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The increasing digitalization in the field of psychological and educational testing opens
up new opportunities to innovate assessments in many respects (e.g., new item formats,
flexible test assembly, efficient data handling). In particular, computerized adaptive
testing provides the opportunity to make tests more individualized and more efficient.
The newly developed continuous calibration strategy (CCS) from Fink et al. (2018) makes
it possible to construct computerized adaptive tests in application areas where separate
calibration studies are not feasible. Due to the goal of reporting on a common metric
across test cycles, the equating is crucial for the CCS. The quality of the equating
depends on the common items selected and the scale transformation method applied.
Given the novelty of the CCS, the aim of the study was to evaluate different equating
setups in the CCS and to derive practical recommendations. The impact of different
equating setups on the precision of item parameter estimates and on the quality of
the equating was examined in a Monte Carlo simulation, based on a fully crossed
design with the factors common item difficulty distribution (bimodal, normal, uniform),
scale transformation method (mean/mean, mean/sigma, Haebara, Stocking-Lord), and
sample size per test cycle (50, 100, 300). The quality of the equating was operationalized
by three criteria (proportion of feasible equatings, proportion of drifted items, and error
of transformation constants). The precision of the item parameter estimates increased
with increasing sample size per test cycle, but no substantial difference was found
with respect to the common item difficulty distribution and the scale transformation
method. With regard to the feasibility of the equatings, no differences were found for
the different scale transformation methods. However, when using the moment methods
(mean/mean, mean/sigma), quite extreme levels of error for the transformation constants
A and B occurred. Among the characteristic curve method the performance of the
Stocking-Lord method was slightly better than for the Haebara method. Thus, while
no clear recommendation can be made with regard to the common item difficulty
distribution, the characteristic curve methods turned out to be the most favorable scale
transformation methods within the CCS.
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INTRODUCTION

The shift to using digital technology (e.g., laptops, tablets, and
smartphones) for psychological and educational assessments
provides the opportunity to implement computer-based
state-of-the-art methods from psychometrics and educational
measurement in day-to-day testing practice. In particular,
computerized adaptive testing (CAT) has the potential to make
tests more individualized and to enhance efficiency (e.g., Segall,
2005). CAT is a method of test assembly that uses the responses
given to previously presented items for the selection of the
next item (e.g., van der Linden, 2016), whereby the item that
satisfies a statistical optimality criterion best is selected from a
precalibrated item pool. Therefore, the calibrated item pool is an
essential and important building block in CAT (e.g., Thompson
and Weiss, 2011; He and Reckase, 2014). A set of items is called
a calibrated item pool if the item characteristics, such as item
difficulty and item discrimination, were estimated on the basis
of an item response theory (IRT; e.g., van der Linden, 2016)
model beforehand. However, in some contexts, such as higher
education, clinical diagnosis, or personnel selection, the item
pool calibration for CAT often poses a critical challenge because
separate calibration studies are not feasible, and sample sizes are
too low to allow for stable item parameter estimation.

To overcome this problem, Fink et al. (2018) proposed a
continuous calibration strategy (CCS), which enables a step-
by-step build-up of the item pool across several test cycles
during the operational CAT phase. In the context of the CCS a
test cycle is understood as the whole test procedure including
steps like test assembly, test administration and analysis of test
results. As the item parameter estimates of existing and new
items are continuously updated within the CCS, equating is
a critical factor to enable interchangeable score interpretation
across test cycles. The equating procedure implemented in the
CCS is based on a common-item non-equivalent group design
(Kolen and Brennan, 2014) and is carried out in four steps:
(1) common item selection, (2) scale transformation, (3) item
parameter drift (IPD; e.g., Goldstein, 1983) detection, and (4)
fixed common item parameter (FCIP; e.g., Hanson and Béguin,
2002) calibration.

In their study, Fink et al. (2018) evaluated the performance
of the CCS for different factors (sample size per test cycle,
calibration speed, and IRT model) with respect to the quality
of the person parameter estimates. Although the results were
promising, two issues remained open. First, the study of Fink
et al. (2018) was conducted under ideal conditions (i.e., constant
ability distribution of the examinees across test cycles). Second,
despite the importance of the equating procedure in the CCS,
its performance with respect to different setups of the procedure
(i.e., selection of common items, scale transformation method,
item drift detection) was not investigated in detail. For example,
it became apparent that the CCS did not work as intended for very
easy or very difficult items when using small sample sizes (i.e., 50
or 100 examinees) per test cycle. In these cases, item parameter
estimates were biased due to a few inconsistent responses, with
the consequence that these items were no longer selected by the
adaptive algorithm in the following test cycles. Therefore, it was

not possible to continuously update the item parameter estimates
for these items.

Against this background, the aim of the present study was
to investigate the performance of the equating procedure for
different setups conducted under more realistic conditions (i.e.,
examinees’ average abilities and variance differ between test
cycles). The remainder of the article is organized as follows: First,
we provide the theoretical background for the present study by
introducing the underlying IRT model and by describing the
CCS. Next, we discuss both the previously implemented equating
procedure and alternative specifications. Then, we examine
the performance of different setups of the different equating
procedures in a simulation. Finally, we discuss the results and
make recommendations for the implementation of the CCS.

THEORETICAL BACKGROUND

IRT Model
The IRT model used in this study was the two-parameter logistic
(2PL) model (Birnbaum, 1968) for dichotomous items. The 2PL
model defines the probability of a correct response uij = 1 of
examinee j = 1 . . . N with a latent ability level θj to an item i by
the following model, whereby ai is the discrimination parameter
and di is the easiness parameter of item i:

P
(

uij = 1|θj, ai, di

)
=

exp
(
aiθj + di

)
1+ exp

(
aiθj + di

) , (1)

In the traditional IRT metric where aiθj + di = ai
(
θj − bi

)
, the

ai parameters will be the identical for these parametrizations,
while the item difficulty parameter bi is calculated
as bi = −di /ai .

Continuous Calibration Strategy
In the following paragraphs, we briefly outline the CCS as
introduced by Fink et al. (2018) and detail the equating procedure
implemented. The CCS consists of two phases, a non-adaptive
initial phase and a partly adaptive continuous phase. In the initial
phase, which is the first test cycle of the CCS, the same items
are presented to all examinees and only the item order can vary
between examinees. In the continuous phase, the tests assembled
consist of three types of item clusters (calibration cluster, linking
cluster, adaptive cluster), whereby a cluster is comprised of
several items. Each type of cluster has a specific goal. The
calibration cluster offers the opportunity to include new items
in the existing item pool, the linking cluster utilizes common
items to allow a scale to be established across test cycles, and
the adaptive cluster aims at the enhancement of measurement
precision. The items in the calibration and the linking clusters
are the same for all examinees and are administered sequentially,
whereas the items in the adaptive cluster can differ between
examinees due to the adaptive selection algorithm. Each test
cycle in the continuous phase can be broken down into seven
steps: (1) common item selection for the linking cluster, (2) test
assembly and test administration, (3) temporary item parameter
estimation, (4) scale transformation of the common items, (5)

Frontiers in Psychology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1277

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01277 June 6, 2019 Time: 9:17 # 3

Born et al. Equating in Continuous CAT Calibration

IPD detection for the common items, (6) FCIP calibration,
and (7) person parameter estimation. The equating procedure
consists of four of these steps, which will be detailed in the
following four paragraphs. The first three steps of the equating
procedure serve as quality assurance of the common items to
ensure feasible equating in the fourth step.

In the common item selection, items that have already been
calibrated in the previous test cycles are selected as common
items for the linking cluster. To ensure that the common items
represent the statistical characteristics of the item pool (Kolen
and Brennan, 2014), such as the range of the item difficulty, the
items are assigned to five categories (very low, low, medium, high,
and very high) based on their easiness parameters di. Fink et al.
(2018) selected the items from the categories in such a way that
the difficulty distribution of the common items corresponded
approximately to a normal distribution. Beside the representation
of the statistical item pool characteristics it is important that the
common items adequately reflect the content of the item pool.
This can be done by using content balancing approaches (e.g.,
van der Linden and Reese, 1998; Cheng and Chang, 2009; Born
and Frey, 2017) within the common item selection and within
the adaptive cluster.

After test assembly and test administration, the parameters
for the common items are estimated based on the responses
of the current test cycle. In the second step of the equating
procedure, a scale transformation of the common items has to
be conducted, because the ability distribution of the examinees
usually differs between test cycles and, therefore, the item
parameter estimates obtained are not directly comparable across
cycles. The comparability of the parameter estimates is a
necessary condition to check whether the common items are
affected by IPD. For this reason, scale transformation methods
(e.g., Marco, 1977; Haebara, 1980; Loyd and Hoover, 1980;
Stocking and Lord, 1983) are important for the equating
procedure. Fink et al. (2018) used the mean/mean method (Loyd
and Hoover, 1980) for the scale transformation.

As IPD of item parameters may have a serious impact on
equating results such as scaled scores and passing rates (Hu
et al., 2008; Miller and Fitzpatrick, 2009), the IPD detection as
the third step of the equating procedure is important if the
method is to operate optimally. A number of tests for IPD can
be used in IRT-based equating procedures, such as the Lord’s
χ2-test (Lord, 1980) and the likelihood-ratio test (Thissen et al.,
1988). In an iterative process of scale transformation and testing
for IPD, common items that show significant IPD are excluded
from the final set of common items. The iterative purification
continues as long as at least one of the remaining common items
shows significant IPD or less than two common items are left.
The rationale behind the latter stopping rule is that at least two
link items are necessary to keep the scale comparable across
test cycles. Nevertheless, it should be mentioned that with a
smaller number of link items, the equating procedure is more
prone to sampling errors (Wingersky and Lord, 1984). Fink et al.
(2018) used a one-sided t-test to examine whether the parameter
estimates of a common item from the current test cycle differed
significantly from the parameter estimates of the same item from
the preceding test cycle.

The last step of the equating procedure, the FCIP calibration,
involves the parameter estimation of all items using marginal
maximum likelihood (MML; Bock and Aitkin, 1981) based on
the responses from all test cycles. Because one aim of the CCS
is to maintain the original scale from the initial calibration
(first test cycle), the use of one step procedures (e.g., concurrent
calibration; Wingersky and Lord, 1984) for estimating all item
parameters of the different test cycles in one run is not suitable.
If maintaining the scale from the initial calibration over the
following test cycles has no priority, promising methods exist for
equating multiple test forms simultaneously (Battauz, 2018). In
the FCIP calibration, the parameters of the final common items
are fixed at the item parameters estimated from the previous
test cycle, whereas all the other items are estimated freely. If a
“breakdown” occurs, which means that less than two common
items remain after the IPD detection, a concurrent calibration
(Wingersky and Lord, 1984) is used to establish a new scale.

Specifications of the Common Item
Selection
The common item selection and the scale transformation of
the common items are crucial parts of the CCS because they
ensure that the procedure functions well. In terms of the common
item selection, different distributional assumptions such as an
approximated normal distribution, as used in Fink et al. (2018),
or a uniform distribution may underlie the item selection.
Up to now, only Vale et al. (1981) examined the impact of
different common item distributions on the accuracy of the
item parameter estimates using the mean/sigma method (Marco,
1977). The authors selected the common items in such a way
that the test information curves of the common items were
peaked (with the most information at theta equals zero) or had
an approximately normal or uniform shape. In terms of the bias
of the item parameter estimates, the peaked test information
curve performed worst. There were only slight differences in
the performance, depending on whether normally or uniformly
shaped test information curves were used for the common
items. As an alternative, items with extreme difficulties (bimodal
distribution) might be selected as common items for the linking
cluster and, therefore, might be administered to all examinees.
As a consequence, the number of responses for these items
increases and the impact of the few inconsistent responses that
might cause bias in the estimates and prevent later administration
and parameter updating in the following test cycles would be
reduced. Because the quality of the equating highly depends on
the common items selected, it may be argued that especially a
bimodal distribution of the common items threatens the goal of
maintaining the scale across test cycles. However, the item drift
test implemented in the CCS ensures that significant changes
in the parameter estimates of the common items between test
cycles do not affect the later FCIP calibration that is used to
maintain the scale.

Scale Transformation
When item parameters are estimated using different groups of
examinees, the obtained parameters are often not comparable
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FIGURE 1 | Conditional mean squared error (MSE) of the item discrimination ai for specific item easiness intervals after the 2nd, 6th, and 10th test cycles in the
continuous calibration strategy with a sample size per test cycle of N = 50 for different common item difficulty distributions and different scale transformation
methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

due to arbitrary decisions that have been made to fix the scale of
the item and person parameter space (Yousfi and Böhme, 2012).
In that case, the comparability of the item parameters can be
attained by an IRT scale transformation. If the underlying IRT
model holds for two groups of examinees, K and L, then the
logistic IRT scales differ by a linear transformation for both the
item parameters and the person parameters (Kolen and Brennan,
2014). The linear equation for the θ-values can be formulated
as follows:

θLj = AθKj + B, (2)

where A and B represent the transformation constants (also
referred to as slope and shift) and θKj and θLj the person
parameter values for an examinee j on scale K and scale L. The
item parameters for the 2PL model on the two scales are defined
in Eqs 3 and 4, where aKi, bKi, and aLi, bLi represent the item
parameters on scale K and on scale L, respectively.

aLi =
aKi

A
(3)

bLi = AbKi + B (4)

To obtain the transformation constants A and B, several scale
transformation methods can be used. The moment methods such
as the mean/mean and the mean/sigma express the relationship
of scales by using the means and standard deviations of item

or person parameters, whereas the characteristic curve methods
minimize a discrepancy function with respect to the item
characteristic curves (Haebara, 1980) or the test characteristic
curve (Stocking and Lord, 1983). Research comparing these
methods has found that characteristic curve methods produced
more stable results compared to the moment methods (e.g., Baker
and Al-Karni, 1991; Kim and Cohen, 1992; Hanson and Béguin,
2002). Within the moment methods, the mean/mean method
turned out to be more stable (Ogasawara, 2000). Furthermore,
Kaskowitz and de Ayala (2001) found that characteristic curve
methods were robust against moderate estimation errors and
were more accurate with a larger number of common items (15
or 25 compared to only five common items). In sum, the moment
methods are easily implementable, but the characteristic curve
methods seem to be more robust against estimation errors.

RESEARCH QUESTIONS

As the purpose of equating procedures in the CCS is to
enable an interchangeable score interpretation across test cycles,
the selection of the common items is a crucial factor for
feasible equating. Up to now, only recommendations for the
number of common items that should be used when conducting
IRT equating have been made (Kolen and Brennan, 2014).
Furthermore, it is suggested that the common items should
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FIGURE 2 | Conditional mean squared error (MSE) of the item discrimination ai for specific item easiness intervals after the 2nd, 6th, and 10th test cycle in the
continuous calibration strategy with a sample size per test cycle of N = 100 for different common item difficulty distributions and different scale transformation
methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

represent the content and statistical characteristics of the test
or rather the complete item pool. For example, modifying the
common item selection in such a way that more items with
extreme item difficulty levels are included may enhance the
precision of these items, but it could threaten the quality of
the equating. Therefore, our first two research questions can be
formulated as follows:

1. What effect does the difficulty distribution of the
common items in the CCS have on the precision of the
item parameter estimates?

2. What effect does the difficulty distribution of the
common items in the CCS have on the quality
of the equating?

Fink et al. (2018) used the mean/mean method for
scale transformation because of its simple and user-friendly
implementation. Given prior research on scale transformation
methods, this might not be the best choice when the sample
size per test cycle is low. Furthermore, there are several packages
for the open-source software R (R Core Team, 2018) available
to implement the characteristic curve methods (e.g., Weeks,
2010; Battauz, 2015). As already mentioned above, the scale
transformation method used and the IPD detection implemented
in the CCS could serve as quality assurance to ensure that
significant changes in the parameter estimates of the common

items between test cycles do not affect the later FCIP calibration.
For this reason, our third research question is:

3. What effect does the scale transformation method used
in the CCS have on the quality of the equating?

As the CCS was developed for a context in which separate
calibration studies are often not feasible and sample sizes are too
low to allow for stable item parameter estimation, it is important
to evaluate whether the results for these three research questions
were affected by the sample size. Consequently, each of the
three research questions was investigated with a special focus on
additional variations of the sample size.

MATERIALS AND METHODS

Study Design
Many factors can affect the quality of the equating within the
CCS. These include, among others, the number of common
items, the test length, the characteristics of the common items, the
scale transformation method applied, the number of examinees
per test cycle, the presence of IPD and the test applied for IPD.
In the present study, some of these factors were kept constant
(e.g., number of common items, test length, the presence of
IPD, test applied for IPD) to ensure the comprehensibility of
the study results.
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FIGURE 3 | Conditional mean squared error (MSE) of the item discrimination ai for specific item easiness intervals after the 2nd, 6th, and 10th test cycle in the
continuous calibration strategy with a sample size per test cycle of N = 300 for different common item difficulty distributions and different scale transformation
methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

To answer the research questions stated above, a Monte
Carlo simulation based on a full factorial design with three
independent variables (IVs) was conducted. With the first IV,
difficulty distribution, the distribution of easiness parameters di
of the common items (normal, uniform, and bimodal with very
low and very high difficulties only) was varied. The second
IV, transformation method, compared the most common scale
transformation methods (mean/mean, mean/sigma, Haebara,
and Stocking-Lord) used for computing the transformation
constants to conduct the scale transformation. The third IV,
sample size, reflected the number of test takers per test cycle
(N = 50; N = 100; N = 300). Because the CCS uses the
responses from multiple test cycles, the number of test takers
per test cycle chosen for the study is small compared to the
recommendations (e.g., a minimum of 500 responses per item
for the 2PL model; de Ayala, 2009). The fully crossed design
comprised 3× 4× 3 = 36 conditions. For each of the conditions,
200 replications were conducted and analyzed with regard to
various evaluation criteria (see below).

The simulations were carried out in R (R Core Team, 2018)
using the “mirtCAT” package (Chalmers, 2016) for simulating
adaptive tests and the “mirt” package (Chalmers, 2012) for
item and person parameter estimation. Transformation constants
were calculated based on the common items of consecutive
test cycles using the “equateIRT” package (Battauz, 2015).
The test for IPD was also conducted with the “equateIRT”

package. We decided to use the “equateIRT” package in the
simulations because it enables a direct import of results from
the “mirt” package and offers an implemented test for IPD. The
corresponding functions were called in a R script, which was
written to carry out the CCS.

Simulation Procedure
Data Generation
In each replication, the discrimination parameters ai were
drawn from a lognormal distribution, ai ∼ logN (0, 0.25), and
the easiness parameters di were drawn from a truncated
normal distribution, di ∼ N (0, 1.5) , di ∈ (−2.5, 2.5) . Since
this study was not designed to investigate IPD detection rates
(e.g., Battauz, 2019), no IPD was simulated in the data. Therefore
the true item parameters ai and di remained unchanged over
the test cycles.

The ability parameters of the examinees in the first test
cycle in each replication were randomly drawn from a standard
normal distribution, θ ∼ N (0, 1). For the subsequent test
cycles t within a replication, the ability parameters followed
a normal distribution, θ ∼ N (µt, σt), whereby the mean µt ∈

(−0.5, 0.0, 0.5) and the standard deviation σt ∈ (0.7, 1.0, 1.3)
were randomly drawn. This was done to mimic the fact that
examinees of different test cycles usually differ with respect to the
mean and variance of their ability distribution. The examinees’
responses to the items were generated in line with the 2PL model.
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FIGURE 4 | Conditional mean squared error (MSE) of the item easiness di for specific item easiness intervals after the 2nd, 6th, and 10th test cycle in the continuous
calibration strategy with a sample size per test cycle of N = 50 for different common item difficulty distributions and different scale transformation methods
(MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

Specification of the CCS
The CCS in the current study was applied with all seven steps
proposed by Fink et al. (2018) including the IPD detection
of the common items. Although no IPD was simulated in
the data, in realistic settings the untested assumption of item
parameter invariance is questionable. Even in the absence
of IPD item parameters can significantly differ between test
cycles because of sampling error. The number of test cycles
within the CCS was set to 10 test cycles, whereby the first
test cycle represented the initial phase and the subsequent
test cycles the continuous phase. The test length was kept
constant with 60 items. The calibration cluster in the continuous
phase consisted of 20 items, resulting in an item pool size of
It = 60+ (t− 1) · 20 after the test cycle t, and a total item
pool size of 240 items after the 10th test cycle. Following
the recommendation of Kolen and Brennan (2014) that the
number of common items should be at least 20% of the test
length, the number of common items in the linking cluster
was set to 15 items. Consequently, the adaptive cluster in each
test cycle of the continuous phase contained 25 items. Within
the adaptive cluster, the maximum a posteriori (MAP; Bock
and Aitkin, 1981) was used as the ability estimator and the
maximum information criterion (Lord, 1980) was applied for the
adaptive item selection.

For the common item selection within the equating procedure,
only items that had already been calibrated in the previous

test cycles and that did not serve as common items in the
preceding test cycle were eligible. The selection procedure for the
common items differed depending on the intended distribution.
For the normal distribution, the procedure of Fink et al.
(2018) was applied. The eligible items were first assigned to
five categories (very low, low, medium, high, and very high)
based on their easiness parameters di. Then, five items from
the “medium” category, three items each from the “low” and
“high” categories, and two items from each of the extreme
categories were chosen to mimic a normal distribution. For
the uniform distribution, the eligible items were assigned to
15 categories based on their easiness parameters di and one
item from each category was drawn. The interval limits of the
categories were determined as quantiles of the item difficulty
distribution. For the bimodal distribution, the eligible items
were ordered according to their easiness parameters di and
two subsamples were formed containing the 11 easiest and
the 11 hardest items, respectively. Then, 15 items in total
were randomly drawn from the two subsamples (seven easy
and eight difficult items, or vice versa). As already mentioned,
the selected common items in periodical assessments should
be comparable also with regard to content characteristics.
Content balancing approaches like the maximum priority index
(Cheng and Chang, 2009) and the shadow testing approach
(van der Linden and Reese, 1998) may be used for this
purpose. Because no substantial impact was expected on the
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FIGURE 5 | Conditional mean squared error (MSE) of the item easiness di for specific item easiness intervals after 2nd, 6th, and 10th test cycle in the continuous
calibration strategy with a sample size per test cycle of N = 100 for different common item difficulty distributions and different scale transformation methods
(MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

measurement precision of the item parameters or on the quality
of the equating, content balancing was not considered as a
factor in the study.

For the scale transformation, one of the four transformation
methods (Mean/Mean, Mean/Sigma, Haebara, and Stocking-
Lord) was applied. A modified version of Lord’s chi-squared
method (Lord, 1980) that is implemented in the “equateIRT”
package (Battauz, 2015) was used as the test for IPD with a
type I error level of 0.05. In an iterative purification process
(Candell and Drasgow, 1988) of scale transformation and testing
for IPD, items that showed significant IPD were removed from
the set of common items. In each test cycle, MML estimation was
used to obtain the item parameters for both the temporary item
parameter estimation and the FCIP calibration. The lower and
the upper bound for the item discrimination ai was set to –1 and
5, respectively. For the item easiness parameters di, the bounds
were set to –5 and 5.

Evaluation Criteria
The mean squared error (MSE) of the item parameters ai and di,
respectively, was calculated after each test cycle t as the averaged
squared difference between the item parameter estimates and
the true item parameters for all items It across all replications

R = 200. Thus, a high degree of precision is denoted by low values
for the MSE.

MSEt (ai) =
1

R∗It

R∑
r=1

It∑
i=1

(
âir − air

)2 (5)

MSEt
(
di
)
=

1
R∗It

R∑
r=1

It∑
i=1

(
d̂ir − dir

)2
(6)

Because our aim was to evaluate whether the modified common
item selection could prevent a dysfunction of the CCS in terms
of more precise item parameter estimates for items with very
low and very high values for di, the conditional MSE was
used as a criterion. Therefore, the MSE was calculated for
seven easiness intervals: di ∈

(
−Inf , −2

]
, di ∈ (−2, −1], di ∈

(−1, −0.25], di ∈ (−0.25, 0.25], di ∈ (0.25, 1], di ∈ (1, 2],
and di ∈

(
2, Inf

)
.

Three criteria were used to evaluate the equating quality.
As a first criterion, we used the proportion of test cycles in
which no breakdown of the common items occurred. Second,
we calculated the proportion of drifted items for each of the 36
conditions. And third, we computed the accuracy (Error) of the
scale transformation constants A and B for each replication r

Frontiers in Psychology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 1277

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01277 June 6, 2019 Time: 9:17 # 9

Born et al. Equating in Continuous CAT Calibration

FIGURE 6 | Conditional mean squared error (MSE) of the item easiness di for specific item easiness intervals after the 2nd, 6th, and 10th test cycle in the continuous
calibration strategy with a sample size per test cycle of N = 300 for different common item difficulty distributions and different scale transformation methods
(MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord).

when no breakdown occurred as the difference between the true
and the estimated transformation constants for every test cycle
in the continuous phase. The average of the Error corresponds to
the Bias of the transformations constants.

Error (Atr) =
(

Âtr − Atr

)
(7)

Error (Btr) =
(

B̂tr − Btr

)
(8)

The true transformation constants A and B were calculated based
on the true examinees’ abilities from/in all previous test cycles
p and from/in the current test cycle t (Kolen and Brennan, 2014).

At =
σ (θt)

σ
(
θp
) (9)

Bt = µ (θt)− Aµ
(
θp
)

(10)

The estimated transformation constants Ât and B̂t were obtained
based on the parameter estimates of the final set of common items

from the previous and the current test cycles using one of the four
scale transformation methods implemented in the “equateIRT”
package (Battauz, 2015). The third criterion was calculated only
for the cases where at least two common items remained after
the IPD detection.

RESULTS

Note that the conditions with the mean/mean method as scale
transformation method and normal distributed common items
mimic the setup of the equating procedure from Fink et al. (2018).

Conditional Precision of Item Parameters
To answer the first research question regarding the precision
of the item parameter estimates, we analyzed the conditional
MSE of the item discrimination parameters ai and the item
easiness parameters di depending on the scale transformation
method, the common item difficulty distribution, and the sample
sizes per test cycle. For the sake of clarity, the results are only
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FIGURE 7 | Proportion of drifted items in the continuous calibration strategy for different sample sizes per test cycle, different common item difficulty distributions,
and different scale transformation methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord). The dashed line represents the type I error
level of 0.05.

presented for the second, the sixth, and the 10th test cycles
of the CCS. Figures 1–3 illustrate the conditional MSE of the
item discrimination parameter estimates ai, and Figures 4–6
illustrate the conditional MSE of the item easiness parameter di.
As can be expected based on the findings from Fink et al. (2018),
the MSE for the item discrimination parameter estimates and
the item easiness parameter estimates decreased as the number
of test cycles in the CCS increased and as the sample size
per test cycle increased. With regard to the precision of the
item parameter estimates, no substantial differences were found
between the different scale transformation methods, independent
of the common item difficulty distribution and the sample size
per test cycle. When a bimodal difficulty distribution of common
items was chosen, the precision of the item parameter estimates
for the very easy and very difficult items was higher compared
to a normal or uniform difficulty distribution of common items
(Figures 1, 4). However, this minimal gain came at the expense of
a lower precision of the item parameter estimates for items with
medium difficulty. This effect was found for very small sample

sizes per test cycle (N = 50), and diminished for larger sample
sizes (N = 100, N = 300).

Quality of Equating
The second and third research questions focused on the equating
procedure. The first evaluation criterion was the proportion
of feasible equatings (at least two items remained after the
IPD detection). Most striking was that over all replications for
none of the test cycles a breakdown of the common items
occurred. Furthermore, for all 36 conditions the median number
of eligible common items over all test cycles and replications
ranged from 14 to 15.

The second evaluation criterion was the proportion of drifted
items. As IPD was not simulated in the study and because the
type I error level of the test for IPD was set to 0.05, it was
expected that approximately five percent of the common items
would show significant IPD. Figure 7 shows the proportion of
drifted common items depending on the common item difficulty
distribution, the scale transformation method, and the sample
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FIGURE 8 | Error of the transformation constant A in the continuous calibration strategy for different sample sizes per test cycle, different common item difficulty
distributions, and different scale transformation methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord). The dot in the middle of each
violin represents the bias and the width of the violin expresses the frequency of the corresponding value.

size per test cycle. It is obvious from this figure that independent
of the scale transformation method and the common item
difficulty distribution, the type I error rates increased with
increasing sample size per test cycle. This effect was stronger for
the moment/methods. Furthermore, it became apparent that if
the difficulty distribution of the common items was uniform or
normal, all scale transformation methods did not considerably
differ from the type I error level of 0.05. The only exception
to this result was the mean/sigma method which generally led
to considerably smaller type I error rates when the sample size
was small (N = 50). All in all, using the Stocking-Lord method
resulted for all conditions in type I error rates that did not
considerably differ from the type I error level of 0.05.

The third evaluation criterion was the accuracy of the
transformation constants A and B when no breakdown occurred.
Figures 8, 9 show violin plots for the Error of the transformation
constants A and B depending on the common item difficulty
distribution, the scale transformation method, and the sample
size per test cycle. In violin plots, the frequency distribution

of a numeric variable (e.g., bias) is expressed. Note that the
average error ( = Bias; represented by the dot in the violin)
for both transformation constants A and B did not differ
substantially from zero for all scale transformation methods,
independent of the common item difficulty distribution and the
sample size per test cycle. However, the variation of the error
(represented by the height of the violin) differed between the scale
transformation methods and, especially for the moment methods
rather high levels of error occurred. The characteristic curve
methods showed the lowest variation in error. With increasing
sample size per test cycle, the variation of the error decreased, but
there were still extreme levels of error for the mean/mean and the
mean/sigma method.

In summary and in terms of the three research questions, the
study provided the following results:

1. The difficulty distribution of the common items
in the CCS did not have a substantial impact
on the precision of the item parameter estimates
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FIGURE 9 | Error of the transformation constant B in the continuous calibration strategy for different sample sizes per test cycle, different common item difficulty
distributions, and different scale transformation methods (MM = Mean/Mean, MS = Mean/Sigma, HB = Haebara, SL = Stocking-Lord). The dot in the middle of each
violin represents the bias and the width of the violin expresses the frequency of the corresponding value.

although small differences existed between the
common item distributions; these differences were in
opposite/varying directions for extreme and medium-
ranged item easiness parameters di when the sample
size was very small.

2. With regard to the proportion of feasible equatings (at
least two common items remained after the test for IPD)
no differences were found independent of the common
item difficulty distributions, the scale transformation
method and the sample size.

3. The characteristic curve methods outperformed
the moment methods in terms of error of the
transformation constant. Especially for small sample
size the mean/sigma method cannot recommended.

DISCUSSION

The objective of the present study was to evaluate different
setups of the equating procedure implemented in the CCS and

to make/provide recommendations on how to apply these setups.
For this purpose, the quality of the item parameter estimates
and of the equating was examined in a Monte Carlo simulation
for different common item difficulty distributions, different scale
transformation methods, and different sample sizes per test cycle.

The following recommendations can be made based on the
results obtained: First, no clear advantage of using any of
the three common item difficulty distributions was identified.
Regarding the precision of the item parameter estimates, the
results show a slight increase in the precision of the item
parameter estimates for items with extreme difficulties when
using a bimodal common item difficulty distribution compared
to a normal or uniform distribution. However, the precision
of the item parameter estimates for items with medium
difficulty decreased. These effects were only found for very
small sample sizes per test cycle (N = 50) and no differences
were found for larger sample sizes (N = 100, N = 300).
Furthermore, the use of different scale transformation methods
did not have a substantial effect on the precision of the item
parameter estimates.
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Note that exposure control methods (e.g., Sympson and
Hetter, 1985; Revuelta and Ponsoda, 1998; Stocking and Lewis,
1998) might be an alternative to increase the number of responses
to items with extreme difficulty levels and, in consequence,
the precision of the item parameter estimates for these items.
However, using these methods would sacrifice adaptivity to a
certain degree and, thus, the efficiency of the computerized
adaptive test (e.g., Revuelta and Ponsoda, 1998). This is even
more relevant to tests assembled within the partly adaptive CCS,
because only one of the three cluster types used is based on
an adaptive item selection. Furthermore, in the early stages of
the CCS, the item pool is rather small, which also limits the
adaptivity of the tests. For these reasons, it can be expected that
exposure control methods do not offer an ideal option for the
CCS to increase the precision of item parameter estimates for
items with extreme difficulties. This point might be examined by
future research.

Second, with respect to the quality of the equating, no
difference was found for the scale transformation methods with
regard to the proportion of feasible equatings independent of
the common item difficulty distribution used and the sample
size available per test cycle. The rule for evaluating an equating
as feasible (at least two common items remained after the test
for IPD) is worthy of discussion because of two reasons: first,
with a small number of remaining common items, the equating
procedure is more prone to sampling error (Wingersky and Lord,
1984) and second, it is rather unlikely that the content of the
item pool is adequately reflected by the remaining common
items. However, even if the criterion for evaluating an equating
as feasible had been set to ten remaining common items, the
proportion of feasible equatings would be at least 99% in all
conditions. With regard to the type I error rate and the error
of the transformation constant the characteristic curve methods
outperformed the moment methods especially for small sample

sizes. This is in line with the result of Ogasawara (2002) who
found that the characteristic curve methods are less affected by
imprecise item parameter estimates and lead to more accurate
transformation than moment methods. Among the characteristic
curve methods the Stocking-Lord method was slightly better than
the Haebara method in almost all conditions. Thus, although
our results do not facilitate a clear recommendation regarding
the most favorable common item difficulty distribution, they do
enable a clear recommendation in terms of the preferred scale
transformation method: The Stocking-Lord method should be
used as the scale transformation method within the CCS.

AUTHOR CONTRIBUTIONS

SB conceived the study, conducted the statistical analyses,
drafted the manuscript, and approved the submitted version.
AFi performed substantial contribution to the conception of the
study, contributed to the programming needed for the simulation
study (R), reviewed the manuscript critically for important
intellectual content, and approved the submitted version. CS
performed substantial contributions to the interpretation of the
study results, reviewed the manuscript critically for important
intellectual content, and approved the submitted version. AFr
provided advise in the planning phase of the study, reviewed
the manuscript critically for important intellectual content, and
approved the submitted version.

FUNDING

The research reported in the article was supported by a grant
from the German Federal Ministry of Education and Research
(Ref: 16DHL1005).

REFERENCES
Baker, F. B., and Al-Karni, A. (1991). A comparison of two procedures for

computing IRT equating coefficients. J. Educ. Meas. 28, 147–162. doi: 10.1111/
j.1745-3984.1991.tb00350.x

Battauz, M. (2015). equateIRT: an R package for IRT test equating. J. Stat. Softw.
68, 1–22. doi: 10.18637/jss.v068.i07

Battauz, M. (2018). “Simultaneous equating of multiple forms,” in Quantitative
Psychology, eds M. Wiberg, S. Culpepper, R. Janssen, J. González, and D.
Molenaar (Cham: Springer), 121–130.

Battauz, M. (2019). On wald tests for differential item functioning
detection. Stat. Methods Appl. 28, 121–130. doi: 10.1007/s10260-018-
00442-w

Birnbaum, A. (1968). “Some latent trait models and their use in inferring an
examinee’s ability,” in Statistical Theories of Mental Test Scores, eds F. M. Lord
and M. R. Novick (Reading, MA: Addison-Wesley), 395–479.

Bock, R. D., and Aitkin, M. (1981). Marginal maximum likelihood estimation
of item parameters: an application of an EM algorithm. Psychometrika 46,
443–459. doi: 10.1007/BF02293801

Born, S., and Frey, A. (2017). Heuristic constraint management methods in
multidimensional adaptive testing. Educ. Psychol. Meas. 77, 241–262. doi: 10.
1177/0013164416643744

Candell, G. L., and Drasgow, F. (1988). An iterative procedure for linking metrics
and assessing item bias in item response theory. Appl. Psychol. Meas. 12,
253–260. doi: 10.1177/014662168801200304

Chalmers, R. P. (2012). mirt: a multidimensional item response theory package for
the R environment. J. Stat. Softw. 48, 1–29. doi: 10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating adaptive and non-adaptive test interfaces for
multidimensional item response theory applications. J. Stat. Softw. 71, 1–39.
doi: 10.18637/jss.v071.i05

Cheng, Y., and Chang, H.-H. (2009). The maximum priority index method for
severely constrained item selection in computerized adaptive testing. Br. J.
Math. Stat. Psychol. 62, 369–383. doi: 10.1348/000711008X304376

de Ayala, R. J. (2009). The Theory and Practice of Item Response Theory. New York,
NL: Guilford.

Fink, A., Born, S., Spoden, C., and Frey, A. (2018). A continuous calibration
strategy for computerized adaptive testing. Psychol. Test Assess. Model. 60,
327–346.

Goldstein, H. (1983). Measuring changes in educational attainment over time:
problems and possibilities. J. Educ. Meas. 20, 369–377. doi: 10.1111/j.1745-
3984.1983.tb00214.x

Haebara, T. (1980). Equating logistic ability scales by a weighted least squares
method. Jpn. Psychol. Res. 22, 144–149. doi: 10.4992/psycholres1954.22.144

Hanson, B. A., and Béguin, A. A. (2002). Obtaining a common scale for
item response theory item parameters using separate versus concurrent
estimation in the common-item equating design. Appl. Psychol. Meas. 26, 3–24.
doi: 10.1177/0146621602026001001

He, W., and Reckase, M. D. (2014). Item pool design for an operational
variable-length computerized adaptive test. Educ. Psychol. Meas. 74, 473–494.
doi: 10.1177/0013164413509629

Frontiers in Psychology | www.frontiersin.org 13 June 2019 | Volume 10 | Article 1277

https://doi.org/10.1111/j.1745-3984.1991.tb00350.x
https://doi.org/10.1111/j.1745-3984.1991.tb00350.x
https://doi.org/10.18637/jss.v068.i07
https://doi.org/10.1007/s10260-018-00442-w
https://doi.org/10.1007/s10260-018-00442-w
https://doi.org/10.1007/BF02293801
https://doi.org/10.1177/0013164416643744
https://doi.org/10.1177/0013164416643744
https://doi.org/10.1177/014662168801200304
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.1348/000711008X304376
https://doi.org/10.1111/j.1745-3984.1983.tb00214.x
https://doi.org/10.1111/j.1745-3984.1983.tb00214.x
https://doi.org/10.4992/psycholres1954.22.144
https://doi.org/10.1177/0146621602026001001
https://doi.org/10.1177/0013164413509629
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01277 June 6, 2019 Time: 9:17 # 14

Born et al. Equating in Continuous CAT Calibration

Hu, H., Rogers, W. T., and Vukmirovic, Z. (2008). Investigation of IRT-based
equating methods in the presence of outlier common items. Appl. Psychol. Meas.
32, 311–333. doi: 10.1177/0146621606292215

Kaskowitz, G. S., and de Ayala, R. J. (2001). The effect of error in item parameter
estimates on the test response function method of linking. Appl. Psychol. Meas.
25, 39–52. doi: 10.1177/01466216010251003

Kim, S. H., and Cohen, A. S. (1992). Effects of linking methods on detection of DIF.
J. Educ. Meas. 29, 51–66. doi: 10.1111/j.1745-3984.1992.tb00367.x

Kolen, M. J., and Brennan, R. L. (2014). Test Equating, Scaling, and Linking:
Methods and Practices, 3rd Edn. New York, NY: Springer, doi: 10.1007/978-1-
4939-0317-7_10

Lord, F. (1980). Applications of Item Response Theory to Practical Testing Problems.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Loyd, B. H., and Hoover, H. D. (1980). Vertical equating using the rasch model.
J. Educ. Meas. 17, 179–193. doi: 10.1111/j.1745-3984.1980.tb00825.x

Marco, G. L. (1977). Item characteristic curve solutions to three intractable testing
problems. J. Educ. Meas. 14, 139–160. doi: 10.1111/j.1745-3984.1977.tb00033.x

Miller, G. E., and Fitzpatrick, S. J. (2009). Expected equating error resulting from
incorrect handling of item parameter drift among the common items. Educ.
Psychol. Meas. 69, 357–368. doi: 10.1177/0013164408322033

Ogasawara, H. (2000). Asymptotic standard errors of IRT equating coefficients
using moments. Econ. Rev. 51, 1–23.

Ogasawara, H. (2002). Stable response functions with unstable item
parameter estimates. Appl. Psychol. Meas. 26, 239–254. doi: 10.1177/
0146621602026003001

R Core Team (2018). R: A Language and Environment for Statistical Computing
[Software]. Vienna: R Foundation for Statistical Computing.

Revuelta, J., and Ponsoda, V. (1998). A comparison of item exposure control
methods in computerized adaptive testing. J. Educ. Meas. 35, 311–327. doi:
10.1111/j.1745-3984.1998.tb00541.x

Segall, D. O. (2005). “Computerized adaptive testing,” in Encyclopedia of Social
Measurement, ed. K. Kempf-Leonard (Boston: Elsevier Academic), 429–438.
doi: 10.1016/b0-12-369398-5/00444-8

Stocking, M. L., and Lewis, C. L. (1998). Controlling item exposure conditional
on ability in computerized adaptive testing. J. Educ. Behav. Stat. 23, 57–75.
doi: 10.3102/10769986023001057

Stocking, M. L., and Lord, F. M. (1983). Developing a common metric
in item response theory. Appl. Psychol. Meas. 7, 201–210. doi: 10.1177/
014662168300700208

Sympson, J. B., and Hetter, R. D. (1985). “Controlling item exposure rates in
computerized adaptive testing,” in Proceedings of the 27th Annual Meeting of
the Military Testing Association, (San Diego, CA: Navy Personnel Research and
Development Center), 973–977.

Thissen, D., Steinberg, L., and Wainer, H. (1988). “Use of item response theory in
the study of group difference in trace lines,” in Test Validity, eds H. Wainer and
H. Braun (Hillsdale, NJ: Lawrence Erlbaum Associates).

Thompson, N. A., and Weiss, D. J. (2011). A framework for the development of
computerized adaptive tests. Pract. Assess. Res. Eval. 16:9.

Vale, C. D., Maurelli, V. A., Gialluca, K. A., Weiss, D. J., and Ree, M. J. (1981).
Methods for Linking Item Parameters (AFHRL-TR-81-10). Brooks Air Force
Base TX: Air Force Human Resources Laboratory.

van der Linden, W. J. (2016). Handbook of Item Response Theory, Vol. 1. London:
Chapman and Hall.

van der Linden, W. J., and Reese, L. M. (1998). A model for optimal
constrained adaptive testing. Appl. Psychol. Meas. 22, 259–270. doi: 10.1177/
01466216980223006

Weeks, J. P. (2010). plink: an r package for linking mixed-format tests using
IRT-based methods. J. Stat. Softw. 35, 1–33. doi: 10.18637/jss.v035.i12

Wingersky, M. S., and Lord, F. M. (1984). An investigation of methods for reducing
sampling error in certain IRT procedures. Appl. Psychol. Meas. 8, 347–364. doi:
10.1177/014662168400800312

Yousfi, S., and Böhme, H. F. (2012). Principles and procedures of considering
item sequence effects in the development of calibrated item pools: conceptual
analysis and empirical illustration. Psychol. Test Assess. Model. 54, 366–393.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The handling Editor declared a shared affiliation, though no other collaboration,
with one of the authors AFr at the time of review.

Copyright © 2019 Born, Fink, Spoden and Frey. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 14 June 2019 | Volume 10 | Article 1277

https://doi.org/10.1177/0146621606292215
https://doi.org/10.1177/01466216010251003
https://doi.org/10.1111/j.1745-3984.1992.tb00367.x
https://doi.org/10.1007/978-1-4939-0317-7_10
https://doi.org/10.1007/978-1-4939-0317-7_10
https://doi.org/10.1111/j.1745-3984.1980.tb00825.x
https://doi.org/10.1111/j.1745-3984.1977.tb00033.x
https://doi.org/10.1177/0013164408322033
https://doi.org/10.1177/0146621602026003001
https://doi.org/10.1177/0146621602026003001
https://doi.org/10.1111/j.1745-3984.1998.tb00541.x
https://doi.org/10.1111/j.1745-3984.1998.tb00541.x
https://doi.org/10.1016/b0-12-369398-5/00444-8
https://doi.org/10.3102/10769986023001057
https://doi.org/10.1177/014662168300700208
https://doi.org/10.1177/014662168300700208
https://doi.org/10.1177/01466216980223006
https://doi.org/10.1177/01466216980223006
https://doi.org/10.18637/jss.v035.i12
https://doi.org/10.1177/014662168400800312
https://doi.org/10.1177/014662168400800312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Evaluating Different Equating Setups in the Continuous Item Pool Calibration for Computerized Adaptive Testing
	Introduction
	Theoretical Background
	IRT Model
	Continuous Calibration Strategy
	Specifications of the Common Item Selection
	Scale Transformation

	Research Questions
	Materials and Methods
	Study Design
	Simulation Procedure
	Data Generation
	Specification of the CCS

	Evaluation Criteria

	Results
	Conditional Precision of Item Parameters
	Quality of Equating

	Discussion
	Author Contributions
	Funding
	References


