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Cross-country skiing is a popular Olympic winter sport, which is also used extensively as

a recreational activity. While cross-country skiing primarily is regarded as a demanding

endurance activity it is also technically challenging, as it contains two main styles

(classical and skating) and many sub-techniques within these styles. To further

understand the physiological demands and technical challenges of cross-country skiing

it is imperative to identify sub-techniques and basic motion features during training and

competitions. Therefore, this paper presents features for identification and assessment

of the basic motion patterns used during classical-style cross-country skiing. The

main motivation for this work is to contribute to the development of a more detailed

platform for comparing and communicating results from technique analysis methods,

to prevent unambiguous definitions and to allow more precise discussions and quality

assessments of an athlete’s technical ability. To achieve this, our paper proposes formal

motion components and classical style technique definitions as well as sub-technique

classifiers. This structure is general and can be used directly for other cyclic activities

with clearly defined and distinguishable sub-techniques, such as the skating style in

cross country skiing. The motion component features suggested in our approach are

arm synchronization, leg kick, leg kick direction, leg kick rotation, foot/ski orientation and

energy like measures of the arm, and leg motion. By direct measurement, estimation,

and the combination of these components, the traditional sub-techniques of diagonal

stride, double poling, double poling kick, herringbone, as well as turning techniques

can be identified. By assuming that the proposed definitions of the classical XC skiing

sub-techniques are accepted, the presented classifier is proven to map measures from

the motion component definitions to a unique representation of the sub-techniques. This

formalization and structure may be used on new motion components, measurement

principles, and classifiers, and therefore provides a framework for comparing different

methodologies. Pilot data from a group of high-level cross-country skiers employing

inertial measurement sensors placed on the athlete’s arms and skis are used to
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demonstrate the approach. The results show how detailed sub-technique information

can be coupled with physical, track, and environmental data to analyze the effects of

specific motion patterns, to develop useful debriefing tools for coaches and athletes in

training and competition settings, and to explore new research hypotheses.

Keywords: cross-country skiing, inertial measurement unit (IMU), motion estimators, technique definition,

technique classification

1. INTRODUCTION

Cross-country (XC) skiing is a popular Olympic winter
sport but is also used extensively as a recreational activity.
XC skiing is regarded as one of the most demanding of
endurance sports and involves competitions on varying terrain
where skiers employ different sub-techniques of the classical
and skating styles. These sub-techniques include different
technical features that require upper- and/or lower-body work
to different extents. Specifically, XC skiers are continuously
changing between and adapting the sub-techniques of the
classical style—diagonal stride (DIA), double poling (DP),
double poling with a kick (DK), and herringbone (HRB)—
and skating style—paddle dance (G2), double dance (G3),
single dance (G4), and skating without poles (G5)—to the
varying terrain. In addition, the downhill tuck position (TCK)
and a variety of turn techniques (TRN) are employed with
both styles. Accordingly, XC skiers design their training to
improve not only their physiological capacities, but also
their technical and tactical expertise (Smith, 1992; Nilsson
et al., 2004; Andersson et al., 2010; Bolger et al., 2015;
Sandbakk and Holmberg, 2017).

The skiers’ continuous choice of sub-technique is influenced
by speed and external conditions (e.g., the profile of the track,
snow conditions, waxing of skis, etc.), as well as individual
performance level and physical characteristics. Thus, skiers must
choose the terrain they train in and thereby the extent to
which they train the different sub-techniques and technical
features purposefully. In the classical style, DIA is primarily
used in moderately steep to steep terrain, with the arms and
legs moving in a manner similar to that of walking (Pellegrini
et al., 2013; Dahl et al., 2017). During DP, propulsive forces
are generated solely with the poles by the symmetrical and
synchronous movement of both arms supported by considerable
trunk flexion while crossing relatively flat terrain (Holmberg
et al., 2005; Danielsen et al., 2015). In DK the upper-body
movement is quite similar to the movement in DP but with
additional propulsion from a left or right DIA-like leg kick.
DK is normally used while traversing slightly uphill and flat
terrain, depending on resistance imposed by the snow conditions
(Lindinger et al., 2009a). TheHRB is used during very steep uphill
runs (Andersson et al., 2014b), whereas the TCK is used during
downhill runs, and various TRN are employed during turns and
track changes (Bucher Sandbakk et al., 2014).

In addition to mastering the different sub-techniques, a skier
needs to adapt and efficiently shift between these, at speeds
ranging from 5 to 70 km/h on inclines ranging from –20 to
+20 percent gradients (Sandbakk and Holmberg, 2014). In the

classical techniques, attaining higher speed requires both the
production of sufficient propulsive force to increase cycle length,
as well as more rapid cycles. Longer cycles are particularly
important at high speeds on flat terrain, whereas rapid shorter
cycles are mandatory for accelerating on steep hills, and during
the start and sprinting at the finish of races (Lindinger et al.,
2009b; Stöggl and Müller, 2009; Zory et al., 2009; Mikkola
et al., 2013; Andersson et al., 2014b; Haugnes et al., 2018). To
accomplish this, more explosive techniques, such as “running
diagonal” and “kangaroo” double poling, have been developed
(Holmberg et al., 2005; Andersson et al., 2014a). In addition,
there is increasing focus on the downhill sections of a race,
especially the challenging downhill turns, where faster skiers
utilize the accelerating step-turn technique more extensively
(Sandbakk et al., 2014). In order to properly communicate and
study the effects of such motion patterns, more formal, detailed,
and nuanced descriptions of the sub-techniques are needed.
Such understanding contributes by providing a communication
platform of high relevance for researchers in this field, as well as
for developing preparation and debriefing tools for coaches and
athletes in the new age of digital coaching.

Describing the motion patterns during training and
competitions is now possible due to micro-sensor technology,
which has revolutionized the possibilities of performing
advanced field analyses of XC skiing. Since further understanding
of both the physiological demands and technical challenges
depends on detecting the sub-techniques, it is imperative
to identify the features needed to classify sub-techniques
and to describe the motion quality. The field of automatic
identification of sub-techniques within XC skiing styles is
getting more mature, and various models utilizing different
methodologies are being published with increasing precision
and accuracy of the classification results (Myklebust et al.,
2011, 2015; Marsland et al., 2012, 2015, 2017, 2018; Holst
and Jonasson, 2013; Sakurai et al., 2014, 2016; Stöggl et al.,
2014; Rindal et al., 2017; Seeberg et al., 2017; Jang et al., 2018;
Solli et al., 2018). However, comparing precision and specific
results across different studies is challenging due to the lack
of detailed quantitative sub-technique definitions. In addition,
the results from different studies depend on the sensor system
and placement of sensors, the experimental setup and protocol,
the methodology for classification, the athlete’s capability and
instructions on how to ski, as well as the expert labeling and
interpretation of the sub-techniques using video analysis or
other data sources.

The literature on sub-technique classification methodology
based on inertial measurement unit (IMU) sensors can mainly be
divided into two groups. The first group is mechanism-driven,
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where the classification is based on general understanding of
the dynamics, kinematics and other descriptions of the sub-
techniques. See for example the following studies where this
approach is employed: (Myklebust et al., 2011, 2015; Sakurai
et al., 2014, 2016; Marsland et al., 2015, 2017, 2018; Seeberg et al.,
2017). The second group consists of models based on expert-
driven learning, where classification is based on supervised
machine learning models trained by data sets labeled by experts
(Holst and Jonasson, 2013; Stöggl et al., 2014; Rindal et al., 2017;
Jang et al., 2018). These approaches can also be combined by
considering labeled data and machine learning for calibration
of the parameters in the mechanism-based methods or by
using selected features instead of raw data in the training
process of the supervised machine learning models. Independent
of the approach, common definitions of the sub-techniques
should be established and used in order to gain a proper
comparison of the results from different approaches. Examples
where ambiguity occur with today’s sub-technique definitions
are in: The transition phase between, or cycles containing,
two different sub-techniques; new motion patterns that are
significantly different from the established sub-techniques; and
direction-changing motion patterns that occur in turns, track
changes or during evasive actions. In the mechanism-based
approaches, the common definitions need to be incorporated
directly in the model definition, while the machine learning
methods need data labeled according to the same detailed
definitions. In the post-analysis of the results proposed by any of
the classificationmethods, detailed insight into the sub-technique
mechanisms may be gained. Incorporating these insights as
they are discovered in different implementations (sensors and
methodology) may gain a more unified and precise definition
basis for discussing and classifying the sub-techniques.

Previously, in Seeberg et al. (2017), we demonstrated
the possibility of using a multi-sensor system with time-
synchronized multiple tri-axial IMU sensors placed on the
arms (wrist) and lower legs (ankle) combined with heart rate
(HR) and global positioning data to detect sub-technique
distribution during classical XC skiing on snow. In a follow-up
study (Rindal et al., 2017), we used the same sensor system
framework with data from IMU sensors placed on the sternum
and one arm (wrist) to develop an automatic classification
of the sub-techniques based on machine-learning techniques.
Finally, we have utilized a similar sensor system setup, with IMU
sensors placed on the skis (in front of binding) and arms (wrist),
to investigate sex-based differences in speed, sub-technique
selection, and kinematic patterns during training for classical XC
skiing across varying terrain (Solli et al., 2018). In the current
paper we aim to bridge some of the gaps in these previous
studies and to improve the comparability between the different
classification methods in the literature in general.

This paper proposes a framework where basic motion
components are used to specify the XC classical style sub-
techniques in more detail. This framework formalizes the
essential motion components, constructs non-intersecting sets of
sub-techniques based on these components, and also proposes
a selection of estimators for each of the components. Under
the assumption that the proposed detailed specification of

sub-techniques are accepted as definitions and that each of the
components are perfectly measured, a theoretical proof declaring
unique sub-technique classes is in principle sufficient validation
of the approach. However, since the motion components are only
estimated through models and real sensor data, our approach is
also validated by a pilot data set utilizing labels independent of
the proposed definitions. Furthermore, a classification method
using sensors on arms and legs/skis was employed to describe
the TRN and HRB sub-techniques in more detail than in
previous approaches.

2. METHODOLOGY

The foundation of the proposed approach is to define a set
of measurable motion components that can fully describe the
distinguishable sub-techniques in a given sport. This concept
is general and may be applied in any sport with cyclic motion
patterns. The approach consists of:

• Motion and technique definitions, describing the
basic observable motion components and the sport’s
techniques/sub-techniques

• Technique classification: The composition of the motion
components that lead to unique technique/sub-technique
decision functions and associated tolerance parameters

• Motion estimation: The implementation and realization of the
motion components

The two first bullet points require fundamental knowledge of
motion patterns typical for the considered sport and should
be verifiable by researchers within the field. The collection of
defined motion components may vary with respect to sensor
types and placement. It will also vary with respect to the expert’s
qualitative evaluation of the sub-techniques, focusing on different
aspects of the motion patterns in order to most efficiently
separate the sub-techniques, i.e., identifying and formulating
the motion components that provide the best balance between
sensitivity and robustness with respect to each individual sub-
technique. The core of the approach is to build on these motion
components and show that resulting technique/sub-technique
decision functions and tolerance parameters exist that produce
unique technique/sub-technique classifications.

The terms sensitivity and robustness also reflect on the
tolerance parameters, which need to be set such that the effects
from the imperfections of the sensor systems and estimator
are minimized. The sensor systems themselves introduce
measurement errors in terms of bias and scaling factors, drift,
noise, and precision limitations. In addition, the estimator may
bring in modeling errors as the motion components are not
necessarily measured directly. Thus, the selection and setting of
the tolerance parameters are important for the performance and
handling of uncertainty. As the parameters are integrated in the
technique definitions, the tuning can be handled by the definition
process and specified by a domain expert. Another approach to
handle this is to formulate an optimization/calibration program,
solved with machine learning or adaptive methods, relying on
labeling of training/validation data sets. In the reminder of this
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FIGURE 1 | Illustration of body coordinates and placement of the IMU

sensors. Note that the IMU sensors are depicted for the purpose of relating

the case-study in section 3 to the diagram. However, other information

sources such as camera-based systems may also be considered.

section the methodology is applied to the case of classifying
classical XC skiing sub-techniques.

2.1. Motion and Sub-technique Definitions
Definition 1. Motion components and measures for classical XC
skiing. For a time window 1 > techCycle, where techCycle is the
time the athlete uses to perform a technique cycle, the following
motion component definitions can be evaluated:

1. Arm synchronization: Level of synchronous arm motion
around a common axis alateral defined in body coordinate
frame, y in Figure 1, measured by for example correlation:
armCorr [–1 , 1].

2. Independent leg motion: Level of independent leg sagittal
motion measured by the function legMoS(legworkS) :[0, a] →

[0,∞] of class K. That is, legMoS is continuous, strictly
increasing and legMoS(0) = 0. Here legworkS represents the
independent energy or displacement of the leg motions in the
body sagittal plane. There is also a function legMoST(legworkST)
that exhibits the same properties as the independent leg sagittal
motion measure, but here the legworkST represents the energy or
displacement of the independent leg motion in the sagittal and
transversal planes.

3. Arm motion: Level of arm motion measured by the function
armMo(armwork) that exhibits the same properties as the leg
motion measures.

4. Kick direction: The foot kick motion direction around the
axis avertical defined in body coordinate frame, x in Figure 1.
Measured by the cycle average rotation around avertical: kickDir.

5. Kick rotation: The foot kick rotation around the axis avertical
defined in body coordinate frame, x in Figure 1. Measured by
a function of K∞, kickRot(legrotwork) where legrotwork represents
the energy or relative angular displacement of the leg motion
rotation around avertical.

6. Foot/ski orientation: The foot/ski orientation 2 relative to the
body coordinate frame measured by the angles φxx, θxx and ψxx

where xx ∈ [foot, ski] around the axes z, y, x in Figure 1.

The motion component measures are lumped in a vector
xmotionComp defined by the following:

xmotionComp : = [legMoS, legMoST, armMo, armCorr, kickDir, kickRot,ψski] ∈

R> × R> × R> × [−1, 1]× [−π ,π]× R> × [−π ,π] (1)

Definition 2. Classical XC skiing sub-techniques

1. DIA: Arms and legs are active, and opposite leg and arms are in-
phase synchronous while the arms are anti-phase synchronous.
Ski orientation is kept in the longitudinal direction. Arm or leg
motion defines the start and stop of the cycles.

2. DP: Poling with in-phase synchronous arm motion and
insignificant independent leg motion. Arm motion defines the
start and stop of the cycles.

3. Rotational kick (rK): A significant kick with a significant
rotation around the vertical axis. The active leg motion defines
the start and stop of the cycles.

4. DK: Poling with in-phase synchronous arm motion with a
significant kick that is not defined as a rK. Arm motion defines
the start and stop of the cycles.

5. HRB: Same as DIA but skis are rotated outwards in the opposite
direction around the vertical axis. Arm or leg motion defines the
start and stop of the cycles.

6. Double poling with a rotational kick (DPrK): Poling with in-
phase synchronous arm motion and a rK. Arm motion defines
the start and the stop of the cycles.

7. noTech: Any skiing activity not defined by the bullets above.

Definition 2 represents the authors’ qualitative description of the
classical XC sub-techniques. It relates to the FIS International
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Competition Rules (ICR) 310.2.21 from the FIS website2, but
describes the movement patterns more explicitly.

Remark 1. Excluded activities

• Activities where an athlete is performing skating style sub-
techniques, skiing without poles, running with poles, bare
running or performing any other activity that could produce
motion patterns similar to the definitions are not considered
valid in this context.

• Additional motion components may be included to provide
a more specific description of the sub-techniques. Specific
examples are components related to ski gliding and the diagonal
synchronicity between arms and legs to also classify running and
amble gait.

• Non-cyclic activities like downhill tucking, standing still and
non-repetitive motion are not standard classical XC skiing sub-
techniques and will be covered by the noTech class. However,
these activities are included here in order to fully span the
classification sample space.

2.2. Sub-technique Identification
Assumption 1. The athlete performs classical XC skiing, and
the variables xmotionComp, representing the chosen measures from
Definition 1, are independent.

Proposition 1. Under Assumption 1, the motion components from
Definition 1 are sufficient measures for a unique decision function
description of the classical XC sub-techniques in Definition 2.

Proof: In the following, x = xmotionComp is used to allow a more
compact notation. The outline proof is given by proposing the
following logical compositions, derived from the definition 2, as
decision functions:

lDParm(x) : = (armMo > tolarmMo) ∧ (armCorr > tolarmPole),

∈ [0, 1] (2)

lHRBDIA(x) : = (armMo > tolarmMo) ∧ (armCorr < tolarmDiag),

∈ [0, 1] (3)

lHRB(x) : = lHRBDIA(x) ∧ (kickDir > tolkickDir ∨ ψski > tolψ ),

∈ [0, 1] (4)

lDIA(x) : = lHRBDIA(x) ∧ ¬lHRB(x) ∧ (legMoS > tollegMoS),

∈ [0, 1] (5)

lDPrK(x) : = lDParm(x) ∧ (kickRot > tolkickRot)

∧(legMoST > tollegMoST),∈ [0, 1] (6)

lDK(x) : = lDParm(x) ∧ (legMoS > tollegMoS) ∧ ¬lDPrK (x)

∧(legMoS > tollegMoS),∈ [0, 1] (7)

lDP(x) : = lDParm(x) ∧ (legMoST < tollegMoST)

∧(legMoS < tollegMoS),∈ [0, 1] (8)

lrK(x) : = (kickRot > tolkickRot) ∧ (armMo < tolarmMo)

∧(legMoST > tollegMoST),∈ [0, 1] (9)

1https://res.cloudinary.com/fis-production/image/upload/v1540201631/fis-prod/

ICR_Cross-Country_2018_clean.pdf
2www.fis-ski.com

Let all tolerance variables: tolarmDiag , tolarmPole, tollegMoS,
tollegMoST , tolarmMo, tolkickRot , tolψ , tolkickDir , be within the
domain of the comparable motion measures. Then since x
are independent measures, the sets {x | li(x) = 1},∀i ∈

A : = {HRB,DIA,DP,DPK,DPrK, rK} are pair-wise disjoint
by construction, see Figure 2 for an overview of the decision
flow—i.e., {x | lj(x) = 1} ∩ {x | li(x) = 1} = ∅∀i 6= j ∈ A. The
non-technique set is defined by:

lnoTech : = ¬(∨j∈Alj(x)),∈ [0, 1] (10)

Thus, the sets {x | li(x) = 1},∀i ∈ A∗
: = A ∪ {noTech}

are also pair-wise disjoint, and Equations (3)–(10) are unique
decision function descriptions that represent the classical XC
skiing sub-techniques in Definition 2.

Remark 2. Note that Proposition 1 only has a “sufficient” claim,
and that this claim is two-fold. First, this means that there may
exist different motion component measures that can be used in the
sub-technique decision functions. Second, since Definition 2 only
holds qualitative information, other decision function definitions
may be proposed, i.e., the realization of Definition 2, represented
by the decision functions from the proof may be changed with other
measures and function definitions.

Remark 3. The structure of the proposed decision function relies
on three “super” classes derived from the arm motion component:
Correlated, anti correlated and no-armmotion. All sub-techniques
belong to either of these classes and are further refined by the leg
motion components.

Remark 4. The decision functions lj and the specific set of
tolerance parameters in proof of Proposition 1 may be used as a
detailed measurable definition of the classical XC sub-techniques.
A drawback of such an approach is that this would require models
and sensor systems that specifically estimate the proposed motion
components. This can however be handled by standards, specifying
motion components and decision functions dependent on the
sensor setup.

Remark 5. Note that the requirement in Definition 1 1t >

techCycle, may be conservative when considering a fixed window
for all sub-techniques, all sessions and all athletes. If a sub-
technique cycle consists of two anti- or in-phase motion patterns,
and the motion components do not discriminate between the two,

then the time window can be relaxed to 1t >
techCycle

2 for that
particular sub-technique. This is the case for DIA and HRB. In
Definition 2, DK is defined independent of which leg generates the
kick, such that the DK cycle is constrained by the arm cycle time.

2.3. Motion Estimators
The quantification of the motion components in Definition
1 relies on measurements from sensor systems either in the
environment or being attached to the athlete or the equipment.
In this work, IMU sensors were attached to the arms and skis of
the athlete to provide acceleration and angular rate information
that were used to estimate the motion components. The term
“estimators” is used here since the components were indirectly
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FIGURE 2 | An example flowchart of the decision functions from Equation (3) to (9). With the exception for armCorr the tolerances are omitted in the diagram in order

to reduce the notation.

estimated through a model relying on certain assumptions, or
since signal processing on the sensor raw data (like filtering) were
necessary due to sensor measurement errors and noise.

Assumption 2. Sensor calibration. All sensor information is time
synchronous and aligned to a common athlete body coordinate
frame, defined in Figure 1.

2.3.1. Arm Synchronization
To obtain a measure of the arm synchronization level, the
correlation coefficient for each time-stamp t over the window1t
related to techCycle is used here and calculated as follows:

ssxy(t,1t) : =
∑

i∈[t−1t
2 ,t+1t

2 ]

(xi − x̄t)(yi − ȳt) (11)

armCorr(t,1t) : =
ssAleftAright

(t,1t)

ssAleftAleft
(t,1t)ssArightAright

(t,1t)
(12)

To simplify calibration and maximize the signal to noise ratio,
gyroscope sensors were used as comparison signals A. Here Aleft

and Aright are the angular rates around the lateral axis from
the left and right arms respectively. Note that more elaborated
approaches utilizing all the channels of the accelerometers and
gyroscopes may be considered.

2.3.2. Leg and Arm Motion
As for arm synchronization, the angular rate around the arm’s
lateral axis was used as a basis for estimating arm motion. From

the sum of squared values in Equation (11), the variance of the
arm motion components can be calculated:

σ 2
x (t,1t) =

ssxx(t,1t)

fr1t
(13)

armMo(t,1t) : = σ 2
Aright

(t,1t)+ σ
2
Aleft

(t,1t) (14)

where σ (t,1t) denotes the standard deviation at time t over a
window of1t and fr is the sampling rate of the signal.

For the independent leg motion estimation, the difference in
relative angles of the legs is used as a basis. These signals are
derived from the angular rate around the lateral and vertical body
axes. The angular rate raw data are band-pass filtered, integrated
with bias removal and finally differentiated accordingly:

rFLH(t) = bandpass(lowB, highB, rF(t)) (15)

2(t) =

∫

rFLH(t)dt (16)

2M(t) =2(t)−mean(2(t)) (17)

angDiff2R (t) : =2Mleft(t)−2Mright(t) (18)

where rF and rFBH represent the measured and filtered rotational
rates, and 2 and 2M are the estimated and bias removed
orientation of the legs. Here angDiff2(t) represents the angular
difference between the left and the right leg. The independent leg
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motion is then estimated similar to Equation (13) given by:

legMoS(t,1t) : = σ 2
angDiffθR

(t,1t) (19)

legMoST(t,1t) : = σ 2
angDiffθR

(t,1t)+ σ
2
angDiffψR

(t,1t) (20)

Where θR and ψR denote the angle differences around the lateral
and vertical axes respectively.

2.3.3. Kick Rotation
Several methods may be applied to quantify the athlete’s kick
rotation. For example, any norm of the angle around the vertical
axis over the time period 1t could be used. In this presentation,
the signal strength of the rotation around the vertical axis is
compared with the rotation around the lateral axis. This was
chosen such that the tolerance parameter was less influenced by
the individual differences in athlete capabilities.

kickRot(t,1t) : =
σangDiffψH (t,1t)

σangDiffθH (t,1t)
(21)

Note that kickRot(t,1t)
σangDiffθH

(t,1t)−→0
−−−−−−−−−−−→ ∞. This is handled

by the leg motion restrictions, preventing rotational kick
classification in cases of insignificant motion.

2.3.4. Foot/Ski Orientation
Typically angular rate measurements provide a good signal to
noise estimation of orientation, but at the cost of estimator
drift due to bias and numerical issues during the integration
step, i.e., the absolute orientation is not available. Due to the
gravitational field, the accelerometer datamay be used to generate
absolute estimates of angles around the longitudinal and lateral
axis, under the assumption of relative low dynamic environment.
Combining the two measurement sources is common in
navigational and robotic applications, see for example Fossen
(2002) or Grøtli et al. (2016), producing high resolution and
precision attitude estimates. However, the main requirement in
the following section HRB estimator is the availability of absolute
estimates, i.e., the angular rate measures are in this context
less relevant. Absolute yaw/heading estimates may be provided
by magnetometers or a dual antenna global navigation satellite
system (GNSS) setup, using the ski as a baseline. However,
neither of these sensor systems were available in this work, thus
only absolute roll and pitch estimates are provided. These can be
estimated through knowledge of the gravity components, see for
example the textbook by Farrell and Barth (1999), and calculated
according to the following relationship:

f =





sin θ
− cos θ sinφ
− cos θ cosφ



 g (22)

ff (t,1tskiOri) : =
1

1tskiOri

∑

i∈[t−
1tskiOri

2 ,t+
1tskiOri

2 ]

f (i) (23)

φ(t,1tskiOri) = atan2(−ffy,−ffz) (24)

θ(t,1tskiOri) = atan2(ffx,
√

f 2
fz
+ f 2

fy
) (25)

where g is the gravity component and f represents the
acceleration measurements. The use of the absolute angular
estimates of the skis in this work is limited to the low
pass components (ff ). Therefore, a moving average filter with
a window 1tskiOri was used to remove the high frequency
components of f (t).

2.3.5. ψski Estimator and Kick Direction
HRB can be identified by using the ski orientation or the kick
direction as estimators. The kick direction may be identified
by acceleration measurements from the skies but this has not
yet been explored and is left for further work. The preferred
estimator of HRB is the difference in ski yaw/heading. For
example in Andersson et al. (2014b) the HRB technique was
video analyzed and characterized at an incline of 15 degrees.
The athletes employed in this study a lateral angle/yaw between
the skis at mean values of 25–30 degrees and standard deviation
between 4 and 11 degrees, both values increasing with lower
velocity. In our presentation reliable estimates of the absolute
yaw were not available as there was no magnetometer in the
applied IMU sensors. Absolute ski roll and pitch are however
estimated by using the gravitational acceleration component as
a reference. Note that these estimates differ from the relative
angular estimates presented in Equation (15), which were based
on the angular rate measurements from the IMU. It is common
to combine the two estimates in an attitude observer, as discussed
in section 2.3.4. For simplicity this is not considered as it will not
gain any principal advantages for the presented low frequency
estimator. However, in cases with absolute yaw measurements
available and estimators utilizing high frequency components,
such observers should be considered. The HRB estimator used
in this study was defined by:

eψski : = (φleft − φright)(θleft + θright) (26)

lHRBDIA(x) = (armMo > tolarmMo) ∧ (legMo > tollegMo)

∧ (armCorr < tolarmDiagHrb) (27)

lHRB(x,φ, θ) = lHRBDIA(x) ∧ (eψski > toleψ ) (28)

lDIA(x) = lHRBDIA(x) ∧ ¬lHRB(x)∧

(armCorr < tolarmDiagD) (29)

where eψski is the ski orientation estimate that replaces kickDir
and ψski in Equation (4). φ and θ are the ski pitch and roll angles
in radians. Furthermore, notice that the negative arm correlation
constraint is made more strict for the DIA sub-technique with
tolarmDiagD < tolarmDiagHrb, in order to have a more robust
separation between the two sub-techniques (DIA and HRB). The
main component in the eψski estimate is the ski roll angle. Under
the assumptions that the roll angles are relatively small and that
the athlete keeps the skis in parallel and legs straight with stiff
ankle and knee, then the roll angle will measure the distance
between the skis:

legLatDist = hipWidth+ (φleft − φright)legHight (30)

This estimate may be used for setting a reasonable toleψ
coefficient. Including the pitch (θ) angles in the estimator and
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a positive tolerance parameter ensures that HRB will only be
classified in uphill terrain. Turning and skating downhill will
produce negative estimates.

3. CASE STUDY

In order to demonstrate the framework, data from an outdoor
field trial at Meråker in 2017 was used (Solli et al., 2018).
All results and plots were generated by MATLAB analysis
tools, among them skiViewer, developed in the two projects
AutoActive and emPower, both supported by the Norwegian
Research Council. The study was pre-approved by the Norwegian
Centre for Research Data, conducted in accordance with
the Declaration of Helsinki and assured by the responsible
institution, the NorwegianUniversity of Science and Technology.
All participants were fully informed of all test protocols and
procedures before they provided their written consent to
participate. The main objective of the Meråker study was to
combine HR monitoring, GNSS, and micro-sensor technology
to investigate sex-based differences in speed, sub-technique
selection, and kinematic patterns during low-intensity training
(LIT) and high-intensity training (HIT), where LIT: HR < 82%
of maximal HR (HRmax) and HIT: HR > 87% of HRmax,
for classical XC skiing across varying terrain. The skiers were
instructed to initially ski at a low intensity using their preferred
sub-technique, then at competition speed (i.e., HIT), with
approximately 2 min of rest in between. The same course was
used for both the LIT and HIT tests, consisting of three rounds
of a 1.7 km-long track with varying elevation and turn topology.
The track represents a typical racing track, and it was chosen to
stimulate the athlete to use their full repertoire of sub-techniques.
In Figures 3, 4, an overview of the course elevation and map
positions is shown and decomposed by comparable segments,
starting, and stopping at the same positions for each round. To
compare the algorithm results with reference data, two men and
two women were randomly selected. These skiers are referred
to as subjects 1 to 4 throughout the text. All test subjects had
competed at national and international levels, and the use of
sub-technique in the LIT session was labeled and manually
synced to the motion data based on a video, captured by a skier
following the test subject. The labeling was done independent
of the definitions in this paper. The sub-technique cycles were
defined to start and stop when the subject’s left arm was extended
all the way behind the body (Rindal et al., 2017). Each cycle was
then labeled either DIA, DK, DP, HRB, TRN, TCK, transition to
DIA (tDIA), and transition from DIA (fDIA)

To establish a proper comparison between the expert
qualitative evaluation (labeling of the sub-techniques) and the
definitions in paper, a set of rules/mappings of the labels to a
common reference set were made.

Definition 3. Comparison rules

• Converting from data samples to cycles: Within each cycle, the
sub-technique with the highest sum of algorithm classification
samples was chosen to represent the algorithm classification
result. Note that this will have some low pass filtering properties,
letting the majority of samples represent the cycle

• Turn sub-techniques: The two sub-techniques DPrK and rK
were merged and labeled to the TRN class.

• Tucking: The TCK class appears between cycles and is not
considered a sub-technique cycle in this paper. It is therefore
labeled as noTech.

• Transition techniques: Two mappings were considered.

– a) The first maps tDIA and fDIA to DIA
– b) While the second maps tDIA as DIA but fDIA as DK

See section 4.3 for a detailed discussion on the implications.

These mapping rules were based on discussions between XC
skiing experts and algorithm developers. Discussions like these
are practical examples of why it is necessary to work toward a
common framework formotion components and the unique sub-
technique definitions. Further discussion of the rules is provided
in section 4.3.

3.1. Instrumentation
This work builds upon data presented in Solli et al. (2018),
where motion data were collected by six IMU sensors (Physiolog
5, GaitUp, Switzerland), consisting of a triaxial accelerometer
and gyroscope and a barometric pressure sensor. The sensor
system sampling frequency, 256 Hz, was down sampled to 20
Hz and all data channels were synchronized in time, before
the classification. The IMU sensors were mounted using straps
with velcro on the body—the sternum, lower back, and wrists—
and with velcro straps in front of the binding on the left
and right skis (Figure 1). The reason for placing the sensors
on the skis was to collect data of the ski-motion directly.
Garmin Forerunner 920XT (Garmin Ltd., Olathe, KS, USA),
with multi constellation GNSS active (GPS and GLONASS)
and barometric altitude monitor, validated in Gløersen et al.
(2018), was included in the system and used to measure the
position, HR and altitude with a sampling frequency of 1 Hz. The
positioning system was mainly used for comparing the identified
techniques throughout the track. Hence, a frequency of 1 Hz
was sufficient for segment definitions under the assumptions
that the segments were sufficiently long. Video was captured
during the LIT laps using a Garmin VIRB (Garmin Ltd., Olathe,
KS, USA) placed on the forehead of a skier following the test
subjects. All data were logged on the individual sensor systems
during the tests and analyzed offline in MATLAB (MathWorks,
Natick, MA, USA). The GNSS and IMU data were synchronized
by high-pass filtering and cross-correlating data were recorded
by the barometer in both sensor systems. In order to normalize
differences in sensor positioning, the arm sensors were calibrated
by following Seeberg et al. (2017), and the ski-mounted sensors
were aligned by assuming zero average horizontal acceleration
throughout the activity.

3.2. Algorithm Parameters
The sampling and tolerance parameters used in the classification
algorithm implementation are given in Table 1, related to
sections 2.3.1 and 2.3.4, and Table 2, related to proof of
Proposition 1 and section 2.3.5. The parameters were mainly set
by assuming a typical sub-technique cycle length and manual
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FIGURE 3 | Time behind the fastest lap relative to the distance from the start of the lap. The fastest lap (5) is used as a reference and all data are projected onto this

lap through linearly scaled distance measures. The specific sub-techniques and the elevation are displayed along the distance to show the elevation effects. Lap 1

(Warm-up), 2–4 (Low-intensity training, LIT), and 5–7 (High-intensity training, HIT).

inspection of the data sets. The parameter1t may be considered
time varying and is identified by frequency analyzing the
arm motion throughout the session, as presented by Rindal
et al. (2017). An analysis of the performance sensitivity of
this parameter was not conducted in this study, but large
values are expected to produce classification errors in transition
phases, while small values may produce errors due to lack of
discriminating information.

4. RESULTS AND DISCUSSION

In this section, the results from the implementation of the
sub-technique classification approach, section 2, is presented
and discussed based on data produced by the case study
presented in section 3. The discussions underline the motivation
for developing a more detailed platform for comparing
technique analysis methods, detailing the motion components,
preventing unambiguous definitions and allowing more precise
discussions and quality assessments of an athlete’s technical
ability. Such understanding is highly relevant for providing a
valid communication platform for researchers in this field, as well
as for developing preparation and debriefing tools for coaches
and athletes as exemplified below.

4.1. Technique Distribution Overview
Table 3 and Figures 3, 4 show the sub-technique distribution for
a representative participant’s (i.e., Subject 1) session, calculated
by the presented approach. The session had seven laps, one
warm-up lap, three LIT video validated technique laps (2–4)
and three HIT laps (5–7). The fastest lap was the first of the
HIT laps marked “5” plotted at the reference zero “Time behind
fastest lap” along the x-axis Distance in Figure 3. All other laps,
and associated data, are projected onto the distance defined by
the fastest lap, in order to allow a proper comparison. Figure 4
only contains the first LIT lap and the fastest HIT lap in the
horizontal plane. This is done to simplify the view of the sub-
technique distribution, dependent on intensity, position, and
track curvature.

By listing the sub-technique from the lowest to highest
gears, Figures 3, 4 show how the athlete uses HRB in the
steepest part of the track (around 1,300 m); DIA in the
moderate to steep hills (400–800 m); DK in moderate incline
and transition between DIA and DP (for example 600–700
m); DPrK in turns in moderate to negative incline (at 350 m
and track changing parts at approximately 600 m and toward
the lap end); DP for example after the top of a hill; rK in
the downhill parts, including turns; and finally noTech mainly
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FIGURE 4 | Positional sub-technique distribution. Comparing the sub-technique distribution of the low-intensity (LIT) validated lap 2 with the fastest high-intensity

(HIT) lap 5. The HIT lap is projected onto the LIT lap and shifted 0.00006◦ outwards in order to visualize the relative differences. The plot highlights the sub-technique

distribution with dependence on the track turns.

TABLE 1 | Algorithm and estimator sampling parameters.

Data windows and sampling parameters

Analysis window

1t [s]

Absolute angle

region 1tskiOri [s]

Sampling frequency

[s−1]

Pass low band lowB

[s−1]

Pass high band

highB [s−1]

1.3 2.5 20 0.3 3

in the samples where the athlete is racing downhill in the
TCK position.

Table 3 summarizes the lap-timing, sub-technique
distribution and physiological parameters for Subject 1,
which provides a basis to the overall motivation for identifying
the sub-technique distribution. It is an example on how
information from different sensor systems may be used as a
tool by coaches and athletes to evaluate a training session in
more details. For example, the transition from LIT to HIT

obviously results in higher HR and speed. But comparing the
HIT laps internally shows an increased lap time with increased
HR. Furthermore, the sub-technique distribution reveals that
the subject shifted the use of high gear DP in the first HIT
lap (5), to the active leg techniques DIA and DK in the two
last HIT laps (6 and 7). Grouping this information may give
insight to the athlete’s pacing strategies and fatigue, but may also
be a result of changes in equipment or other external factors,
e.g., snow conditions. In this multiple IMU sensor setup, cycle
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frequencies are readily available features to be analyzed with
the sub-technique distribution. For Subject 1, DIA, DP, and
DPrK were performed at similar arm frequencies for the same
intensities, but increased from the LIT to the HIT laps. The
DK was performed at a lower frequency which is common, and
HRB at a higher frequency which is due to steep hills and no
ski gliding. The low arm frequency estimates in rK and noTech
are less relevant since the arm motion in these techniques
was not defined. The frequencies depicted in the table were
calculated by cross-correlating the angular rate around each of
the arms, and averaging the results. Further work will include
the leg motion in the frequency estimation. This ability to
collect and combine more detailed information about the session
performance and context enables the coaches and athletes to
evaluate their racing tactics, training planning, training sessions,
skiing equipment, and generally aid researchers in testing
new hypotheses coupling physiological, mechanical, and other
relevant contextual information both in lab and field conditions
(Marsland et al., 2017, 2018; Solli et al., 2018).

The quality of the performed sub-techniques is not evaluated
in the classification process per se, and both “good” and
“bad” sub-technique performance are classified in accordance
with the tolerance values. However, increased tolerances and
a narrower technique cycle window parameter will enlarge
the noTech set and reduce the remaining sets of sub-
techniques. Such parameter adjustments may be used for
“filtering” quality sessions, evaluating the athlete time/distance
usage of more “precise" sub-technique classes. This may be
a useful tool for high-level XC skiing athletes who typically
perform the sub-techniques in interval and race sessions
more distinctly. If the goal is to record what “looks like"
a sub-technique in a broader sense according to definition
2, comparing a variety of sub-technique implementations
spanning recreational to high-level athletes, less restrictive
tolerance parameters should be used. The presented results
are based on data from high-level XC skiing athletes, but a
set of less restrictive parameters was used. These parameters
are similar to the tolerances used in Seeberg et al. (2017) for
classification of DIA, DP, and DK where the study also included
recreational athletes.

In recent years, the classical XC skiing sub-techniques
have been extensively debated and new regulations have been
introduced, restricting equipment (e.g., pole length) and sub-
technique usage along the track (e.g., diagonal zones, where
only one pole is allowed in the ground at any time). As such,
automated or decision support tools for enforcing these rules
require common qualitative detailed definitions of the sub-
techniques and also the sub-techniques’ distribution around the
race track, as exemplified by Figure 3, 4.

4.2. Algorithm Mechanisms
Figures 5–7 display examples of all sub-techniques defined in
Equations (5) to (10) and (28), and illustrates how the decision
functions from the proof of Proposition 1 can be used together
with the implemented motion estimators from section 2.3 to
classify the classical XC skiing sub-techniques. Note that the chest
sensor data were available and depicted in the figures, but not

TABLE 2 | Algorithm and estimator tolerance parameters.

Tolerance parameter values from the proof of proposition and estimators

tolarmDiagD tolarmDiag tolarmPole tollegMoST tollegMoS

–0.4 –0.3 0.4 92 1.52

tolarmMo tolkickRot toleψski tolarmDiagHrb

1e4 2 0.06 –0.3

used in the sub-technique classification. The figures include a
single video frame from a full video of the subjects synchronized
with the sensor data and motion estimators. An example video is
available as Supplementary Materials.

The importance of the arm correlation as amotion component
is clear when comparing the plots in Figures 5, 7B with the
plots in Figure 6. The arm double poling motion in DP, DK,
and DPrK exhibits a correlation close to one, while the diagonal
motions in DIA and HRB give correlations far below zero. This
makes the arm correlation a good discriminator together with
a measure of the arm motion energy, underlining Remark 3,
which also discriminates the rK and noTech sub-techniques
classes (see Figures 7A,C). The double poling sub-techniques
(DP, DK, DPrK), shown in Figure 6, are discriminated by the leg
work components, legMoS, legMoST, and kickRot. These reflect
motion in the sagittal plane, in both sagittal and transversal
planes and the rotation around the vertical axes. Other more
direct angular rate discriminators, and motion components,
could for these cases be implemented. However, the combined leg
motion estimators showed robust and well-behaved properties
even though the sensors were mounted on the skis instead of
the lower legs. It is worth mentioning that with the sensor
mounted on the ski, the leg motion was not directly recorded
and can only be inferred by the ski motion through the
spring-damper hinge connection (binding) between the foot and
the ski.

The DIA and HRB sub-techniques are mainly separated by
ψSki, which in the presented plots is above the threshold only
for the HRB case (Figure 7B). The arm correlation threshold was
set slightly higher for the HRB compared to the DIA case, see
Equations (27–29), since less anti-synchronized movement was
expected in this sub-technique.

In the noTech example, Figure 7C, the athlete is tucking
and the relative motion components kickRot and armCorr have
significant fluctuations above the parameters threshold, but the
absolute measures armMo and legMoST are well below the
specified thresholds. This shows that even though absolute

motion components may be highly dependent on the athlete, the
session intensity and sensor placement, it is necessary to include
such components to control the signal to noise errors for the
relativemotion components and promote algorithm robustness.

The reason for the large differences between tolarmMo,
tollegMoS, and tollegMoST is the sensor placement. The arm sensors
were placed directly on the arms while the leg sensors were
placed on the skis. Since the skis are fixed to the foot through
bindings, the angular rate around the lateral axis was significantly
less than it would have been if the sensors were placed directly
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TABLE 3 | Technique distribution together with lap and physiological parameters.

Subject 1 performance summary

Warm-up LIT HIT

Lap: 1 Lap: 2 Lap: 3 Lap: 4 Lap: 5 Lap: 6 Lap: 7

Time [h :min : s] 00:08:20 00:06:36 00:06:26 00:06:23 00:04:21 00:04:36 00:04:51

Total distance [m] 1680 1664 1669 1681 1649 1681 1670

Total climb [m] 60 59 61 60 54 55 55

Speed [m · s−1] 3.36 4.20 4.32 4.38 6.29 6.09 5.73

HR [beats ·min−1] 123 138 135 135 168 178 180

HR/HRmax [%] 63.7 71.5 69.9 69.9 87.1 92.3 93.3

Arm frequency(freq) [s−1] 0.71 0.67 0.66 0.67 0.85 0.82 0.84

DIA [%] (freq [s−1]) 41 (0.77) 39 (0.77) 39 (0.77) 37 (0.78) 19 (0.96) 21 (0.93) 22 (0.95)

DP [%] (freq [s−1]) 39 (0.74) 29 (0.70) 30 (0.69) 29 (0.72) 53 (0.96) 43 (0.95) 44 (0.93)

DK [%] (freq [s−1]) 01 (0.64) 08 (0.65) 07 (0.63) 09 (0.65) 03 (0.96) 11 (0.75) 11 (0.80)

DPrK [%] (freq [s−1]) 04 (0.72) 04 (0.75) 03 (0.75) 03 (0.80) 05 (0.94) 05 (1.00) 06 (0.99)

rK [%] (freq [s−1]) 02 (0.62) 02 (0.55) 02 (0.32) 02 (0.36) 02 (0.27) 01 (0.25) 02 (0.33)

HRB [%] (freq [s−1]) 00 (NaN) 00 (NaN) 00 (NaN) 01 (0.96) 02 (1.23) 02 (1.12) 01 (1.21)

noTech [%] (freq [s−1]) 14 (0.47) 18 (0.40) 19 (0.40) 18 (0.36) 17 (0.37) 17 (0.34) 15 (0.41)

BLapeak [mmol · L
−1] 1.3 13

RPE [Borg 6− 20] 11 18

LIT, low-intensity training: Blood lactate concentration (BLapeak ) < 2.5 mmol · L−1, rating of perceived exertion (RPE) < 14 Borg or heart rate (HR) < 81% of maximal heart rate (HRmax )

HIT, high-intensity training: BLapeak > 4.0 mmol · L−1 , RPE > 16 Borg, HR > 87% of HRmax .

DIA, DP, DK, DPrK, rK, HRB, and noTech denotes the sub-techniques from section 2. The table values are given by the ratio of the performed sub-technique samples in a lap with

respect to all the samples in that lap.

on the legs. The ski to leg mapping threshold is not linear
and will depend on athlete sub-technique, equipment and
conditions. A more general leg motion estimator , with reference
to section 2.3.2, incorporating both gyro and acceleration
channels may therefore be more robust and invariant to
the lower leg or ski placement. This will be considered in
further work.

Skating XC skiing sub-techniques and motion cycles without
pole usage are not commonly considered part of the classical
XC skiing sub-technique domain (Remark 4). Exceptions are
the rotational kick classes which are allowed in turns and
when direction changes are necessary. rK will for example
also be active when the athlete performs G5, skating without
poles, and DPrK will be active during G3, the double dance
sub-technique. By including more motion components, further
distinctions between sub-technique classes may be defined, and
a relaxation of Assumption 1 may be considered. Examples
are estimators for the ski-glide/slide motion component, based
on acceleration measures, discriminating between HRB and
the sliding HRB, also called the diagonal skate sub-technique
(G1). Coupling rotational kicks from both legs during a
double poling motion will indicate G2 or G4, the paddling
or single dance sub-techniques, where further discrimination
will require estimates of kinematic timing and similarity
of the arm work. Including more motion components may
also be aimed at making the classification more precise
and robust. The correlation between the angular rate of
the arms and legs may for example be used in the DIA

definition, but also discriminate the amble gait as suggested
in Remark 1.

By introducing other sensor systems like magnetometers,
which are common in many IMU packages, ski absolute
orientation may be estimated through the electromagnetic field
of the earth. The drawback of using this measure directly is due to
the local variations of the field. However, the relative orientation
between the skis may be robustly identified under the assumption
that the skis are in the same but distorted electromagnetic field.
Magnetometer information was unfortunately not available for
this work, but will be considered in further studies.

The methodology in this work promotes the understanding
of the underlying motion mechanisms gained from motion
sensors placed on the athlete’s extremities. The derived motion
components and associated thresholds are used directly in the
definition of the sub-technique decision functions. This gives
a basis for converging to common definitions by agreeing
on the structure, the motion components, and the threshold
values for discriminating the sub-technique definitions. Setting
the threshold for ski orientation at the point where the
DIA sub-technique shifts to HRB, or the threshold for kick
rotation or direction to where the DK turns to DPrK, should
therefore be a quest for precise and commonly accepted
definitions. The parameters can be agreed upon through open
discussions in the community or less directly found through
an identification process, similar to what would be the case for
algorithm calibration, based on labeled data provided by the
different parties.
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FIGURE 5 | The figure displays a snapshot of the video of subject 1 synchronized with the sensor data and motion estimators. The video is in the first subplot. The

second subplot shows the accelerometer data from the chest sensor plotted with the classification of each cycle according to Equations (5) to (10) and (28) together

with the manual expert labeling. Subplots 3 to 8 show the motion estimators defined in Equations (19), (13), (11), (21), (24), and (20), respectively. The tolerance value

of each motion estimator is plotted as the dark horizontal line in each subplot. The criteria for the DIA definition in Equation (5) is satisfied as is illustrated with (high

legMoS and armMo, low armCorr, kickRot, and ψski ) while simultaneously not satisfying the criteria for the HRB definition in Equation (28). The figure is a single video

frame from a full video of the subjects synchronized with the sensor data and motion estimators. An example video is available as Supplementary Materials.

4.3. Algorithm Results Compared With
Domain Expert Labels
In order to show the algorithm identification validity and
discuss the challenges with the lack of quantifiable sub-technique
definitions, the classification results are compared with expert-
labeled data. The main tool for this comparison is the confusion
matrices presented in Figures 8, 9, where the manually labeled
(Labeled classes) classes are given by the columns and the
algorithm labeled classes are arranged in rows (Classified classes).
For the confusion matrices in Figure 8 we use the mapping
a) of labeled sub-techniques as defined in Definition 3, thus
mapping both tDIA and fDIA to DIA. The most significant
label disagreement is then type II, false negative, error between
algorithmDK andmanual DIA labels. See for example Figure 8C
where 13 cycles were classified as DK, but the expert labeled
as DIA. This may seem to be a strange disagreement as the
arm correlation is a strong and generally robust discriminant.
However, the reason for this disagreement lies within the
Definitions 3 and that these cycles are in the transition from
DIA to typically DK or DP. These cycles, or half cycles (as they
often are shorter), contain mainly correlated arm movement
and leg work and are thus in accordance with the presented
decision functions classified as DK, which is not in accordance
with the fDIA rule in Definition 3 a) where these cycles were
considered an extension of the DIA class. This is an example at
the core motivation for the proposed framework, highlighting
the discussion of how new expert-classified sub-technique classes
are to be interpreted. In this particular case, the transition

techniques are not implemented, but it shows which of the
definedmotion components are most significant within the cycle.
This gives input to the mapping rules in Definition 3, but also
suggests that the sub-technique mechanisms need to be better
understood such that common and measurable definitions may
be derived. However, if we use the mapping rule b) in Definition
3, thus mapping the labeled tDIA to DIA and fDIA to DK, we
get the confusion matrices shown in Figure 9. If we compare
the confusion matrices in Figures 8, 9 we observe that changing
the label improves the precision in the rightmost column for
the DK class from 83.1%, 78.2%, 80.9, and 76% for subjects
1, 2, 3, and 4, respectively, to 96.9%, 92.7%, 100, and 100%.
Thus, the achieved precision for DK and the overall classification
accuracy improve significantly. However, some XC experts might
disagree on whether a DK cycle occurs in the transition between
DIA and DP even though the algorithm predicts a DK cycle.
On the other hand, knowing the definition of a DK cycle from
Equation (7), it is a correct prediction—but such single cycles can
also simply be filtered out in a post-processing of the classified
cycles to agree with an XC expert’s opinion. Or, one might
argue that the XC expert is wrong, and that more detailed sub-
technique definitions and classification algorithms can bring new
knowledge into the field.

The comparison of HRB vs. DIA also led to type I and
II disagreement, in which the reasons are two-fold. First, the
necessary HRB motion components were not directly available
from the sensor system, i.e., a model was developed relying on
the athlete’s usage of the ski edges during HRB. It was however
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FIGURE 6 | Caption (A) displays Subject 1 performing the DP sub-technique as defined by Equation (8) (high armMo and armCorr, low legMoS, and legMoST ). The

second caption, (B), displays subject 1 performing the DK sub-technique as defined by Equation (7) (high armMo, armCorr , legMoS, and legMoST ) but not satisfying

the conditions for DPrK in Equation (6). DPrK is displayed in (C) by subject 1 (high armMo, armCorr, kickRot, and legMoST ). An example video is available as

Supplementary Materials.
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FIGURE 7 | The rK sub-technique, performed by subject 1, is displayed in (A) with low armMo but high legMoST and kickRot as defined by Equation (9). (B) Shows

the HRB sub-technique with high armMo, armCorr, and ψski as defined in Equation (28) illustrated by subject 3. Lastly, the noTech class, corresponding to Equation

(10), where the motion estimators do not fit any defined sub-technique, is shown in (C) by subject 1. Subject 3 was included in this illustration since no video of

subject 1 performing HRB was available. The figures are single video frames from a full video of the subjects synchronized with the sensor data and motion estimators.

An example video is available in the Supplementary Materials.
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observed that some athletes edged the skis, seemingly to produce
more friction, when climbing a slope in DIA. The second reason
is related to the tolerance definitions and specifying the boundary
between HRB and DIA legwork (parallel vs. angled skis). The
remaining disagreements found in the matrices are also related
to tolerances of the arm and leg work in general, i.e., defining the
tolerance for leg work between DP, DK, and DPrK (included in
the TRN label). In the cases where arm work is not correlated
enough to be considered double poling type sub-techniques,
nor anti-correlated enough to be considered diagonal type sub-
techniques. These tolerances are not systematically tuned but
only manually set by inspecting the range of the sensor data.
Proper definitions of the sub-techniques require these parameters
to be set in an unbiased manner through standardization work
involving XC skiing community experts.

The accuracies for the four labeled subjects can be read from
the lower right in the confusion matrices in Figure 9. A total
of 11 cycles were left out of the four data sets, which consists
of 3427 cycles, since the XC expert found those cycles to not
match any of the sub-techniques. These cycles were unusual
movements, such as when the skier was checking the watch
on the arm. The data sets from the four subjects received
accuracies of 98%, 98%, 97, and 97%, respectively. DIA, DK, and
DP exhibited excellent classification accuracies, with sensitivity
and precision mostly approaching 100, whereas the TRN, HRB,
and noTech classes exhibited somewhat lower sensitivity and
precision due to lack of quantitative definitions and indirect
motion component measures.

4.4. Framework Discussion
The presented approach is based on describing the mechanisms
of classical XC skiing. It is expert and data driven in the sense
that the models are derived based on the known kinematics of
the sport, as well as the placement and types of sensors used
for the motion components. When placing IMU sensors on
the body extremities, the data produced is closely related to a
video stream in the sense that the angular rates reflect a course
estimate of the athlete kinematics. This is advantageous as it
will provide a relatively direct and simple mapping, with the
decision function description, to manual video analysis labeling
for common qualitative sub-technique definitions. This is shown
in Figures 5–7, where the motion component time series are
synchronized with the video frames.

The motion components and decision functions from
Definition 1 and the proof of Proposition 1 are used for
classification under activity constraints. This means that the
results are only valid in the case when the technique style,
i.e., classical XC skiing, is known beforehand, see Assumption
1 and Remark 1. A relaxation of these constraints can be
considered by extending the motion component set, adding
decision functions that describe other definable sub-techniques,
for example including the skating XC skiing style, as is also
discussed in section 4.2. The framework does not propose a
concrete recipe for composing the motion components and
decision functions, meaning that different constructions may be
considered, as highlighted in Remarks 2 and 3. As an example,
different sensor systems can be applied as long as the derived

motion components are unique and the decision functions map
to an established sub-technique definition.

A main contribution from this paper is to provide a common
communication platform for researchers in this field. In addition,
clarifying the basic motion components and identifying sub-
techniques are of high relevance for coaches and athletes in
the development and utilization of digital coaching tools. For
example, the Norwegian XC skiing team has systematically used
technological tools combining GPS and IMUs to analyze where
andwhy skiers gain or lose time during training and competitions
as part of their preparations for major championships in the
last years. In this context, detection of sub-techniques and
their temporal patterns provides understanding of performance
differences related to different pacing strategies, it allows
detection of possible effects of training or technique changes and
it may help in the optimization of tactical choices in a given
track. More detailed understanding of these aspects can provide
important decision support both in training and in competition
settings, thereby being important coaching tools and parts of the
mental strategies when preparing for competitions.

Four IMU sensors, placed on arms and legs, are used to
exemplify the methodology presented in this paper. However,
pose tracking video analysis or information from marker-based
camera systems may also provide sufficient information for
estimating the proposed motion components. In cases where
a single IMU sensor is used, for example when placed on
the sternum, the proposed motion components cannot be
estimated directly. However, comparable results can be achieved
by building amodel, based upon recorded data annotated/labeled
in accordance with the sub-technique definitions, motion
components and decision functions. In such a case, the motion
components will be implicitly represented in the trained model.
However, care should be taken when applying a single sensor
setup for classification of sub-technique definitions that are based
on properties from the movement of more than one segment, as
these properties may not in general be observable through the
data provided by the one sensor.

In order to perform a proper validation of this
implementation, a group of experts representing the main
stakeholders in the XC skiing community is required to
label the same data sets individually. This may produce data
that are less biased and give insight into what the common
definitions of the sub-techniques should be, including the formal
definitions of the decision functions; the motion components
and the constraining tolerances (see Remark 4). The presented
approach has similarities to research within the physiotherapy
and rehabilitation domain. In order to collect valid, reliable and
comparable data on health and disability at both individual and
population levels, the WHO has established The International
Classification of Functioning, Disability and Health (ICF)
standard (World Healt Organization, 2001). Langhammer and
Stanghelle (2011) suggests that the Movement Quality Model
(MQM) from the work by Skjaerven et al. (2008) relates to body
structures and body functions in the ICF concept. The MQM
represented the essential features and characteristics of the
movement quality, reflecting a group of physiotherapists. These
concepts are analogous to the framework presented in this work
and are in line with the suggested need of gathering a group of
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FIGURE 8 | (A–D) Confusion matrices for subjects 1 to 4 with the mapping of the labeled sub techniques fDIA and tDIA to DIA, thus using mapping a) in Definition 3.

XC skiing experts to label and formulate motion components to
establish more detailed quantifiable sub-technique descriptions.

The concept may also be taken further in large-scale
heterogeneous motion data sets of XC skiing, and sport activities
in general, including raw data of video, positioning, and motion
information annotated with for example athlete context, cycles,

sub-techniques, and motion components. Such openly available
data sets may have great impact on research and application
development and would be comparable to for example the
Common Objects in Context (COCO) project (Lin et al., 2014),
which is very successful within the computer vision and pattern
recognition domain. 2D video-based pose tracking/estimation
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FIGURE 9 | (A–D) Confusion matrices for subjects 1 to 4 with the mapping of the labeled sub techniques tDIA to DIA and fDIA to DK, thus using mapping b) in

Definition 3.

have in recent years had great progress, extending image
segmentation methods and providing absolute information for
human kinematics—see the PoseTrack large-scale benchmark
data set (Andriluka et al., 2018) and the DensePose project
(Alp Güler et al., 2018). Including pose information as context
in a heterogeneous motion data set would also provide absolute

information for auto-calibrating of distributed motion sensors
and validation of case study protocols. Such data sets and
accompanying infrastructure may be hosted open source by
the university or institute sector generally for research, or by
for example FIS as a basis for building automatic classification
decision support in competition regulation.
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5. CONCLUSION

This work proposes a framework for building quantitative
measurable definitions of the sub-techniques in classical XC
skiing. It relies on a definition of motion components and
uses the current qualitative definitions of the sub-techniques to
produce quantitative decision functions that uniquely map an
athlete’s motion to each sub-technique class. The structure of
this identification process is closely related to the manual video
analysis technique annotation given by an expert, as it focuses
on measuring and describing the motion and mechanisms in
the kinematic patterns of the athlete. The approach is generic
and relies on known and understood mechanisms within an
activity. On a structural level it also bears similarity to the
notion “quality of movement” used both in sports and in the
rehabilitation domain, especially in cases where the movement
can be considered cyclical. In our specific approaches, the
most common sub-technique decision functions (DIA, DK,
and DP) were first proposed in Seeberg et al. (2017) and
thereafter extended in Solli et al. (2018) to include HRB and
TRN techniques. Solli et al. (2018) also present an example
on how this detailed sub-technique identification may be used
to test new research hypotheses in the field. Here, a holistic
presentation of the methodology, including the estimators, is
given. In addition, TRN is further refined to DPrK and rK. Finally
the framework implementation used in our study is compared
with high“fit scores” to a data set independently labeled by
a domain expert. However, commonly accepted utilization of
automatic tools for sub-technique classification will require work
toward more unified and quantifiable definitions of the specific
sub-techniques, which has also been the overarching aim of usage
for the proposed framework and methodology. Altogether, this
understanding contributes to the field by providing a common
communication platform of high relevance for researchers in
the field, and for the further development of preparation and
debriefing tools where combined GPS and IMUs help XC skiing
coaches and athletes in their decision-making in training and
competitions.
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