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INTRODUCTION

For the last 10 years South American nations have finished in mid to bottom positions in the
Programme for International Student Assessment (PISA) math test, significantly behind dozens
of countries around the globe. Regrettably, the lack of improvement over the past decade does not
depict an optimistic future for this region (OECD, 2017). To reverse this trend, we believe that the
recognition and adoption of two key principles could lead to substantial improvements in early
math education: first, valuing each student’s intuitive math knowledge; and second, focusing on
the role that spatial skills play in learning math. We also suggest that both principles could be
simultaneously put into practice by utilizing diagrams for teaching early mathematics.

Research shows that multiple interrelated factors explain the poor performance of South
American students in mathematics (Cerda et al., 2017). Poverty remains one of the most notable
obstacles (Hanushek and Luque, 2003; Kainz, 2019), though other variables at the school level are
also relevant. Among these are each school’s social climate and educational perspectives (Macneil
et al., 2009; Gálvez-Nieto et al., 2015) and each country’s public policies in education (Vegas and
Petrow, 2007), just to mention a few. Despite this, research shows that the effectiveness of each
school is mostly determined by their teachers; teachers’ training, knowledge, and beliefs about how
to teach mathematics seem to be more relevant than any other factor (Ball et al., 2008; Mapolelo
and Akinsola, 2015).

At this level, two principles could be incorporated into early math teaching. Both are supported
by considerable evidence and could reduce the sometimes painful experience of learning math. The
first principle states that a strong understanding of early mathematics can be built using children’s
intuitive mathematical ideas as a foundation. This principle mirrors Vygotsky’s ideas concerning
the bridge that should exist between formal and spontaneous concepts, as the former operates as
a zone of proximal development (ZDP) for the latter (Vygotski, 2001). The ZDP corresponds to
the distance between current performance under no guidance and potential performance with
guidance, and it highlights the linkage between what is currently known and what could be
known provided enough support. The second principle indicates that students’ spatial skills can
influence how much they will get to enjoy and succeed in mathematics. Although there is evidence
highlighting the importance of spatial skills in math performance, South American schools have
yet to include spatial training in their academic curricula.

Improving math education is important because it could promote the development of South
American countries by strengthening their human capital. It is imperative to have more and
better professionals in Science, Technology, Engineering, and Mathematics (STEM), who can
tackle the challenges that countries face in an increasingly complex and fast-changing economy
(Schwab, 2017).
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ROLE OF CHILDREN’S INTUITIVE IDEAS
ON EARLY MATH LEARNING

Everyday mathematics refers to the use of intuitive mathematical
notions in real-life contexts. In these situations, people are
not directly concerned by specific mathematical principles, but
instead use raw intuition to solve applied problems.

There are opposing perspectives on the role that everyday
mathematics plays in formal learning. While some researchers
see it as a foundation on which students can build meaningful
understandings of concepts, others regard it as a source of
interference (Carraher and Schliemann, 2002). These opposing
views reflect differences in the social valuation of everyday
experiences and academic practices (Civil, 2016).

Since the 1980s, researchers have highlighted the role
that intuitive mathematical knowledge can play in improving
school mathematics, especially in generating more meaningful
learning experiences for students (Carraher et al., 1985; Wager,
2012). A seminal study by Carraher et al. (1985) illustrated
the use of everyday mathematical knowledge by Brazilian
children and adolescents working as street vendors. These
participants demonstrated advanced proficiency in solving
arithmetic problems when dealing with complex economic
transactions, despite their lack of formal mathematical training.
Interestingly, these participants made significant mistakes when
attempting to solve similar mathematical problems through
the traditional algorithmic procedures taught in schools. This
disparity in performance made the investigators wonder how
it was possible for participants to show high proficiency
in one context, and a lack of it in another. In a follow-
up study, the investigators showed that meaningful contexts,
like those experienced by the street vendors, tend to evoke
alternative problem solving strategies based on simple yet
powerful heuristics (Carraher et al., 1987).

Previous research has also shown the benefits of Cognitively
Guided Instruction (CGI), a professional development program
for teachers that underscores the role of children’s intuitive
ideas in early math education (Carpenter and Fennema, 1992;
Carpenter and Franke, 2004). This program does not encourage
the application of specific instructional methodologies, but
instead stimulates appreciation for the diverse problem solving
strategies and distinct understandings that students have of
mathematical principles. Upon acknowledging that students are
active creators of their own knowledge (Cobb, 1988), CGI
teachers ask children to explain their problem solving strategies,
familiarize themselves with each children’s preferred problem
solving approaches, and promote the use of various problem
solving methods (Carpenter et al., 1989; Peterson et al., 1989a,b).
These behaviors positively correlate with students’ problem
solving performance.

ROLE OF VISUOSPATIAL THINKING ON
EARLY MATH LEARNING

Spatial skills play an important role in STEM disciplines.
Longitudinal studies have shown that people with higher spatial

skills tend to enjoy, choose, and succeed in STEM areas (Shea
et al., 2001; Wai et al., 2009; Lubinski, 2010).

For a long time, spatial abilities were seen as a stable and
unmodifiable human trait (Newcombe, 2014). However, multiple
investigations contradict this assumption. A recent meta-analysis
summarizing the results of more than 200 studies showed that
spatial abilities are malleable, that spatial training can promote
long-lasting effects, and that training one specific ability can
result in the enhancement of other untrained spatial skills (Uttal
et al., 2013).

Some studies have focused on the positive direct effects
that spatial training can have on mathematical learning. For
instance, Cheng and Mix (2012) showed that mental rotation
practice can lead to an increase in numerical calculation among
6 and 8 year-olds. In a more natural setting, Lowrie et al.
(2017) implemented a 10 week spatial training program in
the classrooms of 10-to-12 year-old students. The interventions
were implemented by teachers and encompassed the direct
training of different spatial skills like mental rotation, spatial
orientation, and spatial visualization. Students who underwent
this spatial intervention program increased both their spatial and
mathematical skills more than the students who were part of the
control group. A study by Hawes et al. (2017) used a somewhat
different strategy. Instead of training spatial abilities directly,
they created spatial games and dynamics to teach mathematical
concepts. Their results suggested significant increases in spatial
language, spatial reasoning, and numerical comparison following
the intervention.

Although we do not yet have a complete understanding
of the mechanisms linking spatial abilities and mathematical
performance, some studies have already provided hints. A study
by Hegarty and Kozhevnikov (1999) suggested that not all types
visuospatial representations promote math problem solving. In
their study, two visuospatial strategies were contrasted: one
based on spatial-schematic imagery and another based on visual-
pictorial imagery. Spatial-schematic imagery was defined as the
creation of representations that included information about the
parts of objects, their spatial relation to other objects, and
their respective locations in space. Visual-pictorial imagery was
defined as the creation of representations centered on the visual
appearance of objects, including properties such as color and
shape. Results showed that the use of spatial-schematic strategies,
but not of visual-pictorial strategies, was associated with a higher
rate of success in mathematical problem solving.

THE BRIDGE BETWEEN BOTH
PRINCIPLES: USING DIAGRAMS FOR
MATH PROBLEM SOLVING

The two aforementioned principles come together into a
single pedagogical practice when diagrams are used to support
math problem solving. This is by no means a new idea, as
this methodology has been implemented in the educational
systems of both Singapore (Ng and Lee, 2009; Kaur, 2018) and
Japan (Murata, 2008), countries with outstanding international
performances in mathematics.
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Diagrams are visuospatial representations that depict
significant information in a spatial display. Because diagrams
are more abstract than objects/manipulatives but more concrete
than mathematical symbols, they can provide a valuable bridge
between initial and advanced learning stages. In their role as
intermediate-level representations, they highlight relationships
that could be difficult to spot in higher-level symbolic equations,
particularly for novices (for an example, see Figure 1). This is
of importance for early math students that are just becoming
familiar with the discipline and who often struggle with
abstract conceptualizations.

Previous research shows that diagrams encourage the use of
alternative, intuitive problem solving strategies. For instance,
they can facilitate the application of children’s intuitive
mathematical ideas during early arithmetic lessons and more
advanced algebra lessons (Edens and Potter, 2008; Murata, 2008;
Chu et al., 2017). For instance, in a study that included a
brief intervention targeted at teaching seventh-grade American
students to use diagrams to solve algebra problems, Chu et al.
(2017) found that diagrams favored the utilization of informal
problem solving strategies and led to significant gains in
solving accuracy.

The role of diagrams as visual-spatial representations that
favor the use of intuitive problem solving strategies is stressed by
concreteness fading, a theory of instruction based on the ideas of

Bruner (1966) and subsequently developed by Fyfe and Nathan
(2018). This theory suggests that the best way to achieve a deeper

understanding of a concept is to first ground it at a concrete level,

and to then progressively expose the learner to more abstract
instances of it. In the first representational level, interactions
with objects and places represent the relevant concept (e.g.,

learning subtraction by counting apples). During the second
representational level, students deal with representations that are
more abstract but that still resemble concrete objects, places, and
their relationships (e.g., learning subtraction by using diagrams).
The third representational level corresponds to the symbolic
stage, in which the representations have no obvious relation with
objects and spaces (e.g., learning subtraction by using numbers).

Similar ideas applied to learning geometry have been endorsed
by Battista (2007), who suggests that students should move from
visualization, to abstraction, to formal deduction, until reaching
higher mathematical rigor.

CONCLUSION

South American early math education could be improved
through the adoption of these two central principles.
The first principle indicates that learning formal concepts
becomes more meaningful when teachers integrate what
children already know. The second principle indicates
that spatial abilities have a strong and positive effect on
both the motivation to learn math and math performance
itself. The evidence points out that spatial training at an
early age can lead to improvements in the mathematical
performance of students. While most early education programs
consider the development of language and math skills, the
development of spatial thinking has not received systematic
attention.

Both principles are integrated into math problem solving
through the use of diagrams. Diagrams, as intermediate
representations between the concrete and the abstract, are highly
effective in the development of mathematical learning. The

FIGURE 1 | Diagrams showing part-whole models. Both figures are based on Kaur’s ideas (Kaur, 2018).
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attractiveness and simplicity of diagrams can make it easier for
children to build meaning around mathematical activity. That is,
students can link abstract concepts with elements of their own
experience in a way that allows the appropriation of concepts.

Although the success of Singapore and Japan in mathematics
is certainly the result of multiple features, evidence suggests
that incorporating the methodical use of diagrams during
math lessons could have played a role. These initiatives were
possible due to the existence of public policies in education that
encouraged new practices guided by scientific evidence. South
American countries, in contrast, have a notable gap between
public policies, scientific evidence, and educational practices.
This is important because public education has a strong impact
on a country’s social and economic development, and there

is no doubt that well-formed human capital tends to generate

innovation, a crucial factor for competing in a globalized world.
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