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Repetition suppression (RS), the relative lower neural response magnitude to repeated 
as compared to non-repeated stimuli, is often explained within the predictive coding 
framework. According to this theory, precise predictions (priors) together with less precise 
sensory evidences lead to decisions that are determined largely by the predictions and 
the other way around. In other words, the prediction error, namely the magnitude of RS, 
should depend on the precision of predictions and sensory inputs. In the current study, 
we aimed at testing this idea by manipulating the clarity and thereby the precision of the 
incoming sensory data by adding noise to the images. This resulted in an fMRI adaptation 
design with repeated or alternating trials showing clear or noisy face stimuli. Our results 
show a noise effect on the activity in the fusiform face area (FFA), namely less activation 
for noisy than for clear trials, which supports previous findings. No such effects could 
be found in OFA or LO. Data also showed reliable RS in the FFA (bilateral) and unilaterally 
in OFA (right) and LO (left). Interestingly, the noise added to the stimuli did not affect the 
magnitude of RS in any of the tested cortical areas. This suggests that the clarity of the 
sensory input is not crucial in determining the magnitude of RS.

Keywords: repetition suppression, predictive coding, precision, noise, fusiform face area

INTRODUCTION

Repetition suppression (RS), the relative lower neural response magnitude to repeated as 
compared to non-repeated stimuli, is one of the most studied phenomena of cognitive 
neurosciences. Over the last years, not only RS but other stimulus repetition-related phenomena, 
such as expectation suppression or surprise-related response elevation, were explained under 
the framework of predictive coding (Summerfield et  al., 2008; Todorovic and de Lange, 
2012; Grotheer and Kovacs, 2014; Mayrhauser et  al., 2014; Grotheer and Kovács, 2015). This 
theory states that perception is not determined solely by the incoming stimuli themselves, 
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but it is also modulated by inferential processes (Rao and 
Ballard, 1999). In other words, the sensory inputs together 
with our prior experiences are used to form predictions of 
upcoming events to ensure efficient processing (Friston, 2005). 
For a better understanding of these processes, several prior 
studies manipulated the temporal context of a stimulus to 
alter predictions (Auksztulewicz and Friston, 2016; Grotheer 
and Kovács, 2016). These studies suggested that stimulus 
repetitions lead to lower prediction errors and this is manifest 
in RS while rarely presented, thereby surprising, stimuli lead 
to higher prediction errors and enhanced neural responses 
(for a review, see Grotheer and Kovács, 2016). Although 
recently, numerous studies explained repetition and expectation-
related phenomena under the framework of predictive coding, 
this explanation is not unchallenged in the literature. While 
expectations seem capable of modulating RS in many cases, 
RS and expectation suppression (ES) were dissociated from 
each other in several studies (Todorovic and de Lange, 2012; 
Grotheer and Kovács, 2015; Feuerriegel et  al., 2018) and 
therefore seem to reflect different neuronal mechanisms. 
Further, human fMRI studies with objects (Kovacs et  al., 
2013; Grotheer and Kovacs, 2014) and nonhuman primate 
single-cell studies with objects as well as recent single-cell 
(Vinken et  al., 2018) or fMRI (Olkkonen et  al., 2017) studies 
with faces failed to find any trace of modulatory effects of 
expectation on RS (see, however, Mayrhauser et  al., 2014 
and Kronbichler et  al., 2018 for a different conclusion). 
Therefore, the role of top-down modulatory effects, such as 

predictions and expectation, in determining the magnitude 
of RS is under heavy discussion as of today.

Although RS seems to be  a robust phenomenon, that has 
been investigated in several paradigms (for reviews, see Grill-
Spector et al., 2006; Krekelberg et al., 2006), there are evidences 
for repetition enhancement (i.e., an enhanced neural response 
for repeated stimuli) as well (Henson, 2003; Turk-Browne et al., 
2007; De Gardelle et  al., 2013; Segaert et  al., 2013; Recasens 
et  al., 2015). For example, Turk-Browne et  al. (2007) could 
show that the attenuating effect on the BOLD responses of 
showing two identical scenes compared to two different scenes 
in one trial could be  reversed by reducing the contrast of the 
stimuli. This modulatory effect on neural responses to repetitions 
is introducing an important factor into the RS research field, 
namely precision or clarity of visual input.

Prior studies (Auksztulewicz and Friston, 2016) 
conceptualized prediction error as the magnitude of neural 
responses in certain “error units.” The repeated presentations 
of a given stimulus would, in turn, reduce the activity of 
these neurons, leading to RS. According to theories of predictive 
coding, precise predictions (priors) together with less precise 
sensory evidences lead to decisions that are determined largely 
by the predictions; in other words, the prediction error is 
increased if predictions fail to come true. This would in turn 
reduce the magnitude of RS for noisy when compared to 
clear sensory inputs. However, if the predicted priors are less 
precise (for example due to the frequent occurrence of 
unexpected events) but the incoming sensory stimuli are clear 

A B

FIGURE 1 | (A) The graphs show the Gaussian probability distributions that represent the distribution of the priors (i.e., the a priori beliefs, black) and of the sensory 
evidences (gray) as well as the resulting posterior beliefs (dotted line) for a situation where the statistics-based priors are kept constant and the precision of the 
sensory stimuli is modulated (for example by adding noise to the images). Precision can be understood as the inverse of the distribution width. Reducing the relative 
precision of the sensory input biases the posterior beliefs toward the priors and thereby reduces predictive error (figure adapted from Adams et al., 2013).  
(B) Theoretical BOLD signal magnitudes for alternating and repeating stimulus pairs and for stimuli with and without noise, separately. Note that these results 
assume that predictive error is reflected in the magnitude of RS (Grotheer and Kovács, 2016).
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and precise, then the a posteriori decisions are rather determined 
by the sensory stimulation and the prediction errors are lower 
(O’Reilly et  al., 2012; Adams et  al., 2013; Auksztulewicz and 
Friston, 2016; Sterzer et  al., 2018).

In the current study, we  aimed at testing this idea by 
manipulating sthe precision of the incoming sensory data by 
adding noise to the images. We  reasoned that the modulatory 
effect of stimulus precision on prediction errors might 
be reflected in the magnitude of RS. Because sensory uncertainty 
is assumed to reduce the difference of priors and posterior 
beliefs (Figure  1A; Adams et  al., 2013; Sterzer et  al., 2018), 
a smaller prediction error (RS magnitude) is expected for 
noisy, as compared to clear visual stimuli. In other words, 
alternations lead to much higher prediction errors and repetitions 
to lower prediction errors when the sensory input is clear as 
compared to noisy, which results in higher RS magnitude 
(Figure 1B) for clear visual inputs.

Indeed, previous studies suggest the differential processing 
of noisy stimuli (Wild and Busey, 2004; Banko et  al., 2011). 
For example, Banko et  al. (2011) manipulated task difficulty 
by decreasing the phase coherence of face stimuli and found 
that this affects early electrophysiological responses. The 
visually evoked P1 showed a higher amplitude to noisy stimuli, 
whereas the face-sensitive N170 showed a lower amplitude. 
In line with the P1 modulation, fMRI data showed increased 
activation in the lateral occipital cortex (LO) due to noise 
(Banko et  al., 2011). Also, Hermann et  al. (2015) found that 
noisy stimuli with lower phase coherence lead to increased 
activity in the LO. This suggests increased processing demands 
in the visual cortex due to added visual noise. However, 
authors also found reduced activity in the face-selective 
fusiform face area (FFA) when noise was added (Hermann 
et  al., 2015). In addition, a linear increase in the amplitude 
of a face-sensitive ERP component (N170) (Jemel et al., 2003) 
could be  observed by decreasing the level of a Gaussian 
distributed noise, added to face stimuli gradually. This result 
could later be  confirmed with fMRI data by Horner and 
Andrews (2009) who manipulated phase coherence and found 
evidence for the principle of scaling for preferred stimuli in 
the FFA. This suggests the linearity of the BOLD response 
and the noise level in face stimuli. Altogether, these studies 
show that visual noise indeed affects neural processing, but 
it is not clear what impact that effect has on inferential 
processes and subsequent predictions.

To the best of our knowledge so far, no study compared 
the effect of stimulus repetitions for noisy and clear stimuli 
in the ventral temporal cortex. Therefore, in the present study, 
noise was added to face stimuli to manipulate the precision 
of sensory stimulation in a design containing repeated and 
alternating trials. Trials could therefore either consist of pairs 
of clear or noisy faces, which could either be  the same or 
different. Activity in face-specific areas (FFA and OFA, occipital 
face area) as well as in LO was acquired using fMRI. Based 
on prior evidences (Horner and Andrews, 2009; Hermann 
et  al., 2015), noisy stimuli were expected to elicit lower BOLD 
responses than clear ones in the regions of fusiform gyrus, 
but an enhanced response was expected in the lateral occipital 

regions (Banko et  al., 2011; Hermann et  al., 2015). Also, in 
line with the predictive coding theory, repeated trials were 
hypothesized to show a smaller neuronal response than 
alternating trials. We  reasoned that this RS effect should 
be  modulated by the clarity of the stimuli if predictions are 
indeed less precise for noisy as compared to clear stimuli 
(Auksztulewicz and Friston, 2016).

MATERIALS AND METHODS

Participants
Twenty-three subjects participated in this study. One subject 
was excluded from the analysis due to excessive movements 
during image acquisition. The remaining 22 participants (11 
females, one left-handed and one both left- and right-handed) 
were between 18 and 31  years of age (M  =  22; SD  =  3.81) 
and all had normal or corrected to normal vision. Previous 
fMRI studies, using stimulus pairs and reporting significant 
RS, as well as significant predictive modulations of RS 
(Summerfield et  al., 2008; Kovacs et  al., 2013; Grotheer et  al., 
2014; Grotheer and Kovacs, 2014) were typically able to find 
modulatory effects of RS by other factors, such as probabilistic 
predictions with sample sizes between 11 and 26. Therefore, 
here, we  reasoned, that with the tested number of participants, 
we  could reliably detect any interaction of noise and RS and 
this is supported by the results of the Bayes factor analyses.

Participants were fully informed about the study and gave 
written consents to participate. They received course credits 
for participation. The experiment was conducted in accordance 
with the guidelines of the Declaration of Helsinki, and with 
the approval of the ethics committee of the University of Jena.

Stimuli and Procedure
A total set of 490 unfamiliar faces (246 clear (127 female) 
and 244 noisy (127 female)) were used as stimuli. Those were 
shown in the center of the screen with a superimposed grey 
scale mask, which additionally covered the hair and the shape 
of the face resulting in round-shaped faces including eyes, 
nose, and mouth. Noisy stimuli were generated by superimposing 
Fourier-transformed versions of the original images on the 
faces where phase coherence was reduced (45%) by the weighted 
mean phase technique (Dakin et  al., 2002).

Participants completed three experimental runs, each including 
120 trials of the four different trial types (Figure 2) in a 
randomized fashion. One trial included two stimulus 
presentations, which could either be  the same face (repeated 
trial) or two different faces (alternating trial). Participants’ task 
was to detect target trials, in which the second face stimulus 
was tilted by 10° either clockwise or counterclockwise and to 
indicate this direction by pressing a button (Figure 3). Such 
target trials were equally distributed across the four conditions 
and represented 20% of the overall trial amount and were 
excluded from any further analysis.

For defining regions of interests (ROI), a localizer sequence 
was performed. Grayscale images of faces, objects, and 
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Fourier-transformed noise patterns were presented (exposition 
time: 300  ms, interstimulus interval: 200  ms) in blocks  
of 20  s intermitted by a break of 20  s and were repeated 
four times.

Imaging Parameters
Neuroimaging was performed using a Prisma fit 3  T MRI 
Scanner from Siemens. During the functional runs, T2*-weighted 
images (35 slices, TR  =  2,000  ms, TE  =  30  ms, isotropic voxel 
size of 3  mm) were acquired continuously. High-resolution 
T1*-weighted simages (TR = 2,300 ms, TE = 3.03 ms, isotropic 
voxel size of 1  mm) were acquired to obtain a 3D structural 
scan. Data were preprocessed using SPM12 (Wellcome Trust 
Centre for Neuroimaging, University College London, UK). 
The functional images were slice-timed, realigned, co-registered 
to the structural scan, and afterward normalized to the MNI 
space and smoothed using an 8-mm Gaussian kernel.

ROIs were defined using the data from the localizer sequence 
and canonical hemodynamic response functions (HRFs) were 
extracted using MarsBaR (Brett et al., 2002). HRFs were estimated 
for all subjects and ROIs. Then, peak values were submitted 
to repeated measurement ANOVAs with the factors noise level 
(clear vs. noisy) and repetition (repeated vs. alternating).

RESULTS

Behavioral Results
A repeated measurements ANOVA with the factors noise  
(clear vs. noisy) and trial type (repeated vs. alternating) was 
conducted for the reaction times and accuracy. Regarding the 
reaction times, no significant effect was revealed from the 
analysis. However, a significant main effect for noise level was 
found for the accuracy rates, F(1,21) = 12.00, p < 0.01, η = 0.36, 
which shows better performance for clear (M  =  94.4%, 
SD = 10.3%) as compared to noisy trials (M = 88.9%, s = 12.3%).

Neuroimaging Results
Neuroimaging results are depicted in Figure 4. We  found a 
similar pattern in the FFA of the two hemispheres. A significant 
main effect of noise level was found, F(1,19) = 14.18, p < 0.01, 
η  =  0.43 for right hemisphere and F(1,20)  =  19.45, p  <  0.001, 
η  =  0.49 for left hemisphere, with clear trials eliciting larger 
BOLD signal than the noisy ones. Additionally, a significant 
main effect of trial type was observed in both hemispheres: 
F(1,19)  =  16.22, p  <  0.001, η  =  0.46 for right hemisphere and 
F(1,20)  =  15.99, p  <  0.001, η  =  0.44 for left hemisphere. This 
effect suggests a generally higher signal for alternating as 

FIGURE 2 | Examples for the four possible trial types (excluding target trials). Written informed consent for publishing these images was given by the 
respective persons.

FIGURE 3 | Sequence of three trials including clear alternating, noisy repeated, and one target trial (clear repeated). Written informed consent for publishing these 
images was given by the respective persons.
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compared to repeated trials. However, no interaction between 
noise level and trial type was found, neither for the right, 
F(1,19)  <  1, p  =  0.44, η  =  0.03, nor for the left hemisphere, 
F(1,20)  <  1, p  =  0.87, η  =  0.00, suggesting that the observed 
RS is similar for noisy and clear stimuli in the FFA.

The same analysis performed on the right OFA revealed a 
significant main effect of trial type for the right hemisphere, 
F(1,21)  =  8.14, p  <  0.01, η  =  0.28, showing that alternating 
trials elicit greater signal changes than repeated ones. However, 
the main effect of noise remained nonsignificant, F(1,21)  <  1, 
p  =  0.54, η  =  0.02, as well as the interaction effect did, 
F(1,21)  <  1, p  =  0.94, η  =  0.00. The same analysis for the 
left OFA revealed no significant main effect or interaction.

In the LO, similar to the OFA, the main effect of trial type 
was found to be  significant in one hemisphere, the left one 
only, F(1,20)  =  4.60, p  <  0.05, η  =  0.19. Again, repetitions 
led to lower signal than alternations in the LO as well whereas 
the right hemisphere showed a strong tendency in this direction 
only, F(1,20)  =  3.59, p  =  0.07, η  =  0.16. No other main effect 
or interaction reached significance.

We additionally evaluated the likelihood that there is no 
interaction between the two factors using a Bayesian repeated 
measures ANOVA to substantiate our conclusion. This analysis, 
performed in JASP (JASP Team, 2018), provides the Bayes factor, 
reflecting how much more likely a dataset reflects  
the null hypothesis compared to the alternative hypotheses. To 

FIGURE 4 | Effects of noise and repetitions. Percent signal changes of FFA, OFA, and LO (left and right hemispheres for each) are presented for condition and trial 
type. Error bars indicate standard errors. Displayed significant differences refer to Fisher’s LSD post hoc test. *p < 0.05, **p < 0.01.
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get the Bayes factor for the interaction, we performed the division 
of BF01 of the model containing the two main effects and the 
interaction between these by the model containing the two 
main effects only. Values reported here show the Bayes factor 
for the null hypothesis against the hypothesis of an interaction.

The estimated Bayes factor (null/alternative) for an interaction 
of condition and trial type in the right FFA was 2.6, suggesting 
that the null hypothesis of no interaction is 2.6 times more 
likely than the alternative hypothesis. Bayes factor (null/
alternative) for an interaction effect in the left FFA was 3.1, 
providing substantial evidence for the null hypothesis.

Regarding the right OFA, a Bayes factor of 3.3, meaning 
that data are 3.3 times more likely to occur under the null 
hypothesis, provides substantial evidence against the presence 
of an interaction effect between the two factors. In the left 
OFA, the calculated Bayes factor for the interaction between 
condition and trial type was 2.9, implying that the null hypothesis 
of no interaction is 2.9 times more likely than the 
alternative hypothesis.

The Bayesian repeated measures ANOVA in the right LO 
revealed a Bayes factor of 3.1, providing substantial evidence 
for the null hypothesis, that there is no interaction between 
the two factors noise level and trial type. For the left LO, the 
Bayes factor for the interaction effect model was 2.6, suggesting 
that the observed data are 2.6 more likely to occur under the 
null hypothesis.

Altogether, the Bayes factor analyses supported the conclusion 
that clarity does not affect the magnitude of RS in any of the 
tested ROIs.

DISCUSSION

The present study aimed at investigating the impact of added 
sensory noise on repetition suppression. First, the results 
show an effect of noise level on the activity in the FFA 
but not in OFA or LO. This is in line with other results 
showing lower FFA activity (Horner and Andrews, 2009) 
or a weaker electrophysiological signal in electrodes over 
the temporal cortex (Banko et  al., 2011) in response to 
noisy faces. Regarding the lateral occipital regions, the same 
studies showed even an enhanced processing in these, earlier 
stages of visual processing (Banko et  al., 2011; Hermann 
et  al., 2015) when exposed to noisy stimuli. However, there 
is also evidence for the opposite result, namely a reduced 
activation with increasing noise level (Malach et  al., 1995) 
or no noise effects at all (Jemel et  al., 2003; Wild and 
Busey, 2004). In the current study, noise had no effect on 
the LO, which is at odds with prior studies (Malach et  al., 
1995; Banko et  al., 2011; Hermann et  al., 2015). The chosen 
noise level could be  one factor leading to this result. 
We applied 45%, whereas prior studies applied slightly higher 
(55%) noise levels (Hermann et  al., 2015). It is possible 
that more noise is necessary to affect the activity of the 
lower level visual areas, whereas higher level visual areas 
are more sensitive to added visual noise. Also, in studies 

finding an elevated BOLD signal for noise in the LO, 
participants had to perform more demanding tasks like 
gender categorization (Wild and Busey, 2004; Banko et  al., 
2011), and the higher task-difficulty might led to enhanced 
neural activity. In contrast, the target detection task in the 
current study was comparatively easy and this could lead 
to the similar activity for noisy and clear stimuli. The fact, 
however, that the behavioral results show an effect of noise 
on participants’ performance argues against this interpretation.

Repetition suppression was found in all the tested regions, 
even if not always in both hemispheres (OFA and LO), 
regardless of the noise level. Therefore, this study joins  
the large body of evidence for this robust effect (for a  
review, see Grill-Spector et  al., 2006). Interestingly, the  
noise added to the stimuli did not affect the magnitude  
of RS in any of the tested cortical areas. This suggests  
that the neural mechanisms driving RS are similar for clear 
and noisy stimuli. The exact nature of these mechanisms  
is highly debated currently in the literature. Specifically,  
while electrophysiological single-cell recording studies suggest 
that RS is explained by local or bottom-up mechanisms, 
such as fatigue (Carandini and Ferster, 1997), several current 
neuroimaging studies support the role of top-down 
mechanisms, such as predictions, in explaining RS (for a 
review, see Grotheer and Kovács, 2016).

Theories of predictive coding (Rao and Ballard, 1999; Friston, 
2005) assume that the human central nervous system 
continuously makes inferences or predictions about the 
surrounding sensory environment and estimates the difference 
of the actual incoming and predicted inputs (prediction error). 
Many studies have suggested so far that this prediction error 
is reflected in the repetition-related response reduction of 
neurons (RS; Summerfield et  al., 2008, 2011; Todorovic and 
de Lange, 2012; Grotheer and Kovacs, 2014; Mayrhauser et al., 
2014; Grotheer and Kovács, 2015). In addition, recent theoretical 
(O’Reilly et  al., 2012) and clinically motivated studies of 
predictive coding (Adams et  al., 2013; Sterzer et  al., 2018) 
suggested that the magnitude of the prediction error, therefore 
of RS, should depend on the precision of the predictions, as 
well as of the incoming sensory data. It has been suggested 
that precise predictions together with more noisy sensory 
evidence lead to enhanced prediction errors while less precise 
priors with more precise incoming sensory stimuli lead to 
reduced prediction errors (O’Reilly et  al., 2012; Adams et  al., 
2013; Auksztulewicz and Friston, 2016; Sterzer et  al., 2018). 
Here we  modeled the precision of the sensory data by adding 
noise to our stimuli and we kept the precision of the predictions 
(i.e., the volatility of the system, Summerfield et  al., 2011) 
constant. We asked if the modulatory effect of stimulus precision 
on prediction errors is reflected in the magnitude of RS. To 
our surprise, the results suggest that RS is insensitive to the 
manipulations of the precision of incoming sensory inputs, at 
least if the precision is modulated by adding noise to the stimuli.

The reason for the lack of modulatory effect of noise 
might be due to the fact that RS is the result of the interaction 
of multiple neural processes. While many prior human 
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electrophysiological and neuroimaging studies explained RS 
in the framework of predictive coding (for a review, see 
Grotheer and Kovács, 2016), other studies explained RS by 
simpler, bottom-up, or local mechanisms (Kaliukhovich and 
Vogels, 2014; Vogels, 2016; Olkkonen et  al., 2017; Vinken 
et al., 2018). Indeed, the separation of RS from its modulation 
by stimulus probabilities and thereby by expectation was 
confirmed by many studies (Larsson and Smith, 2012; Todorovic 
and de Lange, 2012; Grotheer and Kovács, 2015; Feuerriegel 
et  al., 2018). We  presented our Rep and Alt trials with equal 
probabilities; therefore, we  did not modulate probabilistic 
expectations. Thus, it is possible that the manipulation of 
sensory precision affects only the modulation of RS by 
top-down factors, such as probabilistic expectations, but not 
the magnitude of RS per se. This would explain why 
we  observed similar RS for noisy and clear stimuli and at 
the same time requires further specifically targeted studies 
to test. This fact, together with the currently heavily debated 
neural mechanisms of RS (Vinken et  al., 2018), does not 
allow us to conclude that the precision of incoming sensory 
stimulation has no effect on predictive processes at all. 
Nonetheless, our results clearly show that the precision of 
the sensory input is not crucial in determining the RS 
magnitude per se.

Also, we  did not observe repetition enhancement effects 
for the less visible, noisy stimuli which have been reported 
by Turk-Browne and colleagues in their study (Turk-Browne 
et  al., 2007). However, there are several conceptual differences 
between their experiment and the current one. First, they used 
a different stimulus set (indoor and outdoor scenes) and 
therefore measured the BOLD response in different areas 
(parahippocampal place area) as we  did. Second, the task was 
an orthogonal orientation discrimination task in our case, while 
an indoor-outdoor scene discrimination in the Turk-Brown 
study, meaning that it directed attention to the stimulus content. 
Third, and above all, while we used short-lagged stimulus pairs 
(with 500  ms average ISI) the Turk-Brown study used much 
longer, 3-s-long ISI with masked presentations, and it is not 
clear so far if these two types of presentations provoke the 
same neuronal mechanism or not. Altogether, these differences 
make the comparisons of the two studies difficult.

Manipulating the precision of sensory data was not sufficient 
to affect RS magnitudes at all in our study. Provided prediction 
errors are reflected in RS at all, posterior beliefs may be  more 
determined by the precision of the predicted priors than by 
the precision of the sensory inputs. The precision of the priors 
can be  modeled by applying stable, highly predictable or more 
variable, volatile stimulus sequences. Indeed, Summerfield et al. 
(2011) found that the repetition probability-induced modulation 
of RS (measured on visual evoked potentials) was present 
during stable stimulation segments but disappeared almost 
entirely when the stimulation became volatile. The aim of the 
current study was to test the precision of the sensory stimuli 
only; therefore, we did not make an effort to modulate stability/
volatility here. Also, we  assumed the priors to be  the same 
for both noisy and clear conditions and for alternating and 

repeated stimulus pairs. In other words, we kept the probabilities 
of the four trial types equal and constant across the experiment. 
Still, we cannot exclude entirely the possibility, that the a priori 
hypotheses of the “noisy world” are different from those of a 
“clear world.” In other words, introducing noise to the sensory 
input might have had an effect on the predictive priors as 
well. Therefore, the lack of a modulatory effect of sensory 
data precision on RS suggests that future studies should 
manipulate sensory data precision together with the precision 
of prior predictions. Including precision manipulations into 
probabilistic prediction paradigms (e.g., as in Summerfield 
et al., 2008) will provide more insight into predictive processes.

CONCLUSION

The findings of this study are in agreement with previous 
studies showing a reducing effect of noise in the region of 
the fusiform gyrus (Horner and Andrews, 2009; Banko et  al., 
2011). The enhanced activation in more lateral occipital regions 
found in earlier investigations (Banko et  al., 2011; Hermann 
et  al., 2015) could not be  confirmed. This suggests a different 
sensitivity to noise of the different regions. Significant RS was 
present in the FFA (bilateral), right OFA, and left LO. Evidence 
for a modulatory effect of precision on RS could not be proved. 
Therefore, future studies should focus on independently 
manipulating the precision of prior beliefs and sensory inputs 
for a better understanding of its impact on predictive processes.
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