) = 1.574, P = 0.000], vigilance (L)
[Exp(B) = 2.637, P = 0.000], and perfectionism (Q3)
[Exp(B) = 4.605, P = 0.000]. Alert behavior had a significant
correlation with Negative [Exp(B) = 0.000, P = 4.305] and Alert
[Exp(B) = 1.996, P = 0.024] cognitive state, apprehension
(O) [Exp(B) = 1.935, P = 0.000], rule consciousness
(G) [Exp(B) = 0.590, P = 0.000], emotional stability (C)
[Exp(B) = 2.424, P = 0.000], liveliness (F) [Exp(B) = 0.732,
P = 0.000],vigilance (L) [Exp(B) = 1.581, P = 0.000], and
perfectionism (Q3) [Exp(B) = 3.383, P = 0.000]. Violent
driving behavior had a significant correlation with Alert
cognitive state [Exp(B) = 14.128, P = 0.0232] apprehension
(O) [Exp(B) = 17.471, P = 0.000], rule consciousness (G)
[Exp(B) = 9.149, P = 0.000], liveliness (F) [Exp(B) = 11.626,
P = 0.000], vigilance (L) [Exp(B) = 0.176, P = 0.000], and
perfectionism (Q3) [Exp(B) = 0.188, P = 0.000]. Stress behavior
had no significant correlation with the cognitive states and
personality traits.

Model Prediction
Table 4 shows the predicted results of driving behavior using
the regression model. Of 676 samples in the Negative category,
624 were correctly predicted and the correct rate was 92.3%;
of 297 samples in the Normal category, 228 were correctly
predicted and the correct rate was 76.8%; of 568 samples in
the Alert category, 382 were correctly predicted and the correct
rate was also 67.3%; of the seven samples in the Stress category,
0 were correctly predicted and the correct rate was 0%; of 82
samples in the Violent category, 74 were correctly predicted
and the correct rate was 90.2%. Of all the 1,630 samples in the

TABLE 2 | Original cluster centers of driving behaviors.

Clusters Angle Angular speed Angular acceleration Total votes

Violent 0.6570 0.40500 0.60 11

Stress 0.0253 0.02170 10.30 10

Alert 0.0562 0.00515 1.49 9

Normal 0.0507 0.00723 1.19 8

Negative 0.0495 0.00432 1.71 7
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TABLE 3 | Likelihood ratio test results of the regression model.

Effect Model-fitting criteria Likelihood ratio test

−2 log-likelihood value of the simplified model Chi-square df P

Intercept 714.291a 0.000 0 .

Cognitive state 10,223.281b 9,508.991 12 0.000

Apprehension (O) 1,078.625 364.334 4 0.000

Rule consciousness (G) 1,410.471 696.181 4 0.000

Reasoning (B) 1,089.280 374.990 4 0.000

Emotional stability (C) 797.754 83.463 4 0.000

Liveliness (F) 956.240 241.949 4 0.000

Vigilance (L) 867.224c 152.933 4 0.000

Perfectionism (Q3) 1,029.613c 315.322 4 0.000

aThis reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom. bThe log-likelihood value cannot be further
increased after maximum number of step-halving. cThere are singularities in the Hessian matrix.

FIGURE 3 | Exp(B) (radius of the circle) of the estimated significant parameters in the regression model. The circle with radius equaling 1 was shown in black.

five categories, 1,308 were correctly predicted and the correct
rate was 80.2%.

DISCUSSION

In this study, we designed steering wheel acquisition equipment
with Arduino Mega 2560 and set up the simulated driving
experiment environment using the Unity 3D platform and
Logitec G29. A total of 23 subjects participated in the study. The
steering wheel data and EEG data were acquired simultaneously,
and were clustered using the fuzzy C-clustering algorithm. The
driving behavior was divided into five kinds of patterns, and
EEG data around the frontal area were divided into four kinds
of patterns. A multiclass forward stepwise logistic regression
analysis was performed to explore the correlation between
driving behavior and EEG patterns, as well as personality traits.
The likelihood ratio test indicated the significance of the EEG
pattern and seven personality traits in the regression model
(Table 3). The total prediction accuracy of the regression model
was 80.2% (Table 4).

Correlation Among Driving Behavior,
Cognitive State, and Personality
Driving Behavior and Cognitive State Classification
Steering wheel movement has a direct effect on automobile
behaviors and driving safety. Emergency steering evasion (ESE)
is a typical phenomenon in collision avoidance. There were two
typical abnormal steering wheel movements with relatively the
largest lane deviation during ESE, one with the largest first peak
values of the steering angle, fast steering speed, over steering,
and large fluctuations of steering wheel angle and the other
with low steering speed and insufficient steering angle to avoid
collision (Zhao et al., 2018). The mean and standard deviation
of the movement data of the steering wheel were demonstrated
to be the robust and consistent with characterization (Das et al.,
2012). Some researchers used the sudden correction of the
steering wheel within a period of time (window width = 60 s)
as indicators to measure the degree of driver’s fatigue (Zhang
et al., 2010). In our work, we differentiated the steering wheel
data based on the standard deviation. The steering wheel data
within a 20-s window width, with relatively the highest standard
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TABLE 4 | Model prediction results.

Observation value Predictive value

Negative Normal Alert Stress Violent Percentage correction

Negative 624 1 51 0 0 92.3%

Normal 20 228 46 0 3 76.8%

Alert 113 73 382 0 0 67.3%

Stress 5 0 2 0 0 0.0%

Violent 5 1 2 0 74 90.2%

Total percentage 47.1% 18.6% 29.6% 0.0% 4.7% 80.2%

deviation of angle, angular speed, and acceleration was classified
as violent driving behavior, which corresponds to the most
radical driving or ESE, represented the intensive modulation of
the steering wheel, and was closely related with accidents. The
cluster with the relatively lowest standard deviation of angle,
angular speed, and acceleration was classified as negative driving
behavior, which represented the lowest activity of steering wheel,
maintained the steering wheel in a specific state for a relatively
long time, and revealed insufficient control of the steering
wheel. Normal driving behavior represented the normal, smooth,
and safe driving behaviors with moderate modulations of the
steering wheel. Stress driving behavior represented the behaviors
happening before traffic accidents or emergency corrections of
the steering wheel when the drivers realized their errors. Alert
driving behavior represented vigilant driving behavior when
drivers were alert to the potential danger of the environment.
The movements of the steering wheel were adjusted more
aggressively than in normal conditions, which can show how to
improve driving safety or may also become the precursor of stress
driving behavior.

A previous study on epileptic seizures found that the standard
deviation of EEG signals at different frequency bands of EEG
helps to predict ictal brain activity (during a seizure), which
differs from normal brain activity, and their model prediction
accuracy of epileptic states was 96.7% (Samanwoy et al., 2007).
Similarly, we used the standard deviation of a segment of EEG
signals near the frontal area as the indicator of the activation
degree or efficiency level of the human brain. Through the
voting algorithm, the feature vectors of the cluster center were
compared; the four EEG categories were sorted according to the
overall activation degrees and termed as Negative, Calm, Alert,
and Tension, respectively. A negative cognitive state represented
decision-making behavior with the lowest self-awareness of the
value system (Volz et al., 2006) and was related with the
temporary physiological behavior of attention loss caused by
fatigue, distraction, or chemical factors like drugs and alcohol
(Dinn et al., 2001; Epstein et al., 2001; Rohlf et al., 2012). An
alert cognitive state represented the decision-making behavior
with the second highest self-awareness of the value system and
alertness. Its occurrence was usually accompanied by highly
focused attention caused by threatening information or stimuli
(Fox et al., 2001, 2002; Ohman et al., 2001). A calm cognitive
state represented decision-making with the third highest self-
awareness of the value system and the third highest alertness.
Its occurrence was usually companied by accustomed behavior

like driving in a familiar road which could be completed due to
frequent repetition (Volz et al., 2006). A tension cognitive state
represented the decision-making with the highest self-awareness
of system value and the highest alertness. Its occurrence was
usually accompanied with significant mood swings caused by
unexpected threats or emergency like oncoming vehicles or lane
intrusion (Fox et al., 2001, 2002).

The Regression Model of Driving Behavior
Electroencephalography clusters and seven personality traits
[apprehension (O), rule consciousness (G), reasoning (B),
emotional stability (C), liveliness (F), vigilance (L), and
perfectionism (Q3)] were significant factors (Table 3) in the final
significant regression model (χ2 = 2020.902, df = 40, P = 0.000).
In the 17 initial independent variables, eight were significant,
which implied that as a very complicated behavior, driving does
get affected by many factors including both cognitive states and
different profiles of personalities.

From Table 4, it can be seen that, in all 1,630 samples,
negative behavior appeared 676 times and the frequency was
41.4%, normal behavior appeared 297 times (18.2%), alert
behavior appeared 382 times (23.4%), stress behavior appeared
seven times (0.4%), and violent behavior appeared 84 times
(5.1%). If predicting according to the frequency based on the
current data, the rates of correct prediction of the driving
behaviors would be 41.4, 18.2, 23.4, 0.4, and 5.1%, respectively.
Now, by using the multiclass logistic regression analysis, the
correct rates for the five kinds of driving behaviors were 92.3,
76.8, 67.3, 0, and 90.2% and increased by 50.9, 58.6, 43.9,
−0.4, and 85.1%, respectively. If there is no extra information,
the predicted probability for each driving behavior should
be 1/5, and the total predicted accuracy is 20%. Instead of
using the regression model, the rate of correct prediction of
whole samples has been increased by 60.2 to 80.2%. The
prediction accuracy for negative and alert behavior was larger
than 90%; while for normal and alert it was about 70%. The
regression parameters for stress behavior were not significant,
and hence, the prediction for stress was low (0%). This meant
that the model cannot explain stress behavior well, but it
appeared only seven times and did not have much influence
on the total prediction accuracy. In general, these results
indicated that the regression model can significantly increase the
prediction accuracy.

Detecting the patterns of the driving behavior and using
the driver’s personality and cognitive state to predict these

Frontiers in Psychology | www.frontiersin.org 7 June 2019 | Volume 10 | Article 1235

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01235 June 2, 2019 Time: 12:14 # 8

Ding et al. Driving Behavior, EEG, and Personality

patterns is the main purpose of this study. The regression
model revealed the complicated relationship between behavior,
personality, and EEG features, which will be elaborated in the
following section.

Correlation Between Cognitive State and Driving
Behavior
The likelihood ratio test indicated that the cognitive state
was a significant factor (χ2 = 9508.991, P = 0.000;
Table 3). The estimated regression parameters of
cognitive states for each driving behavior listed in
Supplementary Table S1 revealed that negative behavior
had a significant positive correlation with the negative
cognitive state [Exp(B) = 15.922, P = 0.000]; alert behavior
had a significant positive correlation with the negative
[Exp(B) = 4.305, P = 0.000] and alert [Exp(B) = 1.996,
P = 0.024] cognitive states; violent behavior had a
significant positive correlation with the alert cognitive state
[Exp(B) = 14.128, P = 0.023].

A negative cognitive state was possibly accompanied by
temporary physiological behavior of attention loss caused by
fatigue, distraction, or chemical factors like drugs and alcohol,
which was potentially related with the lesion or dysfunction
of the frontal lobe (Dinn et al., 2001; Epstein et al., 2001;
Rohlf et al., 2012). There were many curves with different
curvatures in the lane, used in the simulated driving experiments,
and the acceleration of the virtual vehicle was different
compared to real driving, which made the whole driving task
challenging. Drivers needed to be highly focussed, pay full
attention to the environment and the vehicle, and frequently
modulate their behaviors. Drivers under a negative cognitive
status had the lowest cognitive decision-making efficiency.
They more easily made mistakes in environment sensing or
movement selection and performance. These little mistakes
accumulate and may finally cause traffic accidents. An alert
cognitive state was related with highly focused attention to
threatening information or stimuli (Fox et al., 2001, 2002;
Ohman et al., 2001). Drivers under the alert state had high
decision-making efficiency, and they more easily to realized
and corrected mistakes during driving. A alert cognitive
state would also occur when a driver had already been
involved in traffic accidents due to the negative emotions
such as fear (Ohman et al., 2001) and threat-related stimuli
(Fox et al., 2001).

Negative driving behavior always occured when the driver
was drowsy or even drunk, when there was the lowest
movement or even no movement of the steering wheel
at all (Das et al., 2012). Alert, stress, and violent driving
behaviors usually occured before traffic accidents or during
an emergency correction of the steering wheel when drivers
realized their driving errors and the underlying risk of
an accident (Zhao et al., 2018). When trying to avoid
obstacles or correcting the driving trajectory, different drivers
had different strategies. Some had a steady strategy with
a relatively small steering wheel angle and smooth angular
velocity, whereas some turned the steering wheel sharply
with a large angle and an angular velocity. The steady

drivers usually had a prediction or a calculation of the best
turning trajectory, and the latter changed the trajectory sharply
which would potentially increase the driving risks such as
slipping or losing control. According to the intensity of the
movement, alert behaviors represented the steady steering wheel
modulation strategy, violent behaviors represented the sharp
modulation strategy, and stress seemed to mediate between them
(Zhao et al., 2018).

In terms of the movement intensity alert behavior
intermediate between negative and violent behaviors, it
is interesting that alert behavior was affected by both
the specific cognitive states closely related with negative
and violent behaviors, respectively, i.e., a negative and
alert cognitive state (Supplementary Table S1). Once
a negative cognitive state was detected, both negative
and alert behaviors would occur, and the former had a
higher odds ratio [Exp(B) = 15.922 vs. 4.305]; once an
alert cognitive state was detected, both violent and alert
behaviors would occur, and the former had higher odds
ratio [Exp(B) = 14.128 vs. 1.996]. Hence, when negative and
alert cognitive states were detected, high attention should
be paid to the resultant behavior. If it is alert behavior, the
current driving is safe; otherwise, either negative or violent
behavior would be closely related with risky driving, and some
precaution and prevention measures should be taken to avoid
possible accidents.

Correlation Between Personalities and Driving
Behavior
The likelihood ratio test indicated that seven 16PF personality
traits, i.e., apprehension (O), rule consciousness (G), reasoning
(B), emotional stability (C), liveliness (F), vigilance (L), and
perfectionism (Q3) were significant factors (χ2 = 364.334,
696.181, 374.990, 83.463, 241.949, 152.933, 315.322, respectively,
all P = 0.000, Table 3).

According to the regression parameters in Figure 3
and Supplementary Table S1, negative driving behavior
had a positive correlation with these personality traits
except for reasoning (B) [Exp(B) = 0.195]. Alert driving
behavior had a positive correlation with these personality
traits except for liveliness (F) [Exp(B) = 0.732], rule
consciousness (G) [Exp(B) = 0.590], and reasoning (B)
(P = 0.238, not significant). Violent driving behavior had
a positive correlation with these personality traits except
for vigilance (L) [Exp(B) = 0.176], perfectionism (Q3)
[Exp(B) = 0.788], reasoning (B) (P = 0.124, not significant),
and emotional stability (C) (P = 0.564, not significant).
Stress behavior had no significant correlation with the
personality traits.

16PF research on the accident drivers and safety drivers
indicated that tension (Q4) and perfectionism (Q3) were
positively correlated with safe driving, while apprehension (O),
openness to change (Q1), self-reliance (Q2), and abstractedness
(M) were positively correlated with risky driving (Suhr, 1953;
Brown, 1976; Hilakivi et al., 1989; Zhang et al., 2009).
Research conducted in China found that drivers with higher
scores in self-reliance (Q2), emotional stability (C), warmth
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(A), dominance (E), liveliness (F), social boldness (H) and
lower scores in vigilance (L), and self-reliance(Q2) would
be more likely to have a traffic violation than safe drivers
(Meng and Lian, 2004).

The highly positive correlation of apprehension (O) with
negative and violent behaviors, which were classified as
dangerous behaviors, was in accordance with previous research.
Though apprehension (O) was also positively related with alert
behavior, the odds ratio for alert behavior (Exp(B) = 1.935) was
much smaller compared with those for negative [Exp(B) = 8.929]
and violent [Exp(B) = 17.471] behaviors. People with a high
apprehension (O) score tend to be guilt-prone, worrying,
insecure, self-reproaching, and anxious, who were prone to
negative emotions such as anxiety and depression and some
trivial little things (Brown, 1976). Liveliness (F) and rule
consciousness (G) had a positive correlation with negative and
violent behaviors, and a negative correlation with alert behavior.
These results imply that liveliness (F) and rule consciousness
(G) are risk factors for dangerous driving. People with a
high liveliness (F) score tend to be highly energetic, carefree,
and extraverted but lack restraint and self-control (Conn and
Rieke, 1994), which may cause such drivers to ignore traffic
regulations and to decrease their alertness and effectiveness in
an emergency. And it has been revealed that accident drivers
tended to have higher liveliness (F) score (Meng and Lian,
2004). People with high rule-consciousness (G) score tend
to be dutiful, staid, and rule-bound. Its positive correlation
with dangerous driving behavior seemed unreasonable. Rule
consciousness may prevent drivers from drinking or over-
speeding, but it may not effectively affect their behavior
caused by emergency or emotion fluctuation. The extreme
rule consciousness would make people to be compulsive, or
become the workaholics or perfectionists (Carter et al., 2016).
Under emergency when there was no enough preparation
time, these people might act inflexibly or panicky, which may
result in negative or violent behavior, respectively. These results
also implied that different kinds of traffic events demanded
different abilities, such as emotion control, flexibility, self-
control, and rule consciousness. Because of the complexity
of the personality and driving behavior, there existed some
inconsistence in the role of personality traits in driving, such as
sensitivity (I), which was the protective factor for safe driving
in Brown and Hilakivi’s researches (Brown, 1976; Hilakivi et al.,
1989), but the risk factor for dangerous driving in Zhang’s
research (Suhr, 1953; Zhang et al., 2009). This inconsistence
may relate with the studied subjects and the types of the
traffic accidents.

Vigilance (L) and perfectionism (Q3) were positively
correlated with negative and alert behaviors, but negatively
correlated with violent behavior. People with high vigilance
(L) score tend to be suspicious and independent. People with
high perfectionism (Q3) score tend to be perfectionistic, self-
disciplined, organized, and self-sentimental (Conn and Rieke,
1994). There were no consistent results about their roles in safe
or dangerous driving. But it seemed that the drivers with these
personality traits can be prevented from modulating the steering
wheel too intensively.

Driving Simulation and Experiment
Design
Customization of the Simulated Driving Environment
Simulating real driving as similar as possible might ensure the
physiological response of the subjects is as normal as during
real driving. Driving scenario and automobile operation had the
most direct effect on the intuitive feelings of the subjects for
the simulated driving experiment. The track model was modified
by placing warning signs before every turn, and the number
of obstacles such as huge rocks and retrograde vehicles was
increased to induce different driving behaviors and the cognitive
states of the drivers. Vehicle parameters, such as weight (1.5
t) and suspension vibration frequency (1 Hz), were adjusted
according to a normal family car. Maximum torque and real-
time torque of the car were set according to the principles of
automotive dynamics in real driving. Instead of applying the
differential physical model to calculate the angle of wheels based
on the real inner and outer wheel angle of the car, the inner
steering wheel control program of Unity 3D used the average
angle, which made the simulated car more likely to slip and thus
increasing the accident risk compared to real driving. Hence,
we decreased the maximum angle of the steering wheel to 30◦
to reduce the occurrence of tire slipping and to improve the
operability and comfort of simulated driving. There was no
physical feedback from the facilities of the simulation platform,
which would greatly affect the feeling and thus the decision-
making process of subjects. To address this problem, the slip ratio
and vibration of the suspension, as well as the current speed,
were displayed on the screen. The high deviation of the slip ratio
and vibration of suspension from the baseline, implied the high
possibility of losing control. The subjects were instructed to take
note of these data and to modulate their behavior accordingly.

Incentive Mechanisms
The incentive mechanisms were introduced to encourage a
better driving performance. In our experiment, we assumed the
difficulty of driving as safely as possible was not much more
difficult than driving less carefully. We also offered the driver
with the least number of accidents an additional reward (a free
and expensive meal at a fine dining restaurant, and a hairdressing
coupon) to lure the driver to balance the risk of every behavior
during experiments. Like driving license suspension, which is
a non-monetary sanction to incapacitate dangerous individuals
and deter most drivers from infringing the law (Bourgeon and
Picard, 2007), the subjects were told that their driving data
would be abandoned if there were too many accidents. Reward-
based associative learning had a great effect on driving behavior
(Behrens et al., 2008). Both positive effects (highly focused)
and negative effects (anxious, ashamed, and angry when making
mistakes) were observed in the subjects.

Data Processing
Brain Area Selection
The human brain is a complex organization of information
reception, processing, integration, and transmission. Driving is
a complicated behavior which should be fulfilled by multiple
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sensory and cognitive functions of different brain regions. The
external information about the environment and the vehicle
is censored, decisions are made, and then the corresponding
movements of the body are made. During this procedure, several
areas should cooperate with each other. Information from the
spatial senses converges within the parietal cortex, and is then fed
forward to the premotor cortex and integrated with information
from the frontal cortex, about action goals and contexts, before
the final motor output is sent to the motor areas such as the
sensorimotor cortex and primary motor cortex, relayed via the
corticospinal tracts, and modulated by the cerebellum and basal
ganglia (Ball et al., 2008; Gallivan et al., 2013).

The functions of the frontal cortex in cognitive processes has
been explored in many studies (Christoff and Gabrieli, 2000).
The frontal cortex sub-serves executive control, that is, the
ability to select actions or thoughts in relation to internal goals
(Koechlin and Summerfield, 2007). During distracted driving,
brain activation shifts dramatically from the posterior, visual,
and spatial areas to the frontal cortex (Li et al., 2009). Frontal
activation is also involved in alerting responses to adapt to
challenges in the environment (Richard et al., 2004). As we
intended to study the related factors of attention and decision-
making in driving, and as the frontal lobe is considered as the
control center, we focused on the EEG signal acquired near the
frontal lobe (Fz, F8, Fp1, and Fp2).

Data Analysis Method
The temporal window width for data analysis was 20 s, and the
steering wheel and EEG data within this window were clustered;
hence, both the behavior and the cognitive states were described
in terms of patterns in a period of time instead of the real-
time activities. Some detailed information within this window
was filtered. The quantitative effect of the window width on
the results, and accuracy of the multiclass regression analysis
is worth further researching. Additionally, the application of
a moving window on the signal might increase the real-time
capability of the schema.

Novelty and Limitations
In this study, the driving behavior, neuroimaging data, and
the personality data were analyzed in a unified schema, which
provided a new viewpoint to monitor the driving behavior
and predict the dangerous behaviors based on the cognitive
states and personality traits of the subjects. Most driving safety
research utilized self-report tools (Schultheis et al., 2002; Arnedt
et al., 2005; Kass et al., 2010) to evaluate subjects’ physiological
and psychological states like drowsiness, drunkenness, or
distraction, which may possibly induce negative observer-
expectancy (Sackett, 1979) and subject-expectancy (Clifford
and Maisto, 2000) effects. We utilized the relatively objective
indicators extracted from EEG data to depict the different
cognitive states, and from the movement of the steering wheel
to depict the different behaviors of the subjects. The application
of these indicators can avoid the subjectivity of those performing
the experiment and the subjects, resulting in more robust and
accurate predictions, which are exhibited in our model prediction
results (Table 4).

The present study is limited principally by the relatively small
sample size, unbalanced gender proportion, and concentrated
age of the subject samples. Previous research revealed that
age (Aartsen et al., 2002), gender (Rhodes and Pivik, 2011),
and education background (Salthouse, 2009) were significant
factors affecting human’s cognitive functions and cognitive
abilities like inductive reasoning, spatial visualization, episodic
memory, and perceptual speed. Our results need to be replicated
in a much larger sample size and general population. In
this study, the related factors of attention and decision-
making in driving was the primary focus, and hence, the
EEG signal acquired near the frontal lobe (Fz, F8, Fp1, and
Fp2) was analyzed. Including more areas with sensory and
motor functions in the analysis might help to further our
understanding of driving behavior. We chose the mean and
standard deviation of behavioral and EEG segments as the
feature vector, which reflected the characteristics of the dataset
in the time domain. Other features in the frequency domain
may also contain important information of human cognitive
states (Elif et al., 2006; Kisley and Cornwell, 2006; Kanayama
et al., 2010). Finding the optimal feature vectors based on
multiple characteristics of the dataset might be helpful to
optimize the prediction model. Additionally, the method to
cluster driving behaviors and cognitive states was FCMA, which
is susceptible to the local extremum. Using the fuzzy neural
network algorithm by imitating the brain functions such as
learning, association, identification, and information processing
as the prediction model, may help to solve this problem. The
long-term goal of this research is to construct a real-time
monitoring system of driving safety, which is dependent on an
effective and flexible hardware and software platform, including
data acquisition devices, real-time data analysis methods, and
executive equipment. The CPU clock speed and serial port
baud rate of the driving data acquisition device need to be
optimized, and the offline clustering and regression methods
should be modified and improved in order to supply real-time
serial analysis results.

CONCLUSION

The EEG and steering wheel movement data was acquired
simultaneously in a simulated driving experiment. Based on
the EEG data, the cognitive states of the driver were divided
into four clusters, i.e., negative, calm, alert, and tension; based
on the steering wheel data, the driving behaviors were divided
into five clusters, i.e., negative, normal, alert, stress, and violent.
The cognitive state and seven personality traits [apprehension
(O), rule consciousness (G), reasoning (B), emotional stability
(C), liveliness (F), vigilance (L), and perfectionism (Q3)] were
significant factors in predicting driving behaviors. The regression
model was significant, and the prediction accuracy was 80.2%.
Negative and alert cognitive states were highly correlated with
dangerous driving, including negative and violent behaviors.
Personality traits showed a complicated relationship with driving
behaviors, which may vary across different types of subjects and
traffic accidents.
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