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This paper examines the role that lived experience plays in the human capacity to

reason about uncertainty. Previous research shows that people are more likely to provide

accurate responses in Bayesian tasks when the data are presented in natural frequencies,

the problem in question describes a familiar event, and the values of the data are in

line with beliefs. Precisely why these factors are important remains open to debate. We

elucidate the issue in two ways. Firstly, we hypothesize that in a task that requires people

to reason about conditional probabilities, they are more likely to respond accurately

when the values of the problem reflect their own lived experience, than when they

reflect the experience of the average participant. Secondly, to gain further understanding

of the underlying reasoning process, we employ a novel interaction analysis method

that tracks mouse movements in an interactive web application and applies transition

analysis to model how the approach to reasoning differs depending on whether data

are presented using percentages or natural frequencies. We find (1) that the closer the

values of the data in the problem are to people’s self-reported lived experience, the

more likely they are to provide a correct answer, and (2) that the reasoning process

employed when data are presented using natural frequencies is qualitatively different

to that employed when data are presented using percentages. The results indicate that

the benefits of natural frequency presentation are due to a clearer representation of the

relationship between sets and that the prior humans acquire through experience has an

overwhelming influence on their ability to reason about uncertainty.

Keywords: probabilistic reasoning, interaction analysis, bayesian inference, decision making, mouse movement

1. INTRODUCTION

Over the past five decades, the human ability to reason about uncertainty has been the subject of
a wealth of research. A large amount of evidence has shown that humans struggle with certain
forms of probabilistic reasoning. Of particular difficulty are problems where one is expected to use
Bayes’ theorem (Equation 1) to estimate the probability of a hypothesis given the availability of
certain evidence. These appear to be challenging not only for laypeople but also for experts, such as
medical professionals. Consider this example from an early study (Eddy, 1982):
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The probability of having breast cancer for a woman of a particular

age group is 1%. The probability that a woman with breast

cancer will have a positive mammography is 80%. The probability

that a woman without breast cancer will also have a positive

mammography is 9.6%. What is the probability that a woman with

a positive mammography actually has breast cancer?

To answer the question one should apply Equation 1 in which
P(H | E), known as the posterior probability or the positive
predictive value (PPV), is the probability of the hypothesis (breast
cancer) given the evidence (positive mammography), P(E | H),
known as the likelihood or sensitivity of the test, is the probability
of the evidence given the hypothesis, P(H), known as the prior
probability or base rate, is the probability of the hypothesis, P(E
| ¬H), known as the false positive rate or false alarm rate, is
the probability of the evidence given the opposite hypothesis
(e.g., no breast cancer) and P(¬H) is the probability of the
opposite hypothesis.

P(H | E) =
P(E | H) P(H)

P(E | H) P(H)+ P(E | ¬H) P(¬H)
(1)

The answer to this problem in the original paper, achieved
by applying the equation to the figures given in the question,
is 7.8%. When posed to a group of physicians, however, only
around 5% of them arrived at the correct estimate; the majority
estimated a probability of between 70 and 80% (Eddy, 1982).
Many subsequent studies have reported similar results, and for
at least four decades there has been an ongoing debate about
why people perform so poorly in probabilistic reasoning tasks
(McDowell and Jacobs, 2017; Weber et al., 2018). Among the
many explanations given, two have been reported extensively in
previous literature. One theory is that many people fail to make
a correct inference because they do not adequately consider the
base rate—a phenomenon known as base rate neglect (Tversky
and Kahneman, 1974; Bar-Hillel, 1983). When the base rate
value is very small, this can lead to a large overestimation of
the PPV, as found in the mammography problem study (Eddy,
1982). A second theory is that people who fail to make a correct
inference confuse the sensitivity, i.e., P(E | H), with the PPV, i.e.,
P(H | E) (Eddy, 1982; Elstein, 1988; Gigerenzer and Hoffrage,
1995; Gigerenzer et al., 1998; Hoffrage and Gigerenzer, 1998).
Previous research suggests that there are other factors affecting
probabilistic reasoning. The information format in which the
problem is described appears to be strongly linked to how
people perceive probabilistic problems (Gigerenzer andHoffrage,
1995; Binder et al., 2018). Furthermore, people’s beliefs about
the uncertainty surrounding the event described in the problem
(which may be the result of direct experience) can also affect how
they perceive and reason about probabilities (Cohen et al., 2017).
At present, however, the cognitive processes involved in this form
of reasoning remain poorly understood, and a full account of how
these factors affect reasoning is still lacking (Weber et al., 2018).
The current study has two aims. The first is to examine whether
the previous lived experience people have with the uncertainty
surrounding a real-life stochastic event affects their reasoning
about the probability of such an event. We hypothesize that
personal beliefs about uncertainty formed as a result of lived

experience, reinforced over time, can bias people’s estimation
of risk. A second aim of the study is to investigate whether
the format in which the data is presented (i.e., probabilities vs.
frequencies) affects the way people approach the problem and
whether behavioral patterns associated with the different formats
can explain people’s reasoning. To achieve this, we use a paradigm
where information remains hidden until it is hovered over with a
mouse. By tracking mouse movements, we can determine when
and in what order people access the problem data, providing a
window on the cognitive process.

1.1. Two Theories of Probabilistic
Reasoning
It has been hypothesized that people’s inability to answer
probabilistic reasoning problems correctly might be related to
the way these problems are framed, i.e., the information format
(Gigerenzer and Hoffrage, 1995). The ecological rationality
framework argues that the use of natural frequencies, or
visualizations that highlight frequencies, improves probabilistic
reasoning because this way of representing the problem reflects
what humans have encountered in real-life situations over
thousands of years of evolution (McDowell and Jacobs, 2017).
The mammography problem re-framed using frequencies states:

100 out of 10,000 women of a particular age group who participate

in routine screening have breast cancer. 80 out of 100 women who

participate in routine screening and have breast cancer will have a

positive mammography. 950 out of 9,900 women who participate in

routine screening and have no breast cancer will also have a positive

mammography. How many of the women who have participated in

routine screening and received a positive mammography actually

have breast cancer? (Gigerenzer and Hoffrage, 1995)

In this case, the calculation required to correctly answer the
problem is simpler, as it reduces to dividing the number of
women who have breast cancer and tested positive (80) by the
number of women who tested positive regardless of whether they
actually have the disease (80 + 950).

Previous research shows that the use of the frequency
format, or graphs highlighting frequencies, boosts performance
(Gigerenzer and Hoffrage, 1995; McDowell and Jacobs, 2017).
Nevertheless, even when re-framing the problem using natural
frequencies, evidence from more than 20 years of probabilistic
reasoning research shows that about 76% of people still make
incorrect estimates (McDowell and Jacobs, 2017). To date, it is
still not clear why this is the case (Weber et al., 2018).

It is worth noting that, in this study, by “frequency format”
we mean the numerical format describing a Bayesian problems
where the data is presented using natural frequencies and the
question asks the participant to state the frequency of events in
the form of X out of Y . By “probability format” we mean the
numerical format describing a Bayesian problem where the data
are shown using probabilities (or percentages) and the question
asks for a single-event probability. This clarification is needed as
there are hybrid possibilities where, the question in a problem
framed using natural frequencies can be asked as a single event
probability. In this situation, the advantage of using natural
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frequencies appears to be diminished (Cosmides and Tooby,
1996; Tubau et al., 2018).

As shown in the above calculation, the frequency format is
less computationally demanding than the probability format.
According to the proponents of the ecological rationality
framework, this is the main, albeit not the only reason why
people reason better with frequencies. The frequency format is
also argued to be more congruent with the way people acquire
information in the wild (Gigerenzer and Hoffrage, 1995, 2007;
McDowell and Jacobs, 2017). A strict interpretation of this
framework assumes that frequencies are better processed by the
human mind, as this way of representing uncertainty might be
the ideal input for a cognitive mechanism specifically evolved
through human phylogenesis to deal with frequencies, a position
which has been challenged by some (Sirota and Juanchich, 2011;
Lesage et al., 2013; Gigerenzer, 2015; Hoffrage et al., 2015; Sirota
et al., 2015; McDowell and Jacobs, 2017).

A second perspective, the nested-set hypothesis, states that the
frequency format, and related visual aids, are effective because
they clearly expose relationships between sets that are not
apparent when the problem is described using the probability
version of the textual format (McDowell and Jacobs, 2017).
According to this theory, it is less the case that the format taps
into a specially evolved cognitive module, but rather that it
better supports domain-general human cognition via a clearer
problem presentation (Cosmides and Tooby, 1996, 2008; Sirota
et al., 2015). This latter view has been supported in a number
of studies (Sirota and Juanchich, 2011; Lesage et al., 2013;
Sirota et al., 2015).

Some researchers hold the views that the ecological rationality
framework and the nested-set hypothesis diverge in their
explanation of how humans perform probabilistic reasoning,
others disagree that the theories are dichotomous, stating that
both explanations converge on the conclusion that the format
provides an information structure that simplifies computations
(McDowell and Jacobs, 2017). Furthermore, it is worth noting
that the theorists who developed the ecological rationality
framework had stated in their research that natural frequencies
simplify the calculation because they provide a clearer structure
of the problem. Thus, although they did not call this the
nested-set hypothesis, it appears clear that they referred to the
same concept (Hoffrage et al., 2002; Gigerenzer and Hoffrage,
2007). Although it can be argued that the two theories are
in reality one, the cognitive process by which this facilitative
effect is achieved is still under investigation. The present lack of
consensus, and the heterogeneity found in the results of previous
studies, suggest that the cognitive mechanisms underpinning
how people approach probabilistic reasoning problems are still
not fully understood (McDowell and Jacobs, 2017).

1.2. The Role of the Data Acquisition
Process
The format in which information is displayed is not the
only factor affecting probabilistic reasoning. Previous research
suggests that the way in which people take on board
information and learn probabilities – termed the data acquisition

process – can also affect reasoning (Hoffrage et al., 2015;
Traczyk et al., 2019).

Research in probabilistic reasoning is historically divided
into two different families of tasks: in one case probabilities
are derived from sequential experimentation; in the other
probabilities are fully stated in a single instance (Hoffrage et al.,
2015). Data acquisition is thus accomplished either by obtaining
information through sequential experimentation, enabling a
reconstruction of the likelihood, i.e., P(E | H), as described in
the “bags-and-chips” problem below, or by receiving an explicit
statement of the likelihood and the false positive rate values, as
found in the mammography problem described earlier. Early
research in probabilistic reasoning was pioneered by Edwards
(1968), who conducted several studies using the famous “bags-
and-chips” problem (Phillips and Edwards, 1966; Edwards, 1968,
1982; Slovic and Lichtenstein, 1971). In this problem, participants
are told that there are two bags filled with poker chips. One bag
has 70 red chips and 30 blue chips, while the other bag has 30
red chips and 70 blue chips. Participants do not know which
bag is which. The experimenter flips a coin to choose one of
the bags, and then begins to randomly sample chips from the
chosen bag, with replacement. Thus, before drawing any chip,
each bag is equally likely to be chosen (i.e., p = 0.5). At the end
of the sampling process, participants are left with a sequence
of chips drawn from the bag, e.g., six red and four blue chips.
Participants are then asked to estimate the probability that the
predominantly red bag is the one being sampled. Applying Bayes’
theorem to a situation where six red and four blue chips are
sampled, the probability that the predominantly red bag is the
one being sampled is 0.85. Several experiments using this task
show that participants’ estimates tend to be very close to correct,
but are slightly conservative (i.e., participants have the tendency
to slightly underestimate the probability that the bag chosen
is the predominantly red bag) (Phillips and Edwards, 1966,?;
Edwards, 1968, 1982; Slovic and Lichtenstein, 1971). Edwards
and colleagues concluded that people reason in accordance with
Bayes’ rule, but they are “conservative Bayesians”, as they do
not fully update their prior beliefs in light of new evidence as
strongly as Bayes’ rule prescribes (Phillips and Edwards, 1966;
Edwards, 1968).

The key difference between the mammography problem and
the bags-and-chips problem is that in the former, the likelihood
and the false positive rate values are explicitly stated in the
description of the problem; conversely, in the latter, participants
have to update their beliefs sequentially, upon the acquisition
of new information – i.e., the information acquisition process
is staged, and subjects learn about each case serially through
lived experience (Edwards, 1968; Mandel, 2014). Thus, the
method used by Edwards for testing probabilistic reasoning is
conceptually very different to that used in more recent research
where different versions of the mammography problem have
been employed. The results from previous research show that
the outcomes produced by these two classes of experiments,
in terms of participants’ performance, are also different. In the
bags-and-chips problem people’s estimates, albeit conservative,
tend to be fairly accurate. Conversely, the results from research
using descriptive tasks (e.g., the mammography problem) have
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shown that people perform poorly at probabilistic reasoning and
tend to greatly overestimate risk (Eddy, 1982; Gigerenzer and
Hoffrage, 1995). A clear distinction can thus be made between
the probability learning paradigm, which uses tasks in which
people learn probabilities through a direct (lived) experience with
the sampling process (i.e., the data acquisition process involves
continuously updating beliefs over time in light of new evidence)
and the textbook paradigm in which the probabilities are fully
stated in a text or in a graph (i.e., the data acquisition process
is indirect, and the temporal component is missing) (Hoffrage
et al., 2015). This distinction draws a parallel with some literature
in the field of decision making which highlighted a difference
between decisions derived from experience and decisions from
descriptions (Hertwig et al., 2004).

1.3. How Does Data Acquisition Affect
Cognition
The probability learning paradigm employs tasks where people
are given the opportunity to learn probabilities from a sequence
of events, and are subsequently tested as to whether they make
judgments consistent with Bayes’ rule. In such tasks, performance
tends to be accurate. The superior performance observed in the
probability learning paradigm is hypothesized to be due to the
fact that in these situations people may use unconscious, less
computationally demanding (evolutionary purposeful) mental
processes (Gigerenzer, 2015).

The textbook paradigm employs tasks where probabilities
are numerically stated, in either a textual description or a
graphical representation of the problem. People perform poorly
in these tasks, particularly when the information is provided
in probabilities. This effect may be due to a heavy reliance on
consciously analytical (biologically secondary) mental processes
that require much greater cognitive effort (Gigerenzer, 2015).

It thus appears that direct experience with uncertainty (typical
of those tasks found in the probability learning paradigm) taps
into statistical intuition. Conversely, descriptions that are merely
abstractions of reality are not able to fully substitute for an
individual’s direct experience with the environment and may
require (explicit) analytic thinking (Hertwig et al., 2018).

Although experience and description are different ways
of learning about uncertainty, they can be complementary.
Description learning may be useful when we do not have the
opportunity to directly experience reality, as may be the case
when events are rare, samples are small, or when the causal
structure of experience is too complex (Hertwig et al., 2018).
Learning on the basis of a description may also be perceived
as an experiential episode, if the format of the description is
able to trigger an experience-like learning process. For example,
presenting a textbook problem, such as the mammography
problem, in terms of natural frequencies rather than conditional
probabilities, may make this task (at the perceptual level) closer
to learning from experience. This would occur if frequencies
from natural sampling are seen as abstractions representing
the process of sequentially observing one event after the other
in the real world (Hoffrage et al., 2015). If this is the case,
the manipulation of the information format would affect the

perception of the data acquisition process. This may be the reason
why the proportion of people who reason in accordance with
Bayes’ rule rises substantially when the information is presented
using natural frequencies (Gigerenzer, 2015; Hertwig et al., 2018).
Nevertheless, it may also be that frequency formats are effective
merely due to their ability to highlight hidden relationships (i.e.,
this would enable the formation of clearer mental representations
of the problem) or the fact that computing the solution when the
problem is framed using the frequency format is much simpler
than computing the solution when the problem is framed using
the probability format due to the reduced number of algebraic
calculations in the former (Sirota and Juanchich, 2011; Lesage
et al., 2013; Sirota et al., 2015).

1.4. The Role of Task Familiarity and
Personal Beliefs
In probabilistic reasoning research using the textbook paradigm,
people appear to be more accurate when reasoning about familiar
tasks (everyday problems) than unfamiliar tasks (e.g., diagnostic
medical testing) (Binder et al., 2015). There is also evidence that
the degree of belief a participant has about the probability of
an event affects his or her performance (Cohen et al., 2017).
This latter stream of research collected people’s opinions, via
surveys, about the uncertainty surrounding certain stochastic
events – i.e., whether the probabilities used in problems are
believable or not – and subsequently tested participants on these,
to show that accuracy improves when the probabilities are rated
as more believable.

A person’s beliefs might be formed as a result of indirect
experience (e.g., a friend’s story, anecdotes, news, social media,
discussion forums, etc.) or from lived experience, through
direct exposure to the uncertainty surrounding an event,
perhaps reinforced over time (e.g., a physician dealing with
mammography tests daily). Thus, the quality of one’s beliefs can
be the result of the way he/she acquire the information (i.e, the
data acquisition process) in such problems. This draws parallel
with the distinction which was made between reasoning from
description and reasoning from experience presented in previous
studies (Hoffrage et al., 2015). According to this line of argument,
if data in a reasoning task matches beliefs emerging from lived
(direct) experience of the uncertainty related to the stochastic
event, people may perform better than they would if the data are
simply generally plausible, and that this may hold regardless of
the format in which uncertainty is encoded.

1.5. Rationale and Research Hypotheses
In this study, we investigate the effect of lived experience on
reasoning accuracy. Previous research has shown that people
are more accurate in their reasoning when presented with
believable data, as determined at a population level (Cohen
et al., 2017). There is also evidence from the experiential
learning paradigm that direct experience with the data facilitates
reasoning (Edwards, 1968). Indeed, some research has shown that
the way in which people gather information about uncertainty
affects reasoning (Hoffrage et al., 2015; Traczyk et al., 2019).
We thus hypothesize (H1) that people are more likely to reason
accurately when the data presented in a reasoning problem
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directly match their self-reported experience of the probability
of an event, than when the data are believable, but do not
match their experience. This is because experience-matched data
may tap into those unconscious processes typically involved in
experiential learning (Gigerenzer, 2015).

The second hypothesis (H2) tests whether the frequency
format is superior to the probability format only because it
resembles the process of learning from experience. The ecological
rationality framework states that people reason more accurately
when using the frequency format because it induces experiential
learning at the perceptual level. However, when the data is
derived from people’ lived experience, an experiential learning
process had already took place. At this point, the facilitative
effect of the frequency format might be redundant. We therefore
hypothesize that when data match experience, there will be no
facilitative effect of presenting the problem in the frequency
format, but when data do not directly match experience, this
effect will be present.

Previous research using interaction analysis to study
probabilistic reasoning has found patterns in people’s observable
behavior to be linked to certain reasoning strategies (Khan et al.,
2015; Reani et al., 2018b, 2019). To date, this work has focused
primarily on eye tracking analysis, which may not provide a
comprehensive picture of an individual’s reasoning process. For
instance, people may fixate on certain locations not because they
consciously intend to acquire the information contained in those
locations, but because the physical properties of these (e.g., color,
shape, etc.) attract visual attention.

In this study we therefore seek to shed further light on the
reasoning processes with an online method that uses mouse-
event analysis to study human cognition. In an interactive
web application, the user has to hover the mouse cursor over
the nodes in a tree diagram to uncover hidden information.
When the mouse moves away, the information is hidden again,
so it is clear when the user is accessing the data. As the
relevant information is obscured by buttons, and participants
must explicitly hover over the button to reveal the data
underneath, it is possible to obtain a direct link between cursor
behavior and cognition. Mouse events are then analyzed using a
transition comparison method previously applied to eye tracking
data (Reani et al., 2018b, 2019; Schulte-Mecklenbeck et al., 2019).
We hypothesize (H3) that if probability reasoning and frequency
reasoning invoke different cognitive processes, mouse movement
will differ according to the format in which the information
is encoded.

2. METHOD

In the mammography problem (Eddy, 1982), the jargon and
the problem context may be unfamiliar to most people and,
consequently, participants may not fully understand what the
results of a diagnostic test actually represent in terms of risk.
Previous research has shown that people are better at solving
problems which are familiar to them from everyday experience
(Binder et al., 2015). People are seldom exposed to diagnostic
tests in every day life, unless they are medical professionals. Thus,

FIGURE 1 | Problem shown using a tree diagram with the probability format,

where the information is hidden behind the buttons, and hovering the mouse

cursor over a button reveals the information underneath.

the general public may not be able to make full use of their
previous experience to evaluate uncertainty about an event, if
their experience regarding this event is limited.

As a result, in this study, a “fire-and-alarm” scenario was
used as a situation that is meaningful to most people (see the
Supplementary Materials for the full textual description of the
problem). In this context, by analogy with the mammography
problem, the diagnostic test is the fire alarm, which can
sound or not sound, and the disease is the fire which can be
present or absent. It is very likely that participants have been
exposed to at least some situations in which they have heard
a fire alarm, for instance in a school or a workplace. This
scenario is thus presumed to be more familiar to people than
scenarios describing medical diagnostic tests, and uses simpler
terminology. However, although the context of the problem
is different, the information provided in the fire-and-alarm
scenario is similar to the information provided in the original
mammography problem, i.e., they both include the base rate
(here, the probability of being in the presence of fire in a random
school on a random day of the year), the true positive rate (the
probability of hearing a fire alarm given that there is a real fire in
the school) and the false alarm rate (the probability of hearing a
fire alarm given that there is not a fire in the school).

The problem was presented using a tree diagram (see
Figure 1). We chose to use a graph because this clearly separates
the data of the problem in space and, consequently, can be
easily used to study interaction events. Bayesian problems of this
kind are known to be hard to solve (Eddy, 1982), and previous
research in probabilistic reasoning has used trees extensively as a
clear and familiar way to display probabilistic problems (Binder
et al., 2015; Hoffrage et al., 2015; Reani et al., 2018a). Some
studies have shown that performance in probabilistic reasoning
tasks improves when these are presented using tree diagrams
containing natural frequencies, but not when these diagrams
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display probabilities (Binder et al., 2015, 2018). A graph can be
presented alone or in conjunction with a textual description of
the problem. As previous work has demonstrated that adding a
textual description to a graph which already displays all the data
is unnecessary and does not improve participants’ performance
(Sweller, 2003; Mayer, 2005; Micallef et al., 2012; Böcherer-
Linder and Eichler, 2017; Binder et al., 2018), in the present
research we use a tree diagram without a description of the
problem. We compare frequency trees with probability trees to
test our hypothesis (H2) that themanipulation of the information
format does not have an effect on performance in a descriptive
task which is perceived to be like an experiential learning task
(details below).

Before presenting the problem, participants were
given some contextual information (provided in the
Supplementary Materials) which described several plausible
situations that they were likely to have encountered; for instance
situations in which there was a fire in a school but the fire alarm
did not sound, perhaps because it was faulty, or situations in
which one could hear a fire alarm but there was no fire, for
instance, because someone was smoking in the bathroom. This
type of contextual information is similar to the information given
in the narratives used in previous experiments to reduce the
artificiality of the experimental setting and improve the clarity of
the problem (Ottley et al., 2016). In this case, it was also used to
better relate the problem to participants’ previous experience.

To investigate the effect of the data acquisition process
on people’s reasoning about uncertainty, two separate but
comparable online studies were conducted. The data from the
two studies are evaluated within the same analysis (using a
between-subjects approach), as the only difference between them
was the way in which the information provided in the graph was
generated (the variable DGM—Data Generating Mode).

In both studies, participants were asked in a preliminary
survey to provide estimates, based on self-reported experience,
of the probability of fire in a given school on a random day of
the year (the base rate information), the probability of hearing a
fire alarm given that there was a real fire (the true positive rate)
and the probability of hearing a fire alarm given that there was
not a real fire (the false alarm rate). In both studies, participants
were asked to provide these quantities either in the form of
frequency (e.g., 2 out of 50) for the first condition, or in the form
of percentages (e.g., 4%) for the second condition.

2.1. Study 1
In the first study, participants were shown a tree diagram
displaying information derived from the values provided by the
participants themselves (i.e., their self-reported experience with
regard to the base rate, true positive rate and false alarm rate). To
achieve this, the inputs provided by the participants during the
preliminary survey (see Supplementary Materials) were stored
in the Web application database, and then utilized to construct
the tree that was displayed in the second phase of the task.

The study used a between-subjects design with one factor,
Information Format, with two levels (frequency vs. probability).
Participants were asked to provide the three quantities in the
form of either natural frequencies (for the frequency format

condition) or percentages (for the probability format condition),
and the problem was subsequently framed using natural
frequencies or percentages respectively. The inputs provided by
the participants were adapted to the problem such that the total
population was 1,000 events for the frequency format and 100%
for the probability format. For instance, if a participant in the
frequency format condition stated that the chance of being in the
presence of fire in a random school on a random day of the year
was 1 out of 5, this was shown on the tree diagram as 200 events
where fire occurs, out of 1,000 total events; if he or she stated that
the probability of hearing a fire alarm in the case of fire was 9 out
of 10, then on the graph the number of events where the fire and
alarm occurred were 180 out of the remaining 200 events where
fire occurred. In the probability format condition, participants
were asked to provide these quantities in the form of percentages
and the problem was also framed using percentages. It is worth
noting that an inherent property of probability/percentage trees
is that the values on the graph are normalized at each branch -
i.e., the total number of events is set back to 100% at each node
(or to 1 in the case of probabilities). This contrasts with frequency
trees in which case the values are derived from a natural sampling
process—i.e., each node starts with the number of events which
is left from the preceding splits.

The question below the graph asked participants to compute
the probability of fire given that the fire alarm was sounding (i.e.,
the positive predictive value, or PPV). Participants were explicitly
asked to calculate the PPV based on the data shown in the graph.

It is worth noting that, in the initial survey, participants were
not asked to provide the PPV. This question was asked after the
survey, during the experimental task that presented data derived
from their responses. Thus, participants could not just rely on
memory. They still needed to reason to understand the data, the
relationships between different pieces of information and what
the question was asking them to calculate.

2.2. Study 2
The second study used a different Data Generating Mode.
Instead of showing data derived from the participants’ personal
experience, we displayed fixed values, which were the median
of the base rate, true positive rate and false alarm rate values
calculated from all the responses given in the first study. As
such, they were plausible probabilities, but did not necessarily
match people’s actual experience with the situation presented in
the problem. These values were still collected in the preliminary
survey in study 2, in order to calculate the extent to which
the difference between participants’ reported experience and the
average values they were presented with affected performance.
Study 2 used a between-subjects design with one factor,
Information Format, with two levels (frequency vs. probability).

2.3. Participants
The participants were “workers” recruited from Amazon
Mechanical Turk (MTurk)1, who took part in the study for
monetary compensation (Behrend et al., 2011; Mason and Suri,
2012). There were 300 participants in study 1, 150 in each

1Amazon Mechanical Turk: https://www.mturk.com/
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TABLE 1 | Biographical data and descriptive statistics.

Study 1 Study 2

Freq Prob Freq Prob

Age 35.77(10.54) 37.19(12.76) 34.64(11.14) 34.77(9.78)

Gender 31m/47f 35m/43f 33m/59f 32m/62f

Numeracy 3.88(0.68) 3.98(0.64) 4.05(0.61) 3.67(0.76)

Believed Base Rate 0.05(0.21) 0.10(0.16 0.04(0.24) 0.15(0.21)

Believed True Positive 0.5(0.8) 0.69(0.76) 0.40(0.85) 0.29(0.74)

Believed False Alarm 0.25(0.5) 0.30(0.56) 0.27(0.60) 0.3(0.35)

Estimated PPV 0.22(0.29) 0.45(0.36) 0.22(0.21) 0.37(0.20)

% Correct Estimates 39% 14% 9% 2%

The values for the descriptive statistics are the means and the standard deviations

(in brackets).

condition, and 300 participants in study 2, 150 in each condition.
We eliminated from the analysis those participants who did not
disable any active ad-blocker in their web browser (an action
which was explicitly requested on the instructions page) before
starting the experiment, as the ad-blocker may have interfered
with the data collection tool. We also eliminated all those
participants who answered the problem without looking at the
question at least once. It was possible to detect this from the
interaction data, as the participant was required to hover over
a button to see the question. Finally, we eliminated from the
data set all those participants who did not look at (by hovering
over) at least two pieces of information, excluding the question,
as this sort of behavior was assumed to indicate a lack of effort
from the participants – to answer the question one needs to
extract at least two pieces of information from the graph, and this
was explicitly mentioned on the problem description page. After
eliminating invalid participants based on the above criteria, we
were left with 156 participants in study 1 (age range 18–71, 66
males and 90 females) and 186 participants in study 2 (age range
18–68, 65 males and 121 females. The distribution of age and
gender of participants across conditions can be found in Table 1.
A meta-analysis reviewing 20 years of research on probabilistic
reasoning shows that participants with greater educational
or professional experience are not better than laypeople at
solving probabilistic reasoning problems (McDowell and Jacobs,
2017). However, some research highlights certain links between
probabilistic reasoning ability and people’s numeracy (Brase and
Hill, 2017). Thus, before starting the task, participants were
asked to complete the Subjective Numeracy Scale, which is a
widely used standardized questionnaire for assessing people’s
numeracy (Fagerlin et al., 2007). This was used to control for
potential confounders stemming from individual differences in
mathematical abilities.

2.4. Procedure and Stimuli
Both studies employed a crowdsourcing method that
allocated Amazon Mechanical Turk’s Workers to one
of the two conditions—frequency format or probability
format—counterbalancing the order of the allocation of the
participants (Behrend et al., 2011; Mason and Suri, 2012).

Those workers who self-enrolled to take part in the study
were redirected to our web application, which was hosted on
a university server. The application was built in JavaScript
and Python and is available on GitHub2. The application was
specifically designed to display the problem, collect participants’
responses, and integrate with another application which was
used to track participants’ mouse events for the duration of the
task (Apaolaza et al., 2013). This is also available on GitHub3.

At the beginning of the experiment, an instruction page
provided participants with an explanation of the study.
Participants were asked to give their consent by checking a
box before starting the actual task. After that, demographic
data including age and gender were collected, and participants
performed the numeracy test. Contextual information was also
provided regarding the fire-and-alarm problem, and what was
expected from participants (see the Supplementary Materials).
Then, participants’ estimates of the probability of the three
quantities (i.e., base rate, true positive rate, and false alarm
rate) were collected. Finally, the actual problem was presented
using a tree diagram (see Figure 1), and participants were asked
to provide an answer in the dedicated space below the graph,
next to the question. After completing the task, participants
were redirected to an end-page which provided an alphanumeric
code that could be used to retrieve compensation through the
Amazon platform.

Inconsistencies between the answers participants gave in the
survey and in the actual task could have arisen during the
study, due to typographical error, for example. Several checks
were thus hard-coded into the web application. For instance, if
the numerator was greater than the denominator, the software
generated a pop-up window with an error stating that the
numerator could not be larger than the denominator.

On the task page, the data were hidden below buttons placed
on the tree diagram. The buttons had labels describing the
data they concealed (e.g., the button labeled “Fire” covered the
number of events with fire). The text describing the question
was also hidden behind a button (see Figure 1). To access the
concealed data or text, participants had to hover over the relevant
button with their mouse. The information was hidden again
when they moved away. This interaction technique was used to
determine which pieces of information participants thought were
relevant, and the order in which they decided to gather these
pieces of information.

The advantage of using (explicit) mouse tracking over eye
tracking, is that the latter method can include patterns that may
not be directly linked to human reasoning, but rather emerge
in a bottom up fashion, due, for example, to visual properties
of the stimulus (Hornof and Halverson, 2002; Holmqvist et al.,
2011; Kok and Jarodzka, 2017). Similarly, continuous mouse
movements may not be accurate in determining a user’s focus
of attention during tasks (Guo and Agichtein, 2010; Huang
et al., 2012; Liebling and Dumais, 2014). Studying mouse
movements that explicitly uncover information hidden behind

2GitHub: https://github.com/IAM-lab/FireWeb
3GitHub: https://github.com/aapaolaza/UCIVIT-WebIntCap
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buttons means that the events used in the analysis are much
closer to conscious cognition.

3. ANALYSIS

Two metrics were used to measure participants’ performance.
The first, Correctness, was a binary variable (correct/incorrect)
indicating whether the participant’s answer matched the correct
answer. For this we applied the extensively used strict rounding
criterion proposed by Gigerenzer and Hoffrage, where only
those answers matching the true value rounding up or down to
the next full percentage point were considered correct answers
(Gigerenzer and Hoffrage, 1995).

The second variable, Log-Relative-Error, was a continuous
variable measuring how far a participant’s answer deviated from
the correct answer. This is the result of the function log10(

Pe
Pt ),

where Pe is the Estimated Posterior (the given answer) and Pt is
the True Posterior, i.e., the answer obtained by applying Bayes’
theorem to the data provided on the graph (Micallef et al., 2012;
Reani et al., 2018a). Thus, the variable Log-Relative-Error is the
log-transformed ratio between the Estimated Posterior and the
True Posterior, and indicates an overestimation, if positive, or an
underestimation, if negative, of the probability of being in the
presence of a fire given that the fire alarm was sounding, with
respect to the true probability of such an event. Correct answers
result in a value of zero. The full data and the script used for
analysis is available on GitHub4.

3.1. Performance Analysis
In a logistic regression analysis, Correctness served as the
response variable, and Information Format, DGM andNumeracy
as the predictors. This was fitted to the aggregated data from
both studies.

In a linear regression analysis of the data from study 2, Log-
Relative-Error served as the response variable and Information
Format and Log-Experience-Deviation as the two predictors.
Log-Experience-Deviation is the result of the function log10(

Ps
Pt ),

where Ps is the Subjective Posterior, i.e., the a priori estimate of
the risk of fire in the case of an alarm, before seeing the actual
data. This value was calculated using the estimates of the base
rate, true positive rate and false alarm rate collected during the
initial survey. Pt is the True Posterior, as generated using the
actual data on the graph.

The value of Log-Experience-Deviation therefore indicates
whether a person overestimates, if positive, or underestimates, if
negative, the probability of fire in the case of an alarm (i.e., the
posterior), in comparison with the real estimate derived using
the data presented in the task. A value of zero would result if
a participant’s estimate based on self-reported lived experience
exactly matched the PPV calculated using the aggregated values
from study 1.

3.2. Mouse Event Analysis
To access an item of information, participants had to hover over
the relevant button with a mouse. We designated a meaningful

4GitHub: https://github.com/manurea/study4

TABLE 2 | Coding scheme for the locations (i.e., buttons) on the diagram.

Location Code Description

T Total

F Fire

nF no-Fire

FA Fire and Alarm

FnA Fire and no-Alarm

nFA no-Fire and Alarm

nFnA no-Fire and no-Alarm

Q Question

code to each of these locations as defined in Table 2. T represents
the button covering the total number of events, F is the button
covering the events with fire, nF is the button covering the
events with no fire, FA is the button covering the events with fire
and alarm, FnA is the button covering the events with fire and
no alarm, nFA is the button covering the events with no fire and
alarm, nFnA is the button covering the events with no fire and no
alarm and Q is the button covering the question.

Mouse event data was analyzed firstly by considering the
proportion of time (as a percentage) spent viewing each location
with respect to the total (aggregated) time spent viewing all
locations, for each condition. To understand whether there were
differences in the order in which people looked at locations
between groups, a transition analysis was conducted (Reani et al.,
2018a,b). We were interested in determining which locations
participants thought were important, and the order in which
they accessed these before answering the question. We focused
our investigation on bi-grams, calculating for each location the
probability that a participant would access each of the other
locations next (Reani et al., 2018b, 2019).

The locations thus define a sample space �, which includes
eight locations in total, � = {T, F, nF, FA, FnA, nFA, nFnA,
Q}, from which we derived all possible combinations, without
repetition, to form the list of transitions between any two
buttons, L = 8 × 7 = 56. Once the list of transitions was
generated the frequency counts of these were extracted from
the interaction data collected for each participant. These values
were then normalized by the group total to obtain two frequency
distributions of transitions (one for each condition). Then, we
calculated the Hellinger distance between these two distributions,
as an indicator of the amount of difference in terms of mouse
behavior between the frequency format group and the probability
format group. A permutation test, which compared the difference
between the experimental groups with groups created at random,
10,000 times, was used to determine whether the difference in
mouse movement between groups was due to chance, or to the
manipulation of the variable of interest (Information Format).

Finally we identified which transitions were the most
discriminative, i.e., the transitions that differed most, in term
of relative frequency, between the frequency and probability
conditions. Two parameters were taken into account to assess
whether a transition was a meaningful discriminator. The first is
the transition odds-ratio value, calculated as OR = ( p

1−p ÷
q

1−q )
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where p and q are the distributions of transitions in the frequency
and probability conditions respectively. The odds-ratio, in this
context, is a measure testing the relationship between two
variables (Information Format and mouse behavior), and its 95%
confidence interval provides a measure of the significance of this
relationship. Further details about this method can be found
in Reani et al. (2018b, 2019). An odds-ratio of one indicates
that the transition is found in both conditions with the same
relative frequency, and thus the further from one the odds-ratio
is, the more discriminative it is. The second parameter is the
maximum frequency F = max(xi, yi) - i.e., the maximum value of
the transition frequency between the frequency condition and
probability condition (Reani et al., 2018b, 2019). A discriminative
transition should also have a large F, as transitions that occur only
a few times are not representative of the strategies used by the
majority of people.

We compared participants’ mouse behavior between the two
formats (frequency vs. probability) in both study 1 and study 2.
For study 1 only, we also compared themouse behavior of correct
and incorrect respondents, for both conditions (frequency and
probability format) separately, to determine whether participants
who answered correctly exhibited different mouse behavior
from participants who answered incorrectly. This is because the
number of correct responses was large enough to support a
meaningful comparison only in study 1. In this latter analysis,
the odds-ratio scale is a measure of the relationship between
Correctness and mouse behavior.

4. RESULTS

The results are reported separately for each study and for
each condition (probability vs. frequency), for the variables
Correctness and Log-Relative-Error. When reporting results
for the variable Numeracy, we aggregated the data of both
studies. The results for the variable Log-Experience-Deviation are
reported for study 2 only.

4.1. Performance Analysis Results
In the experience-matched data mode (study 1), 39% of the
participants presented with the frequency format answered
correctly, but only 14% of those presented with the probability
format. In the experience-mismatched data mode (study 2),
9% of the participants answered correctly with the frequency
format, and only 2% with the probability format. Thus more
people answered correctly with the frequency format, regardless
of the Data Generating Mode, and more people answered
correctly with the experience-matched data mode, regardless of
the Information Format.

The descriptive statistics for the variable Numeracy are
reported for Correctness and Information Format separately,
aggregating the data from both studies. For incorrect respondents
in the frequency condition, the Numeracy median was Mdn =
3.88 (IQR = 0.88), for incorrect respondents in the probability
condition, Mdn = 3.89 (IQR = 1.01), for correct respondents
in the frequency condition, Mdn = 4.19 (IQR = 0.69), and
for correct respondents in the probability condition, Mdn =
4.17 (IQR = 0.75). From these results, it appears that correct
respondents were, on average, slightly more numerate than

incorrect respondents. The full descriptive statistics are reported
in Table 1.

A logistic regression analysis, with Correctness as the response
variable and Information Format, DGM and Numeracy as
predictors shows that Information Format was a strong predictor
of Correctness (odds ratio OR = 0.23, 95% Confidence Interval
CI [0.12, 0.47]), indicating that the odds of answering correctly
in the frequency format were four times the odds of answering
correctly in the probability format. The logistic model shows that
Data GeneratingMode was also a strong predictor of Correctness
(OR = 0.14, 95% CI [0.07, 0.29]), indicating that the odds of
answering correctly in the experience-matched data mode were
about 7 times the odds of answering correctly in the experience-
mismatched data mode. Numeracy was not a strong predictor of
Correctness (OR = 1.65, 95% CI [0.82, 3.32]).

As reported by Weber and colleagues, performance in
Bayesian reasoning tasks seems to improve when no false
negatives are present in the problem description; i.e., when the
hit rate is 100% (Weber et al., 2018). If some of the participants,
in study 1, were presented with a problem with no false negatives,
this could potentially have influenced the results of the regression
analysis. In study 1, there were only seven participants who were
presented with a problemwith a hit rate of 100%, and another two
who were presented with a problem with a hit rate higher than
99%. To exclude potential confounders stemming from problems
with a hit rate equal or close to 100%, we re-ran the analysis
excluding these participants from the dataset. This did not
significantly change the results (see Supplementary Materials).

As the number of correct responses was limited, four
additional 2x2 chi-squared tests were performed to assess
whether there was a real relationship between Information
Format and Correctness, one for each study, and between
DGM and Correctness, one for each Information Format (the
p-values reported below are adjusted using the Bonferroni
method for multiple comparisons). The first chi-squared test
of independence revealed that, in study 1, Information Format
was significantly associated with Correctness, χ2(1, N = 156)
= 11.762, p = 0.002). Cramer’s V determined that these
variables shared 28% variance. The second chi-squared test of
independence revealed that, in study 2, Information Format
was marginally associated with Correctness, χ2(1, N = 186) =
3.617, p = 0.057). Cramer’s V determined that these variables
shared 14% variance. The third chi-squared test of independence
revealed that, in study 2, DGM was significantly associated with
Correctness, χ2(1, N = 170) = 19.427, p < 0.001). Cramer’s V
determined that these variables shared 33% variance. The fourth
chi-squared test of independence revealed that, in study 2, DGM
was also significantly associated with Correctness, χ2(1, N= 172)
= 7.11, p = 0.03). Cramer’s V determined that these variables
shared 20% variance.

The medians for the variable Log-Relative-Error
were Mdn = 0.01 (IQR = 0.33) for the frequency format
in study 1,Mdn = 0.30 (IQR = 0.68) for the probability format in
study 1, Mdn = -0.23 (IQR = 0.90) for the frequency format in
study 2 and Mdn = 0.46 (IQR = 0.53) for the probability format
in study 2. It can be noted that the relative error was considerably
larger for the probability format than the frequency format, and
relatively larger in study 2 compared with study 1.
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FIGURE 2 | Distribution of Log-Experience-Deviation for frequency (Left) and

probability (Right); the vertical red dashed lines represent the medians.

The medians for the variable Log-Experience-Deviation (in
study 2 only) were Mdn = -0.42 (IQR = 1.92) for the frequency
format and Mdn = 0.02 (IQR = 0.86) for the probability format.
On average, the Subjective Posterior was considerably closer to
the True Posterior for the probability format compared with
the frequency format. Participants using the frequency format
estimated that, on average, the probability of fire in the case of
hearing a fire alarm was considerably smaller (Mdn = 0.07) than
the probability presented in the task (Mdn = 0.17; this latter
median is the value derived from the data collected in study
1; the other median values from study 1 were base rate = 0.1,
true positive rate = 0.5, false alarm rate = 0.27). The median
of the answers provided for the probability format was Mdn =
0.18, which is very close to the true value of 0.17. This indicates
that, in study 2, participants’ estimates in the probability format
condition were similar to the estimates that participants in study
1 made about the risk of fire (see Figure 2).

In the second (linear) regression, conducted for study 2
only, we used Log-Relative-Error as the response variable
and Information Format and Log-Experience-Deviation as the
predictors. The second regression model was fitted to the data
from study 2 only, as in study 1 the data presented for calculating
the correct answers were derived from participant’s reported
experience (collected in the initial survey). In study 1 Log-
Experience-Deviation is therefore a constant with a value of
zero. The results from the regression indicate a significant effect
of both predictors on the response variable Log-Relative-Error.
For Information Format (with frequency format as the reference
class), Beta = 0.26, 95% CI [0.13, 0.39]) and for Log-Experience-
Deviation, Beta = 0.10, 95% CI [0.04, 0.16]. Thus, the probability
format was associated with a 1.30 increase in the relative error,
compared with the frequency format. This indicates that the
use of probabilities produced a larger deviation in participants’
estimates. The analysis also shows that with a one unit increase
in the deviation of the Subjective Posterior from the True
Posterior, the relative error in the estimate increased by 0.41
units, on average.

This result suggests that the more participants’ self-reported
lived experience differed from the actual data presented, the
larger their over- or underestimate in the direction of those
beliefs; the larger the deviation of the (a priori) Subjective
Posterior from the True Posterior, the larger the deviation of
the (a posteriori) Estimated Posterior from the True Posterior.
This result suggests that the larger the deviation of the (a
priori) Subjective Posterior (derived from participants’ self-
reported lived experience) from the True Posterior (derived
from the problem data), the larger the deviation of the (a
posteriori) Estimated Posterior (participants’ answer) from the
True Posterior. The bias in participants’ response was also in the
direction of their beliefs. This indicates that there is a tendency
for people to give an answer consistent with their personal
experience rather than the data provided.

4.2. Interaction Analysis Results
The interaction analysis is divided in two parts. The first part
focuses on analyzing the amount of time participants spent on
different locations of interest, comparing the two conditions
(frequency vs. probability format). The second part focuses on
analyzing the order in which these locations are visited by
participants, looking for repetitive patterns within groups.

4.2.1. Dwell Time

The variable Dwell Time,measured as a percentage, is the amount
of time viewing a location (hovering over a button) on the graph
divided by the total time spent viewing all locations. This is
reported in Table 3, by condition (frequency vs. probability) and
by study (study 1 vs. study 2). The table also reports d which is
the difference between the mean Dwell Time for the frequency
format and the mean Dwell Time for the probability format,
divided by the pooled standard deviation. Here we only report
the two largest d values in both studies. For the full results
see Table 3.

The largest relative difference in study 1 was found in location
FnA (fire and no alarm), with participants in the probability
condition (M = 7%, SD = 6) spending a larger proportion of
time, on average, viewing this location than participants in the
frequency condition (M = 5%, SD = 4). The second largest relative
difference in study 1 was found in location FA (fire and alarm),
where participants in the probability condition (M = 12%, SD =
9) spent a larger proportion of time, on average, than participants
in the frequency condition (M = 9%, SD = 7).

The largest relative difference in study 2 was found in
location T (the total number of events), where participants in the
frequency condition (M = 12%, SD = 8) spent a larger proportion
of time, on average, than participants in the probability condition
(M = 7%, SD = 7). The second largest relative difference in study 2
was found in location FnA (fire and no alarm), where participants
in the probability condition (M = 7%, SD = 7) spent a larger
proportion of time, on average, than participants in the frequency
condition (M = 5%, SD = 7).

A consistent pattern found in both studies was that
participants presented with the frequency format tended to spend
more time on location T, and participants presented with the
probability format tended to spend more time on location FnA.
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TABLE 3 | Means (M) and standard deviations (SD), for Dwell Time in percentages

for each location, for the frequency format (left) and probability format (right), and

for study 1 (top) and study 2 (bottom).

Location Freq M Freq SD Prob M Prob SD d

Study 1

T 9 7 7 7 0.29

F 11 9 10 9 0.11

nF 11 11 11 10 0.00

FA 9 7 12 9 0.37

FnA 5 4 7 6 0.39

nFA 7 6 8 10 0.12

nFnA 7 7 9 10 0.23

Q 42 17 36 16 0.36

Study 2

T 12 8 7 7 0.67

F 9 7 11 8 0.27

nF 10 9 11 8 0.12

FA 10 9 10 7 0.00

FnA 5 7 7 7 0.29

nFA 7 7 6 8 0.13

nFnA 7 9 8 7 0.12

Q 39 17 41 16 0.12

The table also reports the standardized difference in means by condition (d).

Moreover, in both studies, participants in the probability format
condition tended to focus more on the upper branch of the
Tree, represented by locations F, FA and FnA, compared with
participants using the frequency format (see Table 3).

4.2.2. Permutation Tests

For study 1 and study 2, separate permutation tests, with
10,000 permutations each, compared the Hellinger distance
between the distribution of transitions for the frequency format
and the distribution of transitions for the probability format,
with the distance between two distributions created at random
(Reani et al., 2018b).

The estimated sampling distributions of the two tests are
shown in Figure 3. The vertical red line represents the distance
between the frequency and the probability groups for study 1, on
the left, and for study 2, on the right. The gray curve represents
the distributions of the distances between pairs of randomly
sampled groups (with replacement) of comparable sizes. The cut-
off area under the curve delimited to the right of the vertical line
is the probability of the null hypothesis being true; i.e., that the
distance between the transition distributions of the frequency
and the probability groups is not different from the distances
between any two groups of comparable sizes sampled at random
from the population.

The permutation test for study 1 shows a significant difference
between the frequency and the probability conditions: the
Hellinger distance is Hd = 0.123 and the p-value is p = 0.005.
A similar effect was found for study 2 (Hd = 0.119, p = 0.002).
These results indicate that participants’ mouse behavior differed
between Information Format groups, in both studies.

FIGURE 3 | Sampling distribution of distances between the frequency and the

probability groups for study 1 the left and study 2 on the right. The vertical red

line is the actual Hellinger distance between groups.

For study 1 only, we ran two further permutation tests to
investigate whether Correctness was also related to participants’
mouse behavior in the frequency and probability conditions
respectively. The comparison between transitions for the correct
respondents and transitions for the incorrect respondents is
meaningful only if there are enough participants who answered
the problem correctly (Reani et al., 2018b, 2019). Thus, we did not
run these tests on the participants who took part in the second
study because in study 2 the number of correct responses was
too small to enable a meaningful comparison. The results for
the frequency condition did not show a significant difference
between Correct and Incorrect groups – the Hellinger distance
was Hd = 0.11 and the p-value was p = 0.21. A similar result was
found for the probability condition (Hd = 0.17, p = 0.80). These
results indicate that participants’ mouse behavior was not related
to the variable Correctness.

4.2.3. Discriminative Transitions

The results from the first set of permutation tests suggest that, in
both studies, there weremouse transitions thatmight typify users’
behavior in different Information Format conditions.

Figure 4 shows, for study 1 on the left and for study 2 on
the right, all the transitions by OR on the x-axis (scaled using
a logarithmic transformation) and by absolute frequency on
the y-axis.

The red circles are those transitions that have a narrow
confidence interval that does not include the value one. These
tend to be the transitions which have an OR far from one
(represented in the graph by the vertical dashed blue line) and,
at the same time, a relatively large F. Table 4 reports these
transition together with theirOR values, confidence intervals and
frequency, for study 1 (top) and study 2 (bottom).

In Table 4, an OR value larger than one indicates a
larger relative frequency for that transition in the frequency
format compared with the probability format. There were
five discriminative transitions in study 1, four of which
represented the typical behavior of participants presented with
the frequency format (F-T, nF-T, FnA-F and nFA-nF) and one
which represented the typical behavior of participants presented
with the probability format (Q-T). In study 2, we found
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FIGURE 4 | Transitions distribution by odds-ratio (x-axis) and absolute

frequency (y-axis) for study 1 (Left) and study 2 (Right) conditions.

TABLE 4 | Discriminative Transitions by Study, with odds-ratio values, 95%

confidence intervals and absolute frequency of occurrence.

Study Trans OR 95% CI Freq

1 F-T 1.69 1.15–2.49 88

1 nF-T 1.99 1.09–3.68 39

1 FnA-F 2.37 1.28–4.41 43

1 nFA-nF 1.74 1.09–2.77 61

1 Q-T 0.65 0.44–0.94 56

2 F-T 2.13 1.44–3.17 95

2 nF-T 1.78 1.07–2.97 49

2 FnA-nF 0.56 0.37–0.84 55

2 nF-Q 0.39 0.22–0.67 35

four discriminative transitions, two of which represented the
typical behavior of participants presented with the frequency
format (F-T and nF-T), and two which represented the typical
behavior of participants presented with the probability format
(FnA-nF and nF-Q).

To understand what these transitions represent in the context
of the problem, we mapped them onto the original tree diagram
in Figure 5, where red arrows represent the discriminative
transitions for the frequency format (right) and the probability
format (left) and for study 1 (top) and study 2 (bottom).

From the graph, it can be noted that, in study 1, participants in
the frequency condition were more likely than participants in the
probability condition to move leftwards, toward the total number
of events (location T). In the probability format, they tended to
move upwards, from location Q (the question) to location T (the
total number of events).

In study 2, the pattern found in study 1 is repeated, i.e.,
participants in the frequency format tended to move leftwards,
from the events with fire to the total number of events (F-T) and
from the event with no-fire to the total (nF-T). Participants in
the probability condition tended to move downwards, from the
location representing the events with fire and no-alarm to the

FIGURE 5 | Discriminative transitions shown using arrows on the original tree

diagram, for the frequency (Left) and probability (Right) conditions, and for

study 1 (Top) and study 2 (Bottom).

events with no-fire (FnA-nF) and from this latter location to the
question (location Q).

5. DISCUSSION

This research investigated the effects of Information Format
(whether data is presented in frequencies or probabilities)
and Data Generating Mode (whether or not the data directly
matched an individual’s self-reported lived experience), on
how people approach probabilistic reasoning tasks (Gigerenzer,
2015; Hoffrage et al., 2015). To determine whether there
were differences in reasoning behavior between conditions, it
employed a novel interaction analysis approach in an online task.
In line with previous research, we found that people were more
likely to provide an accurate answer when presented with data in
the frequency format than the probability format (Gigerenzer and
Hoffrage, 1995; Gigerenzer, 2015; McDowell and Jacobs, 2017).
In support of our first hypothesis (H1), we found that people
were more likely to answer accurately when presented with data
that matched their reported experience, than when they were
presented with data thatmatched the average person’s experience,
and that the extent to which their answer deviated from the
correct response in study 2 was directly related to the distance
between the subjective posterior and the true posterior. This
provides support for the idea that experiencing data is strongly
related to being able to reason about it correctly (Gigerenzer,
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2015; Sirota et al., 2015; Hertwig et al., 2018). It also demonstrates
that the effect of this learned subjective posterior (here, the result
of lived experience) may hinder people’s ability to reason about
information that does not match it.

The results did not support our second hypothesis (H2) as
the manipulation of the format did have an effect regardless of
DGM. This suggests that the difference in performance found
in previous research comparing the frequency and probability
formats is not due solely to the former being able to trigger
the perception of learning from experience, but rather that,
in line with the nested-set hypothesis, the facilitatory effect of
the frequency format is due to a clearer representation of the
relationships between sets (Sirota and Juanchich, 2011; Lesage
et al., 2013; Sirota et al., 2015). We tested our third hypothesis
(H3) – that mouse movement would differ according to the
format in which the information is encoded – by using a web-
based tool that forced people to hover the mouse cursor over
those parts of the graph that the participants thought were
crucial for solving the problem, and analyzing the differences in
transitions between these locations.

In both studies, participants using the frequency format
tended to focus more on the total number of events (location T),
compared with participants using the probability format. It was
also the case in both studies that participants in the probability
format condition tended to focus more on location FnA (fire and
no alarm) than participants in the frequency format condition.
The question asks participants to estimate the probability of
fire, given that the alarm sounded. Thus, looking at FnA is not
necessary to answer the question. The only useful locations for
solving the problem framed using probabilities are FA, nFA, F
and nF, which were the pieces of data that had to be entered in the
Bayesian formula to produce the correct estimate. One possible
reason why people lookedmore at location FnA in the probability
format condition, might be that the normalization process used
in the probability Tree is not clear, and thus people look at the
opposite data value in an attempt to understand how the data
were normalized.

A second explanation is that people focus on this because they
are trying to compare events with alarm and events without alarm
given that there was a fire, confusing the sensitivity of the test with
the PPV. This may explain why participants in the probability
format tended to focus more on the information found on the
upper branch of the tree, which shows only the data related to
events with fire (see Table 3). This interpretation is represented
in Figure 6 which shows, for the probability format condition,
where the reasoner should focus to answer the question correctly
(gray-filled circles), andwhere participants actually focused in the
experiment (dashed-line circles).

The answer analysis showed that in the probability format
condition 60% of participants in study 1 and 52% of participants
in study 2 gave the value of the sensitivity of the test, instead
of the PPV, as the answer to the problem. This reflects the
mouse movement patterns described above (related to the
second explanation). This result is also in line with previous
research showing that the error made most often by participants,
in probabilistic reasoning tasks framed using probabilities, is
confusing the sensitivity of the tests with the PPV (Eddy, 1982;

FIGURE 6 | The probability format condition, marked to show where the

reasoner should focus (gray-filled ellipses) and where participants actually

focused (dashed-line ellipses).

Elstein, 1988; Gigerenzer et al., 1998; Hoffrage and Gigerenzer,
1998). From our results, it appears that mouse behavior does
indeed provide evidence for this faulty reasoning strategy. The
transition analysis shows that participants, in the frequency
format only, have the tendency to move the cursor leftwards,
toward the total number of events (T). This ‘reversion to
total’ behavior, which is found in both studies, is also found
in research using eye tracking methods to study a similar
problem (Reani et al., 2019). These results also reflect the
responses provided by many of the participants. When presented
with the frequency format, 45% of the participants in study 1
and 57% of the participants in study 2 used, as the denominator
of the proportion in their answer, the total number of events
(i.e., 1,000). This value was covered by the button T, and
these results might explain why a great number of participants
exhibit the behavior of going leftwards often, toward T. This
provides behavioral evidence that, as proposed in other studies,
the most common error of participants in the frequency format
is to use the total population, instead of the relevant subset
(i.e, alarm events) as the denominator in the answer, perhaps
because they did not understand which population the question
refers to (Khan et al., 2015; Reani et al., 2018a, 2019). When
presented with the probability format, participants tended to
move vertically, from the question toward location T (study
1) and from location nF toward the question (study 2). This
suggests that participants tend to check the question more
often when the problem is framed using probabilities, perhaps
because the question in this case is more difficult to understand
compared with when the problem is framed using frequencies.
This confusion is in line with the fact that a significantly
larger number of participants answered incorrectly when the
problem was presented using probabilities. Although we found
interesting correlates between participants’ mouse behavior and
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their answers, this method has two main limitations. The first
is that post hoc analyses of this type leave room for different
interpretations. Here we interpret our results in terms of current
theory and participants’ responses.

The second limitation is that the experimental settings used
in the current study were different from the settings used in
previous research. Specifically, in our studies, the data were not
available to the participants all of the time; participants needed
to move the mouse to see the values hidden behind buttons,
and this has the potential to change the reasoning process. In
tasks where the data is always available, people have immediate
access to the information and some aspects of this information
may be taken on board implicitly and effortlessly. In tasks
where the information is covered and people need to engage
interactively with the tool to uncover the data, certain implicit
processes that should occur in the data acquisition stage may
be lost. This loss, however, can be beneficial for the purpose
of studying conscious human cognition, especially in tasks
involving complex reasoning, because it filters out some of those
noisy patterns that are associated with low-level perceptions.

It is assumed that the fire-and-alarm scenario used in this
study is a familiar situation to most of the participants (at
least compared to the mammography problem). Nevertheless,
we cannot be sure that the participants were all familiar with
such a scenario. As a consequence of using a single scenario,
we cannot be sure that these results would generalize to other
familiar/everyday scenarios as well.

Throughout the study we kept the settings of the problem
constant and we provided the same information in all the
conditions. We manipulated only the format (probability vs.
frequency) and whether the data provided matched people’s
reported experience. It is possible other factors may have affected
the results. For instance, some participants may have been more
familiar with the scenario compare to others, perhaps because
they were firefighters.

Previous research has explored eye-mouse coordination
patterns, for instance, in tasks where participants were asked
to examine SERP (Guo and Agichtein, 2010). However, such a
comparison has not been conducted in probabilistic reasoning
research. Thus, future work will focus on combining different
interaction analysis methods such as eye tracking and mouse
tracking simultaneously, to understand what each can tell us
about the reasoning process.

Although the study was not a memory test, as the data were
available for the whole duration of the task, it is possible that, in
study 1, familiarity with the uncertainty surrounding the event
may have potentially lessened the load in working memory while
performing calculations. To exclude any memory effect, this
needs to be further investigated in further.

There is evidence that the tendency to use the total sample
size as the denominator of the Bayesian ratio has been related
to a superficial processing of the data (Tubau et al., 2018). The
sequential presentation of isolated numbers might thus be linked
to a more superficial processing. Future work could investigate
this by comparing the effect of presenting complete uncovered
trees vs. presenting covered trees, of the type used in this study.

A further limitation of the study is the use of the word
“events” in the question, when referring to days in which there

was a fire. Although the problem description uses “days” to
describe the scenario, the question then asks participants to
provide the number of events, which is an ambiguous term.
Some participants may have had misunderstood what this term
referred to.

Relatedly, the fact that the mean of the base rate across
conditions ranges from 4 to 15% (i.e., it is relatively
high), might indicate that some participants did not have
a good “feeling” for the real base rate related to the
scenario. This might need to be explored in future work
as the scenario was chosen to be a familiar one when
in fact, for some participants, this might not have been
the case.

6. CONCLUSION

We investigated how Information Format affected mouse
behavior in an interactive probabilistic reasoning task,
and whether presenting probabilities that matched people’s
self-reported lived experience improved the accuracy
of their posterior probability estimates. We found that
the closer the data presented in the task were to self-
reported experience, the more accurate people’s answers
were, indicating that the subjective posterior developed
through lived experience had an overwhelming impact
on the reasoning process. We also found that people are
better able to reason about data presented in frequencies
regardless of whether they match experience. By analyzing
mouse events in light of participants’ responses, we obtained
evidence for different faulty strategies related to frequency
presentation and probability presentation respectively. This
supports analysis of mouse behavior as a way of gathering
evidence about the cognitive processes underpinning
probabilistic reasoning.
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