
fpsyg-10-02844 December 17, 2019 Time: 17:0 # 1

HYPOTHESIS AND THEORY
published: 19 December 2019

doi: 10.3389/fpsyg.2019.02844

Edited by:
Alessia Celeghin,

University of Turin, Italy

Reviewed by:
Mauro Ursino,

University of Bologna, Italy
Carlos Andrés Méndez,
University of Turin, Italy

*Correspondence:
Ryan Smith

rsmith@laureateinstitute.org

Specialty section:
This article was submitted to

Consciousness Research,
a section of the journal
Frontiers in Psychology

Received: 02 August 2019
Accepted: 02 December 2019
Published: 19 December 2019

Citation:
Smith R, Parr T and Friston KJ

(2019) Simulating Emotions: An Active
Inference Model of Emotional State

Inference and Emotion Concept
Learning. Front. Psychol. 10:2844.

doi: 10.3389/fpsyg.2019.02844

Simulating Emotions: An Active
Inference Model of Emotional State
Inference and Emotion Concept
Learning
Ryan Smith1* , Thomas Parr2 and Karl J. Friston2

1 Laureate Institute for Brain Research, Tulsa, OK, United States, 2 Wellcome Centre for Human Neuroimaging, Institute
of Neurology, University College London, London, United Kingdom

The ability to conceptualize and understand one’s own affective states and responses –
or “Emotional awareness” (EA) – is reduced in multiple psychiatric populations; it
is also positively correlated with a range of adaptive cognitive and emotional traits.
While a growing body of work has investigated the neurocognitive basis of EA, the
neurocomputational processes underlying this ability have received limited attention.
Here, we present a formal Active Inference (AI) model of emotion conceptualization
that can simulate the neurocomputational (Bayesian) processes associated with learning
about emotion concepts and inferring the emotions one is feeling in a given moment.
We validate the model and inherent constructs by showing (i) it can successfully
acquire a repertoire of emotion concepts in its “childhood”, as well as (ii) acquire
new emotion concepts in synthetic “adulthood,” and (iii) that these learning processes
depend on early experiences, environmental stability, and habitual patterns of selective
attention. These results offer a proof of principle that cognitive-emotional processes
can be modeled formally, and highlight the potential for both theoretical and empirical
extensions of this line of research on emotion and emotional disorders.

Keywords: emotion concepts, trait emotional awareness, learning, computational neuroscience, active inference

INTRODUCTION

The ability to conceptualize and understand one’s affective responses has become the topic of
a growing body of empirical work (McRae et al., 2008; Smith et al., 2015, 2017b,c, 2018c,d,e,
2019a,c; Wright et al., 2017). This body of work has also given rise to theoretical models of
its underlying cognitive and neural basis (Wilson-Mendenhall et al., 2011; Lane et al., 2015;
Smith and Lane, 2015, 2016; Barrett, 2017; Kleckner et al., 2017; Panksepp et al., 2017; Smith
et al., 2018b). Attempts to operationalize this cognitive-emotional ability have led to a range of
overlapping constructs, including trait emotional awareness (Lane and Schwartz, 1987), emotion
differentiation or granularity (Kashdan and Farmer, 2014; Kashdan et al., 2015), and alexithymia
(Bagby et al., 1994a,b).
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This work is motivated to a large degree by the clinical
relevance of emotion conceptualization abilities. In the literature
on the construct of emotional awareness, for example, lower
levels of conceptualization ability have been associated with
several psychiatric disorders as well as poorer physical health
(Levine et al., 1997; Berthoz et al., 2000; Bydlowski et al., 2005;
Donges et al., 2005; Lackner, 2005; Subic-Wrana et al., 2005,
2007; Frewen et al., 2008; Baslet et al., 2009; Consoli et al.,
2010; Moeller et al., 2014); conversely, higher ability levels
have been associated with a range of adaptive emotion-related
traits and abilities (Lane et al., 1990, 1996, 2000; Ciarrochi
et al., 2003; Barchard and Hakstian, 2004; Bréjard et al.,
2012). Multiple evidence-based psychotherapeutic modalities
also aim to improve emotion understanding as a central part
of psycho-education in psychotherapy (Hayes and Smith, 2005;
Barlow et al., 2016).

While there are a number of competing views on the nature
of emotions, most (if not all) accept that emotion concepts
must be acquired through experience. For example, “basic
emotions” theories hold that emotion categories like sadness and
fear each have distinct neural circuitry, but do not deny that
knowledge about these emotions must be learned (Panksepp and
Biven, 2012). Constructivist views instead hold that emotion
categories do not have a 1-to-1 relationship to distinct neural
circuitry, and that emotion concept acquisition is necessary
for emotional experience (Barrett, 2017). While these views
focus on understanding the nature of emotions themselves,
we have recently proposed a neurocognitive model – termed
the “three-process model” (TPM; Smith et al., 2018b, 2019a;
Smith, 2019) of emotion episodes – with a primary focus on
accounting for individual differences in emotional awareness.
This model characterizes a range of emotion-related processes
that could contribute to trait differences in both the learning
and deployment of emotion concepts in order to understand
one’s own affective responses (and in the subsequent use of
these concepts to guide adaptive decision-making). The TPM
distinguishes the following three broadly defined processes
(see Figure 1):

1. Affective response generation: a process in which
somatovisceral and cognitive states are automatically
modulated in response to an affective stimulus (whether
real, remembered, or imagined) in a context-dependent
manner, based on an (often implicit) appraisal of
the significance of that stimulus for the survival and
goal-achievement of the individual (i.e., predictions
about the cognitive, metabolic, and behavioral demands
of the situation).

2. Affective response representation: a process in which the
somatovisceral component of an affective response is
subsequently perceived via afferent sensory processing, and
then conceptualized as a particular emotion (e.g., sadness,
anger, etc.) in consideration of all other available sources
of information (e.g., stimulus/context information, current
thoughts/beliefs about the situation, etc.).

3. Conscious access: a process in which the representations
of somatovisceral percepts and emotion concept

representations may or may not enter and be held
in working memory – constraining the use of this
information in goal-directed decision-making (e.g., verbal
reporting, selection of voluntary emotion regulation
strategies, etc.).

The TPM has also proposed a tentative mapping to the brain
in terms of interactions between large-scale neural networks
serving domain-general cognitive functions. Some support for
this proposal has been found within recent neuroimaging
studies (Smith et al., 2017b,c, 2018a,c,d,e). However, the
neurocomputational implementation of these processes has
not been thoroughly considered. The computational level of
description offers the promise of providing more specific and
mechanistic insights, which could potentially be exploited to
inform and improve pharmacological and psychotherapeutic
interventions. While previous theoretical work has applied
active inference concepts to emotional phenomena (Joffily and
Coricelli, 2013; Seth, 2013; Barrett and Simmons, 2015; Seth
and Friston, 2016; Smith et al., 2017d, 2019e; Clark et al.,
2018), no formal modeling of emotion concept learning has yet
been performed. In this manuscript, we aim to take the first
steps in constructing an explicit computational model of the
acquisition and deployment of emotion concept knowledge (i.e.,
affective response representation) as described within the TPM
(subsequent work will focus on affective response generation and
conscious access processes; see Smith et al., 2019b). Specifically,
we present a simple Active Inference model (Friston et al., 2016,
2017a) of emotion conceptualization, formulated as a Markov
Decision Process. We then outline some initial insights afforded
by simulations using this model.

In what follows, we first provide a brief review of active
inference. We will place a special emphasis on deep generative
models that afford the capacity to explain multimodal (i.e.,
interoceptive, proprioceptive, and exteroceptive) sensations that
are characteristic of emotional experience. We then introduce a
particular model of emotion inference that is sufficiently nuanced
to produce synthetic emotional processes but sufficiently simple
to be understood from a “first principles” account. We then
establish the validity of this model using numerical analyses of
emotion concept learning during (synthetic) neurodevelopment.
We conclude with a brief discussion of the implications of this
work; particularly for future applications.

AN ACTIVE INFERENCE MODEL OF
EMOTION CONCEPTUALIZATION

A Primer on Active Inference
Active Inference (AI) starts from the assumption that the brain
is an inference machine that approximates optimal probabilistic
(Bayesian) belief updating across all biopsychological domains
(e.g., perception, decision-making, motor control, etc.). AI
postulates that the brain embodies an internal model of the world
(including the body) that is “generative” in the sense that it is able
to simulate the sensory data that it should receive if its model
of the world is correct. This simulated (predicted) sensory data
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FIGURE 1 | Graphical illustration of the three-process model of emotion episodes (Smith et al., 2018b, 2019a,b; Smith, 2019). Here an event (either internal or
external, and either real, remembered, or imagined) is represented in the brain at various levels of abstraction. This complex set of representations is evaluated in
terms of its significance to the organism at both implicit (e.g., low-level conditioned or unconditioned responses) and explicit (e.g., needs, goals, values) levels,
leading to predictions about the cognitive, metabolic, and behavioral demands of the situation. These predictions initiate an “affective response” with both peripheral
and central components. This includes quick, involuntary autonomic and skeletomotor responses (e.g., heart rate changes, facial expression changes) as well as
involuntary shifts in the direction of cognitive resources (e.g., attention and interpretation biases, action selection biases). This multicomponent affective response is
represented centrally at a perceptual and conceptual level (e.g., valenced bodily sensations and interpretations of those responses as corresponding to particular
emotions). Representations of events, evaluations, bodily sensations, emotion concepts (etc.) can then be attended to and gated into working memory (“conscious
access”). If gated into and held in working memory, these representations can be integrated with explicit goals, reflected upon, and used to guide deliberative,
goal-directed decision-making. The thick red arrows highlight the processes we explicitly model in this paper.

can be compared to actual observations, and deviations between
predicted and observed sensations can then be used to update
the model. On short timescales (e.g., a single trial in a perceptual
decision-making task) this updating corresponds to perception,
whereas on longer timescales it corresponds to learning (i.e.,
updating expectations about what will be observed on subsequent
trials). One can see these processes as ensuring the generative
model (embodied by the brain) remains an accurate model of the
world (Conant and Ashbey, 1970).

Action (be it skeletomotor, visceromotor, or cognitive action)
can be cast in similar terms. For example, actions can be chosen
to resolve uncertainty about variables within a generative model
(i.e., sampling from domains in which the model does not make
precise predictions). This can prevent future deviations from
predicted outcomes. In addition, the brain must continue to make
certain predictions simply in order to survive. For example, if
the brain did not in some sense continue to “expect” to observe
certain amounts of food, water, shelter, social support, and a

range of other quantities, then it would cease to exist (McKay and
Dennett, 2009); as it would not pursue those behaviors leading
to the realization of these expectations [c.f. “the optimism bias”
(Sharot, 2011)]. Thus, there is a deep sense in which the brain
must continually seek out observations that support – or are
internally consistent with – its own continued existence. As a
result, decision-making can be cast as a process in which the brain
infers the sets of actions (policies) that would lead to observations
most consistent with its own survival-related expectations (i.e.,
its “prior preferences”). Mathematically, this can be described
as selecting policies that maximize a quantity called “Bayesian
model evidence” – that is, the probability that sensory data would
be observed under a given model. In other words, because the
brain is itself a model of the world, action can be understood
as a process by which the brain seeks out evidence for itself –
sometimes known as self-evidencing (Hohwy, 2016).

In a real-world setting, directly computing model evidence
becomes mathematically intractable. Thus, the brain must
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use some approximation. AI proposes that the brain instead
computes a statistical quantity called free energy. Unlike
model evidence, computing free energy is mathematically
tractable. Crucially, this quantity provides a bound on model
evidence, such that minimization of free energy is equivalent
to maximizing model evidence. By extension, in decision-
making an agent can evaluate the expected free energy of
the alternative policies she could select – that is, the free
energy of future trajectories under each policy (i.e., based on
predicted future outcomes, given the future states that would
be expected under each policy). Therefore, decision-making will
be approximately (Bayes) optimal if it operates by inferring
(and enacting) the policy that minimizes expected free energy –
and thereby maximizes evidence for the brain’s internal model.
Interestingly, expected free energy can be decomposed into
terms reflecting uncertainty and prior preferences, respectively.
This decomposition explains why agents that minimize expected
free energy will first select exploratory policies that minimize
uncertainty in a new environment (often called the “epistemic
value” component of expected free energy). Once uncertainty
is resolved, the agent then selects policies that exploit that
environment to maximize her prior preferences (often called
the “pragmatic value” component of expected free energy). The
formal mathematical basis for AI has been detailed elsewhere
(Friston et al., 2017a), and the reader is referred there for
a full mathematical treatment (also see Figure 2 for some
additional detail).

When a generative model is formulated as a partially
observable Markov decision process, active inference takes a
particular form. Specifically, specifying a generative model in
this context requires specifying the allowable policies, hidden
states of the world (that the brain cannot directly observe but
must infer), and observable outcomes, as well as a number
of matrices that define the probabilistic relationships between
these quantities (see Figure 2). The “A” matrix specifies which
outcomes are generated by each combination of hidden states
(i.e., a likelihood mapping indicating the probability that a
particular set of outcomes would be observed given a particular
hidden state). The “B” matrix encodes state transitions, specifying
the probability that one hidden state will evolve into another
over time. Some of these transitions are controlled by the
agent, according to the policy that has been selected. The
“D” matrix encodes prior expectations about the initial hidden
state of the world. The “E” matrix encodes prior expectations
about which policies will be chosen (e.g., frequently repeated
habitual behaviors will have higher prior expectation values).
Finally, the “C” matrix encodes prior preferences over outcomes.
Outcomes and hidden states are generally factorized into multiple
outcome modalities and hidden state factors. This means that
the likelihood mapping (the “A” matrix) plays an important role
in modeling the interactions among different hidden states at
each level of a hierarchical model when generating the outcomes
at the level below. One can think of each factor and modality
as an independent group of competing states or observations
within a given category. For example, one hidden state factor
could be “birds,” which includes competing interpretations of
sensory input as corresponding to either hawks, parrots, or

pigeons, whereas a separate factor could be “location,” with
competing representations of where a bird is in the sky. Similarly,
one outcome modality could be size (e.g., is the bird big or
small?) whereas another could be color (is the bird black,
white, green, etc?).

As shown in the middle and right panels of Figure 2,
active inference is also equipped with a neural process theory –
a proposed manner in which neuronal circuits and their
dynamics can invert generative models via a set of linked update
equations that minimize prediction errors. In this neuronal
implementation, the probability of neuronal firing in specific
populations is associated with the expected probability of a
state, whereas postsynaptic membrane potentials are associated
with the logarithm of this probability. A softmax function acts
as an activation function – transforming membrane potentials
into firing rates. With this setup, postsynaptic depolarizations
(driven by ascending signals) can be understood as prediction
errors (free energy gradients) about hidden states – arising from
linear mixtures in the firing rates of other neural populations.
These prediction errors (postsynaptic currents) in turn drive
membrane potential changes (and resulting firing rates). When
predictions errors are minimized, postsynaptic influences no
longer drive changes in activity (depolarizations and firing rates),
corresponding to minimum free energy.

Via similar dynamics, predictions errors about outcomes (i.e.,
the deviation between preferred outcomes and those predicted
under each policy) can also be computed and integrated (i.e.,
averaged) to evaluate the expected free energy (value) of each
policy (i.e., underwriting selection of the policy that best
minimizes these prediction errors). Dopamine dynamics also
modulate policy selection, by encoding estimates of the expected
uncertainty over policies – where greater expected uncertainty
promotes less deterministic policy selection. Phasic dopamine
responses correspond to updates in expected uncertainty over
policies – which occur when there is a prediction error
about expected free energy; that is, when there is a difference
between the expected free energy of policies before and after a
new observation.

Finally, and most centrally for the simulations we report
below, learning in this theory corresponds to a form of
synaptic plasticity remarkably similar to Hebbian coincidence-
based learning mechanisms associated with empirically observed
synaptic long-term potentiation and depression (LTP and LTD)
processes (Brown et al., 2009). Here one can think of the
strength of each synaptic connection as a parameter in one of
the matrices described above. For example, the strength of one
synapse could encode the amount of evidence a given observation
provides for a given hidden state (i.e., an entry in the “A”
matrix), whereas another synapse could encode the probability
of a state at a later time given a state at an earlier time (i.e., an
entry in the “B” matrix). Mathematically, the synaptic strengths
correspond to Dirichlet parameters that increase in value in
response to new observations. One can think of this process
as adding counts to each matrix entry based on coincidences
in pre- and post-synaptic activity. For example, if beliefs favor
one hidden state, and this co-occurs with a specific observation,
then the strength of the value in the “A” matrix encoding
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FIGURE 2 | This figure illustrates the mathematical framework of active inference and associated neural process theory used in the simulations described in this
paper. (Left) Illustration of the Markov decision process formulation of active inference. The generative model is here depicted graphically, such that arrows indicate
dependencies between variables. Here observations (o) depend on hidden states (s), as specified by the A matrix, and those states depend on both previous states
(as specified by the B matrix, or the initial states specified by the D matrix) and the policies (π) selected by the agent. The probability of selecting a particular policy in
turn depends on the expected free energy (G) of each policy with respect to the prior preferences (C) of the agent. The degree to which expected free energy
influences policy selection is also modulated by a prior policy precision parameter (γ), which is in turn dependent on beta (β) – where higher values of beta promote
more randomness in policy selection (i.e., less influence of the differences in expected free energy across policies). (Middle/Right) The differential equations in the
middle panel approximate Bayesian belief updating within the graphical model depicted on the left via a gradient descent on free energy (F). The right panel also
illustrates the proposed neural basis by which neurons making up cortical columns could implement these equations. The equations have been expressed in terms
of two types of prediction errors. State prediction errors (ε) signal the difference between the (logarithms of) expected states (s) under each policy and time point and
the corresponding predictions based upon outcomes/observations (A matrix) and the (preceding and subsequent) hidden states (B matrix, and, although not written,
the D matrix for the initial hidden states at the first time point). These represent prior and likelihood terms, respectively – also marked as messages 2, 3, and 4, which
are depicted as being passed between neural populations (colored balls) via particular synaptic connections in the right panel (note: the dot notation indicates
transposed matrix multiplication within the update equations for prediction errors). These (prediction error) signals drive depolarization (v) in those neurons encoding
hidden states (s), where the probability distribution over hidden states is then obtained via a softmax (normalized exponential) function (σ). Outcome prediction errors
(ς) instead signal the difference between the (logarithms of) expected observations (o) and those predicted under prior preferences (C). This term additionally
considers the expected ambiguity or conditional entropy (H) between states and outcomes as well as a novelty term (W) reflecting the degree to which beliefs about
how states generate outcomes would change upon observing different possible state-outcome mappings (computed from the A matrix). This prediction error is
weighted by the expected observations to evaluate the expected free energy (G) for each policy (π), conveyed via message 5. These policy-specific free energies are
then integrated to give the policy expectations via a softmax function, conveyed through message 1. Actions at each time point (u) are then chosen out of the
possible actions under each policy (U) weighted by the value (negative expected free energy) of each policy. In our simulations, the agent learned associations
between hidden states and observations (A) via a process in which counts were accumulated (a) reflecting the number of times the agent observed a particular
outcome when she believed that she occupied each possible hidden state. Although not displayed explicitly, learning prior expectations over initial hidden states (D)
is similarly accomplished via accumulation of concentration parameters (d). These prior expectations reflect counts of how many times the agent believes she
previously occupied each possible initial state. Concentration parameters are converted into expected log probabilities using digamma functions (ψ). As already
stated, the right panel illustrates a possible neural implementation of the update equations in the middle panel. In this implementation, probability estimates have
been associated with neuronal populations that are arranged to reproduce known intrinsic (within cortical area) connections. Red connections are excitatory, blue
connections are inhibitory, and green connections are modulatory (i.e., involve a multiplication or weighting). These connections mediate the message passing
associated with the equations in the middle panel. Cyan units correspond to expectations about hidden states and (future) outcomes under each policy, while red
states indicate their Bayesian model averages (i.e., a “best guess” based on the average of the probability estimates for the states and outcomes across policies,
weighted by the probability estimates for their associated policies). Pink units correspond to (state and outcome) prediction errors that are averaged to evaluate
expected free energy and subsequent policy expectations (in the lower part of the network). This (neural) network formulation of belief updating means that
connection strengths correspond to the parameters of the generative model described in the text. Learning then corresponds to changes in the synaptic connection
strengths. Only exemplar connections are shown to avoid visual clutter. Furthermore, we have just shown neuronal populations encoding hidden states under two
policies over three time points (i.e., two transitions), whereas in the task described in this paper there are greater number of allowable policies. For more information
regarding the mathematics and processes illustrated in this figure, see Friston et al. (2016, 2017a,b,c).

the relationship between that state and that observation will
increase. Counts also increase in similar fashion in the “D”
matrix encoding prior beliefs about initial states (whenever a
given hidden state is inferred at the start of a trial) as well as
in the “B” matrix encoding beliefs about transition probabilities

(whenever one specific state is followed by another). For a
more detailed discussion, please see the legend for Figure 2 and
associated references.

In what follows, we describe how this type of generative model
was specified to perform emotional state inference and emotion
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concept learning. We also present simulated neural responses
based on the neural process theory described above.

A Model of Emotion Inference and
Concept Learning
In this paper we focus on the second process in the TPM –
affective response representation – in which a multifaceted
affective response is generated and the ensuing (exteroceptive,
proprioceptive, and interoceptive) outcomes are used to infer
or represent the current emotional state. The basic idea is to
equip the generative model with a space of emotion concepts
(i.e., latent or hidden states) that generate the interoceptive,
exteroceptive and proprioceptive consequences (at various levels
of abstraction) of being in a particular emotional state. Inference
under this model then corresponds to inferring that one of several
possible emotion concepts is the best explanation for the data
at hand (e.g., “my unpleasant feeling of increased heart rate
and urge to run away must indicate that I am afraid to give
this speech”). Crucially, to endow emotion concept inference
with a form of mental action (Metzinger, 2017; Limanowski and
Friston, 2018), we also included a state factor corresponding to
selective attention. Transitions between attentional states were
under control of the agent (i.e., “B” matrices were specified for
all possible transitions between these states). The “A” matrix
mapping emotion concepts to lower-level observations differed
in each attentional state, such that precise information about
each type of lower-level information was only available in one
attentional state (e.g., the agent needed to transition into the
“attention to valence” state to gain precise information regarding
whether she was feeling pleasant or unpleasant, and so forth;
see Figure 3C).

The incorporation of selective attention in emotional state
inference and learning within our model was motivated by several
factors. First, multiple psychotherapeutic modalities improve
clients’ understanding of their own emotions in just this way;
that is, by having them selectively attend to and record the
contexts, bodily sensations, thoughts, action tendencies, and
behaviors during emotion-episodes (e.g., Hayes and Smith, 2005;
Barlow et al., 2016). Second, low emotional awareness has been
linked to biased attention in some clinical contexts (Lane et al.,
2018). Third, related personality factors (e.g., biases toward
“externally oriented thinking”) are included in leading self-report
measures of the related construct of alexithymia (Parker et al.,
2003). Finally, emotion learning in childhood appears to involve
parent-child interactions in which parents draw attention to (and
label) bodily feelings and behaviors during a child’s affective
responses [e.g., see work on attunement, social referencing, and
related aspects of emotional development (Mumme et al., 1996;
Licata et al., 2016; Smith et al., 2018b)] – and the lack of such
interactions hinders emotion learning (and mental state learning
more generally; Colvert et al., 2008).

In our model, we used relatively high level “outcomes”
(i.e., themselves standing in for lower-level representations)
to summarize the products of belief updating at lower
levels of a hierarchical model. These outcomes were domain-
specific, covering interoceptive, proprioceptive and exteroceptive

modalities. A full hierarchical model would consider lower levels,
unpacked in terms of sensory modalities; however, the current
model, comprising just two levels, is sufficient for our purposes.
The bottom portion of Figure 3A (in gray) acknowledges the
broad form that these lower-level outcomes would be expected
to take. The full three-process model would also contain a
higher level corresponding to conscious accessibility (for an
explicit model and simulations of this higher level, see Smith
et al., 2019b). This is indicated by the gray arrows at the
top of Figure 3A.

Crucially, as mentioned above, attentional focus was treated
as a (mental) action that determines the outcome modality or
domain to which attention was selectively allocated. Effectively,
the agent had to decide which lower-level representations to
selectively attend to (i.e., which sequential attention policy to
select) in order to figure out what emotional state she was in.
Mathematically, this was implemented via interactions in the
likelihood mapping – such that being in a particular attentional
state selected one and only one precise mapping between the
emotional state factor and the outcome information in question
(see Figure 3C). Formally, this implementation of mental action
or attentional focus is exactly the same used to model the
exploration of a visual scene using overt eye movements (Mirza
et al., 2016). However, on our interpretation, this epistemic
foraging was entirely covert; hence mental action (c.f., the
premotor theory of attention; (Rizzolatti et al., 1987; Smith and
Schenk, 2012; Posner, 2016).

Figure 3 illustrates the resulting model. The first hidden
state factor was a space of (exemplar) emotion concepts
(SAD, AFRAID, ANGRY, and HAPPY). The second hidden
state factor was attentional focus, and the “B” matrix for
this second factor allowed state transitions to be controlled
by the agent. The agent could choose to attend to three
sources of bodily (interoceptive/proprioceptive) information,
corresponding to affective valence (pleasant or unpleasant
sensations), autonomic arousal (e.g., high or low heart rate), and
motivated proprioceptive action tendencies (approach or avoid).
The agent could also attend to two sources of exteroceptive
information, including the perceived situation (involving social
rejection or a crowded event) and subsequent beliefs about
responsibility (attributing agency/blame to self or another).
These different sources of information are based on a large
literature within emotion research, indicating that they are
jointly predictive of self-reported emotions and/or are important
factors in affective processing (Russell, 2003; Siemer et al., 2007;
Lindquist and Barrett, 2008; Scherer, 2009; Harmon-Jones et al.,
2010; Barrett et al., 2011; Barrett, 2017).

Our choice of including valence in particular reflects the
fact that our model deals with high levels of hierarchical
processing (this choice also enables us to connect more fluently
with current literature on emotion concept categories). In this
paper, we are using labels like “unpleasant” as pre-emotional
constructs. In other words, although affective in nature, we
take concepts like “unpleasant” as contributing to elaborated
emotional constructs during inference. Technically, valenced
states provide evidence for emotional state inference at a higher
level (e.g., pleasant sensations provide evidence that one is
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FIGURE 3 | Continued
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FIGURE 3 | (A) Displays the levels of hidden state factor 1 (emotion concepts) and their mapping to different lower-level representational contents (here modeled as
outcomes). Each emotion concept generated different outcome patterns (see text for details), although some were more specific than others (e.g., HAPPY generated
high and low arousal equally; denoted by thin dotted connections). The A-matrix encoding these mappings is shown in (C). The B-matrix, also shown in (C), was an
identity mapping between emotion states, such that emotions were stable within trials. The precision of this matrix (i.e., implicit beliefs about emotional stability)
could be adjusted via passing this matrix through a softmax function with different temperature parameter values. This model simulates the affective response
representation process within the three-process model of emotion episodes (Smith et al., 2018b, 2019a; Smith, 2019). Black arrows on the right and left indicate the
direction by which hidden causes generate observations (the generative process) and the direction of inference in which observations are used to infer their hidden
causes (emotion concepts) using the agent’s generative model. The gray arrows/boxes at the bottom and top of the figure denote other processes within the
three-process model (i.e., affective response generation and conscious accessibility) that are not explicitly modeled in the current work (for simulations of the affective
response generation process, see Hesp et al., 2019, and for simulations of the conscious accessibility process, see Smith et al., 2019b). (B) Displays the levels of
hidden state factor 2 (focus of attention) and its mapping to representational outcomes. Each focus of attention mapped deterministically (the A-matrix was a fully
precise identity matrix) to a “location” (i.e., an internal source of information) at which different representational outcomes could be observed. Multiple B-matrices,
depicted in Figure 3C, provided controllable transitions (i.e., actions) such that the agent could choose to shift her attention from one internal representation to
another to facilitate inference. The agent always began a trial in the “start” attentional state, which provided no informative observations. The final attentional shift in
the trial was toward a (proprioceptive) motor response to report an emotion (i.e., at whatever point in the trial the agent became sufficiently confident, at which point
the state could not change until the end of the trial), which was either correct or incorrect. The agent preferred (expected) to be correct and not to be incorrect.
Because policies (i.e., sequences of implicit attentional shifts and subsequent explicit reports) were selected to minimize expected free energy, emotional state
inference under this model entails a sampling of salient representational outcomes and subsequent report – under the prior preference that the report would elicit the
outcome of “correct” social feedback. In other words, policy selection was initially dominated by the epistemic value part of expected free energy (driving the agent
to gather information about her emotional state); then, as certainty increased, the pragmatic value part of expected free energy gradually began to dominate (driving
the agent to report her emotional state). (C) Displays select matrices defining the generative model (lighter colors indicate higher probabilities). “D” matrices indicate a
flat distribution over initial emotional states and a strong belief that the attentional state will begin in the “start” state. “A” matrices indicate the observations (rows) that
would be generated by each emotional state (columns) depending on the current state of attention, as well as the social feedback (accuracy information) that would
be generated under each emotional state depending on chosen self-reports. “B” matrices indicate that emotional states are stable within a trial (i.e., states transition
only to themselves such that the state transition matrix is an identity matrix) and that the agent can choose to shift attention to each modality of lower-level
information (i.e., by selecting the transitions encoded by “B” matrices 2–6), or report her emotional state (i.e., by selecting the transitions entailed by “B” matrices
7–10), at which point she could no longer leave that state. Only the first and last two possible attentional shifting actions (“B” matrices) are shown due to space
constraints (note: the first “B” matrix for this factor corresponds to remaining in the starting state and is not shown); “B” matrices 4–8 take identical form, but with the
row vector (1 1 1 1 1 1) spanning the first six columns progressively shifted downward with each matrix, indicating the ability to shift from each attentional state to the
attentional state corresponding to that row. The “C” matrix indicates a preference for “correct” social feedback and an aversion to “incorrect” social feedback.
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feeling a positive emotion like excitement, joy, or contentment,
whereas unpleasant sensations provide evidence that one may
be feeling a negative emotion such as sadness, fear, or anger).
Based on previous work (Joffily and Coricelli, 2013; Clark et al.,
2018; Hesp et al., 2019), we might expect valence to correspond
to changes in the precision/confidence associated with lower-
level visceromotor and skeletomotor policy selection, or to
related internal estimates that can act as indicators of success
in uncertainty resolution; see Joffily and Coricelli (2013), de
Berker et al. (2016), Peters et al. (2017), Clark et al. (2018). Put
another way, feeling good may correspond to high confidence
in one’s model of how to act, whereas feeling bad may reflect
the opposite. Explicitly modeling these lower-level dynamics in
a deep temporal model will be the focus of future work.

In the simulations we report here, there were 6 time points
in each epoch or trial of emotion inference. At the first time
point, the agent always began in an uninformative initial state
of attentional focus (the “start” state). The agent’s task was to
choose what to attend to, and in which order, to infer her most
likely emotional state. When she became sufficiently confident,
she could choose to respond (i.e., reporting that she felt sad,
afraid, angry, or happy). In these simulations the agent selected
“shallow” one-step policies, such that she could choose what
to attend to next – to gain the most information. Given the
number of time points, the agent could choose to attend to up
to four of the five possible sources of lower-level information
before reporting her beliefs about her emotional state. The “A”
matrix mapping attentional focus to attended outcomes was
an identity matrix, such that the agent always knew which
lower-level information she was currently attending to. This
may be thought of as analogous to the proprioceptive feedback
consequent on a motor action.

The “B” matrix for hidden emotional states was also an
identity matrix, reflecting the belief that emotional states are
stable within a trial (i.e., if you start out feeling sad, then you
will remain sad throughout the trial). This sort of probability
transition matrix in the generative model allows evidence to
be accumulated for one state or another over time; here, the
emotion concept that provides the best explanation for actively
attended evidence in the outcome modalities. The “A” matrix –
mapping emotion concepts to outcomes – was constructed such
that certain outcome combinations were more consistent with
certain emotional states than others: SAD was probabilistically
associated with unpleasant valence, either low or high arousal
(e.g., lying in bed lethargically vs. intensely crying), avoidance
motivation, social rejection, and self-attribution (i.e., self-blame).
AFRAID generated unpleasant valence, high arousal, avoidance,
other-blame (c.f., fear often being associated with its perceived
external cause), and either social rejection or a crowded event
(e.g., fear of a life without friends vs. panic in crowded spaces).
ANGRY generated unpleasant valence, high arousal, approach,
social rejection, and other-blame outcomes. Finally, HAPPY
generated pleasant valence, either low or high arousal, either
approach or avoidance (e.g., feeling excited to wake up and
go to work vs. feeling content in bed and not wanting to go
to work), and a crowded event (e.g., having fun at a concert).
Because HAPPY does not have strong conceptual links to blame,

we defined a flat mapping between HAPPY and blame, such
that either type of blame provided no evidence for or against
being happy. Although this mapping from emotional states to
outcomes has some face validity, it should not be taken too
seriously. It was chosen primarily to capture the ambiguous and
overlapping correlates of emotion concepts, and to highlight why
adaptive emotional state inference and emotion concept learning
can represent difficult problems.

If the “A” matrix encoding state-outcome relationships
was completely precise (i.e., if the contingencies above were
deterministic as opposed to probabilistic), sufficient information
could be gathered through (at most) three attentional shifts;
but this becomes more difficult when probabilistic mappings are
imprecise (i.e., as they more plausibly are in the real world).
Figure 4 illustrates this by showing how the synthetic subject’s
confidence about her state decreases as the precision of the
mapping between emotional states and outcomes decreases (we
measured confidence here in terms of the accuracy of responding
in relation to the same setup with infinite precision). Changes
in precision were implemented via a temperature parameter of
a softmax function applied to a fully precise version of likelihood
mappings between emotion concepts and the 5 types of lower-
level information that the agent could attend to (where a higher
value indicates higher precision). For a more technical account of
this type of manipulation, please see Parr and Friston (2017b).

Figure 4 additionally demonstrates how reporting confidence
decreases with decreasing precision of the “B” matrix encoding
emotional state transitions, where low precision corresponds
to the belief that emotional states are unstable over time.
Interestingly, these results suggest that expectations about
emotional instability would reduce the ability to understand or
infer one’s own emotions. From a Bayesian perspective, this result
is very sensible: if we are unable to use past beliefs to contextualize
the present, it is much harder to accumulate evidence in favor
of one hypothesis about emotional state relative to another.
Under moderate levels of precision, our numerical analysis
demonstrates that the model can conceptualize the multimodal
affective responses it perceives with high accuracy.

Figure 5 illustrates a range of simulation results from an
example trial under moderately high levels of “A” and “B” matrix
precision (temperature parameter = 2 for each). The upper left
plot shows the sequence of (inferred) attentional shifts (note:
darker colors indicate higher probability beliefs of the agent, and
cyan dots indicate the true states). In this trial, the agent chose a
policy in which it attended to valence (observing “unpleasant”),
then beliefs (observing “other-blame”), then action (observing
“approach”), at which time she became sufficiently confident and
chose to report that she was angry. The lower left plot displays the
agent’s posterior beliefs at the end of the trial about her emotional
state at each timepoint in the trial, in this case inferring that she
had been (and still was) angry. Note that this reflects retrospective
inference, and not the agent’s beliefs at each timepoint. The lower
right and upper right plots display simulated neural responses
(based on the neural process theory that accompanies this form of
active inference; Friston et al., 2017a), in terms of single-neuron
firing rates (raster plots) and local field potentials, respectively.
The simulated firing rates in the lower right plot illustrate that
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the agent’s confidence that she was angry increased gradually with
each new observation.

The simulations presented in Figures 4, 5 make some cardinal
points. First, it is fairly straightforward to simulate emotion
processing in terms of emotional state inference. This rests upon
a particular sort of generative model that can generate outcomes
in multiple modalities. The recognition of an emotional state
corresponds to the inversion of such models – and therefore
necessarily entails multimodal integration. In other words,
successfully disambiguating the most likely emotional state here
requires consideration of the specific multimodal patterns of
experience (i.e., incorporating interoceptive, exteroceptive, and
proprioceptive sensations) that would be expected under each
emotional state. We have also seen that this form of belief
updating – or evidence accumulation – depends sensitively
on what sort of evidence is actively attended. This equips
the model of emotion concept representation with a form of
mental action, which speaks to a tight link between emotion
processing and attention to various sources of evidence from
within the body – and beyond. Choices to shift attention vs.
to self-report are, respectively, driven by the epistemic and
pragmatic value of each allowable policy, such that pragmatic
value gradually comes to drive the selection of reporting
policies as the expected information gain of further attentional

FIGURE 4 | Displays the accuracy of the model (percentage of correct
inferences over 30 trials) under different levels of precision for two parameters
(denoted by temperature values for a softmax function controlling the
specificity of the A and B matrices for hidden state factor 1; higher values
indicate higher precision). As can be seen, the model performs with high
accuracy at moderate levels of precision. However, its ability to infer its own
emotions becomes very poor if the precision of either matrix becomes highly
imprecise. Accuracy here is defined in relation to the response obtained from
an agent with infinite precision – and can be taken as a behavioral measure of
the quality of belief updating about emotional states. These results illustrate
how emotion concepts could be successfully inferred despite variability in
lower-level observations (e.g., contexts, arousal levels), as would be expected
under constructivist theories of emotion (Barrett, 2017); however, they also
demonstrate limits in variability, beyond which self-focused emotion
recognition would begin to fail.

shifts decreases. The physiological plausibility of this emotion
inference process has been briefly considered in terms of
simulated responses. In the next section, we turn to a more
specific construct validation, using empirical phenomenology
from neurodevelopmental studies of emotion.

SIMULATING THE INFLUENCE OF
EARLY EXPERIENCE ON EMOTIONAL
STATE INFERENCE AND EMOTION
CONCEPT LEARNING

Having confirmed that our model could successfully infer
emotional states – if equipped with emotion concepts – we
are now in a position to examine emotion concept learning.
Specifically, we investigated the conditions under which emotion
concepts could be acquired successfully and the conditions under
which this type of emotion learning and inference fails.

Can Emotion Concepts Be Learned in
Childhood?
The first question we asked was whether our model could learn
about emotions, if it started out with no prior beliefs about
how emotions structure its experience. To answer this question,
we first ran the model’s “A” matrix (mapping emotion concepts
to attended outcome information) through a softmax function
with a temperature parameter of 0, creating a fully imprecise
likelihood mapping. This means that each hidden emotional
state predicted all outcomes equally (effectively, none of the
hidden states within the emotion factor had any conceptual
content). Then we generated 200 sets of observations (i.e., 50
for each emotion concept, evenly interleaved) based on the
probabilistic state-outcome mappings encoded in the model
described above (i.e., the “generative process”). That is, 50
interleaved learning trials for each emotion were generated by
probabilistically sampling from a moderately precise version
of the “A” matrix distribution depicted in Figure 3C (i.e.,
temperature parameter = 2). This resulted in 50 sets of
observations consistent with the probabilistic mappings for each
emotion (e.g., this entailed that roughly 50% of HAPPY trials
involved observations of low vs. high arousal, whereas only
roughly 1% of HAPPY trials involved the observation of social
rejection, etc.). After the 200 learning trials, we then examined
the changes in the model’s reporting accuracy over time. This
meant that the agent, who began with no emotion knowledge
(i.e., a fully uninformative “A” matrix), observed patterns of
observations consistent with each emotion (as specified above)
at 50 timepoints spread out across the 200 trials and needed
to learn these associations (i.e., learn the appropriate “A”
matrix mapping). This analysis was repeated at several levels of
outcome (“A” matrix) and transition (“B” matrix) precision in the
generative process – to explore how changes in the predictability
or consistency of observed outcome patterns affected the model’s
ability to learn. In this model, learning was implemented through
updating (concentration) parameters for the model’s “A” matrix
after each trial. The model could also learn prior expectations
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FIGURE 5 | This figure illustrates a range of simulation results from one representative trial under high levels of A- and B-matrix precision (temperature parameter = 2
for each matrix). (Upper left) Displays a sequence of chosen attentional shifts. The agent here chose a policy in which it attended to valence, then beliefs, then
action motivation, and then chose to report that it was angry. Darker colors indicate higher confidence (probability estimates) in the model about its actions, whereas
the cyan dot indicates the true action. (Bottom left) Displays the agent’s posterior beliefs about her emotional state across the trial. These posterior beliefs indicate
that, at the end of the trial, the agent retrospectively inferred (correctly) that she was angry throughout the whole trial (i.e., despite not being aware of this until the
fourth timestep, as indicated by the firing rates encoding confidence updates over time in the bottom right). (Lower right/Upper right) Plots simulated neural
responses in terms of single-neuron firing rates (raster plots) and local field potentials (rates of change in neural firing), respectively. Here each neuron’s activity
encodes the probability of occupying a particular hidden state at a particular point in time during the trial (based on the neural process theory depicted in Figure 2;
see Friston et al., 2017a).

for being in different emotional states, based on updating
concentration parameters for its “D” matrix after each trial (i.e.,
the emotional state it started in). For details of these free energy
minimizing learning processes, please see Friston et al. (2016).

We observed that the model could successfully reach 100%
accuracy (with minor fluctuation) when both outcome and
transition precisions in the generative process were moderately
high (i.e., when the temperature parameters for the “A” and
“B” matrix of the generative process were 2). The top panel
in Figure 6 illustrates this by plotting the percentage accuracy
across all emotions during learning over 200 trials (in bins of
10 trials), and for each emotion (in bins of 5). As can be seen,
the model steadily approaches 100% accuracy across trials. The
middle and lower panels of Figure 6 illustrate the analogous
results when outcome precision and transition precision were
lowered, respectively. The precision values chosen for these
illustrations (“A” precision = 1.5, “B” precision = 0.5) represent
observed “tipping points” at which learning began to fail (i.e.,

at progressively lower precision values learning performance
steadily approached 0% accuracy). As can be seen, lower precision
in either the stability of emotions over time or the consistency
between observations and emotional states confounded learning.
Overall, these findings provide a proof of principle that this
sort of model can learn emotion concepts, if provided with
a representative and fairly consistent sample of experiences in
its “childhood.”

Can a New Emotion Concept Be Learned
in Adulthood?
We then asked whether a new emotion could be learned later,
after others had already been acquired (e.g., as in adulthood). To
answer this question, we again initialized the model with a fully
imprecise “A” matrix (temperature parameter = 0) and set the
precision of the “A” and “B” matrices of the generative process
to the levels at which “childhood” learning was successful (i.e.,
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FIGURE 6 | This figure illustrates simulated “childhood” emotion concept learning, in which the agent started out with no emotion concept knowledge (a uniform
likelihood mapping from emotional states to outcomes) and needed to learn the correct likelihood mapping over 50 interleaved observations of the outcome patterns
associated with each emotion concept (200 trials total). Left panels show changes in accuracy over time in 10-trial bins, at different levels of outcome pattern
precision (i.e., “A” and “B” matrix precision, reflecting the consistency in the mapping between emotions and outcomes and the stability of emotional states over
time, respectively). Right panels show the corresponding results for each emotion separately (5-trial bins). (Top) with moderately high precision (temperature
parameter = 2 for both “A” and “B” matrices), learning was successful. (Middle and Bottom) with reduced “A” precision or “B” precision (respectively), learning
began to fail.

temperature parameter = 2 for each). We then exposed the model
to 150 observations that only contained the outcome patterns
associated three of the four emotions (50 for each emotion,
evenly interleaved). We again allowed the model to accumulate
experience in the form of concentration parameters for its “D”
matrix – allowing it to learn strong expectations for the emotional
states it repeatedly inferred it was in. After these initial 150 trials,
we then exposed the model to 200 further trials – using the
outcome patterns under all four emotions (50 for each emotion,
evenly interleaved). We then asked whether the emotion that
was not initially necessary to explain outcomes could be acquired
later, when circumstances change.

We first observed that, irrespective of which three emotions
were initially presented, accuracy was high by the end of the
initial 150 trials (i.e., between 80–100% accuracy for each of the
three emotion concepts learned). The upper and middle panels
of Figure 7 illustrate the accuracy over the subsequent 200 trials

as the new emotion was learned. As can be seen in the upper
left and right sections of Figure 7, ANGRY and SAD were both
successfully learned. Interestingly, performance for the other
emotions appeared to temporarily drop and then increase again
as the new emotion concept was acquired (a type of temporary
retroactive interference).

The middle left section of Figure 7 demonstrates that
HAPPY could also be successfully learned; however, it appeared
to interfere with prior learning for SAD. Upon further
inspection, it appeared that SAD may not have been fully
acquired in the first 150 trials (only reaching 80% accuracy
near the end). We therefore chose to examine whether an
“extended” or “emotionally enriched” childhood might prevent
this interference, by increasing the initial learning trial number
from 150 to 225 (75 interleaved exposures to SAD, ANGRY,
and AFRAID outcome patterns). As can be seen in the lower
left panel of Figure 7, HAPPY was quickly acquired in the
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FIGURE 7 | This figure illustrates emotion concept learning in “adulthood”, where three emotion concepts had already been learned (in 150 previous trials not
illustrated) and a fourth was now needed to explain patterns of outcomes (over 200 trials, 50 of which involved the new emotion in an interleaved sequence). The top
four plots illustrate learning for each of the four emotion concepts. ANGRY and SAD were successfully acquired. HAPPY was also successfully acquired, but
interfered with previous SAD concept learning. As shown in the bottom left, this was ameliorated by providing the model with more “childhood” learning trials before
the new emotion was introduced. AFRAID was not successfully acquired. This was (partially) ameliorated by first flooding the model with repeated observations of
AFRAID-consistent outcomes before interleaving it with the other emotions, as displayed in the bottom right. All simulations were carried out with moderately high
levels of precision (temperature parameter = 2 for both “A” and “B” matrices).

subsequent 200 trials under these conditions, without interfering
with previous learning.

Somewhat surprisingly, the model was unable to acquire the
AFRAID concept in its “adulthood” (Figure 7, middle right). To
better understand this, for each trial we computed the expected
evidence for each state, under the distribution of outcomes
expected under the generative process (using bar notation to
distinguish the process from the model) given a particular state,
(EP̄(o|s)[P(o|s)]). This was based on the reasoning that, if we treat
the different emotional states as alternative models to explain
the data, then the likelihood of data given states is equivalent
to the evidence for a given state. Figure 8A plots the log
transform of this expected evidence for each established emotion
concept expected under the distribution of outcomes that would
be generated if the “real” emotional state were AFRAID (right
panel) and contrasts it with the analogous plot for HAPPY (left
panel), which was a more easily acquired concept [we took the

logarithm of this expected evidence (or likelihood) to emphasize
the lower evidence values; note that higher (less negative) values
correspond to greater evidence in these plots].

As can be seen, in the case of HAPPY the three previously
acquired emotion concepts had a relatively low ability to account
for all observations, and so HAPPY was a useful construct in
providing more accurate explanations of observed outcomes.
In contrast, when learning AFRAID the model was already
confident in its ability to explain its observations (i.e., the other
concepts already had much higher evidence than in the case
of HAPPY), and the “AFRAID” outcome pattern also provided
moderate evidence for ANGRY and SAD (i.e., the outcome
patterns between AFRAID and these other emotion concepts
had considerable overlap). In Figure 8B, we illustrate the “A”
and “D” matrix values the agent had learned after the total 350
trials (i.e., 150 + 200, as described above), and an exemplar
trial in which the agent mistook fear for anger (which was
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FIGURE 8 | (A) (Left) The log expected probability of outcomes under the HAPPY outcome distribution, given each of the four emotion concepts in the agent’s
model (i.e., given the “A” matrix it had learned) at each of 200 learning trials, EP̄(o|s=HAPPY)[P(o|s)] (note: the bar over P indicates the generative process distribution).
(Right) The analogous results for the AFRAID outcome pattern. These plots illustrate that HAPPY may have been more easily acquired than AFRAID because the
agent was less confident in the explanatory power of its current conceptual repertoire when it began to observe the HAPPY outcome pattern than when it began to
observe the AFRAID outcome pattern. This also shows that the AFRAID outcome pattern provided some evidence for SAD and ANGRY in the agent’s model, likely
due to outcome pattern overlap between AFRAID and these other two concepts. (B) Illustrates the priors (D) and likelihoods (A) learned after 50 observations of
SAD, ANGRY, and HAPPY (150 trials total) followed by 200 trials in which SAD, AFRAID, ANGRY, and HAPPY were each presented 50 times. As can be seen, while
the “A” matrices are fairly well learned, the agent acquired a strong prior expectation for ANGRY. As shown in the example trial in the bottom left, this led the agent to
“jump to conclusions” and report ANGER on AFRAID trials after making 2 observations consistent with both ANGRY and AFRAID (other-blame and social rejection,
as shown in the bottom right). In this case, the agent would have needed to attend to her motivated actions (avoid) to correctly infer AFRAID.
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the most common confusion). As can be seen, while the “A”
matrix mappings were learned fairly well, the agent had learned
a strong prior expectation for ANGRY in comparison to its
expectation for AFRAID. In the example trial the agent first
attends to beliefs (observing other-blame) and then to the context
(observing social rejection). These observations are consistent
with both ANGRY and AFRAID; however, social rejection is
more uniquely associated with ANGRY (i.e., AFRAID is also
associated with crowded events, while ANGER is not). Combined
with the higher prior expectation for ANGRY, the agent “jumps
to conclusions” and becomes sufficiently confident to report
ANGER (at which point she receives “incorrect” social feedback).
Here, correct inference of AFRAID (i.e., disambiguating AFRAID
from ANGRY) would have required that the agent also attend to
her action tendencies (where she would have observed avoidance
motivation) before deciding which emotion to report.

In this context, greater evidence for an unexplained outcome
pattern would be required to “convince” the agent that her
currently acquired concepts were not sufficient and that further
information gathering (i.e., a greater number of attentional
shifts) was necessary before becoming sufficiently confident to
report her emotions. Based on this insight, we examined ways
in which the model could be given stronger evidence that its
current conceptual repertoire was insufficient to account for its
observations. We first observed that we could improve model
performance by “flooding” the model with an extended pattern of
only AFRAID-consistent outcomes (i.e., 100 trials in a row), prior
to reintroducing the other emotions in an interleaved fashion.
As can be seen in Figure 7 (bottom right), this led to successful
acquisition of AFRAID. However, it temporarily interfered with
previous learning of the HAPPY concept. We also observed that
by instead increasing the number of AFRAID learning trials from
200 to 600, the model eventually increased its accuracy to between
40 and 80% across the last 10 bins (last 50 trials) – indicating that
learning could occur, but at a much slower rate.

Overall, these results confirmed that a new emotion
concept could be learned in synthetic “adulthood,” as may
occur, for example, in psycho-educational interventions during
psychotherapy. However, these results also demonstrate that this
type of learning can be more difficult. These results therefore
suggest a kind of “sensitive period” early in life where emotion
concepts may be more easily acquired.

Can Maladaptive Early Experiences Bias
Emotion Conceptualization?
The final question we asked was whether unfortunate early
experiences could hinder our agent’s ability to adaptively infer
and/or learn about emotions. Based on the three-process model
(Smith et al., 2018b), it has previously been suggested that at least
two mechanisms could bring this about:

1. Impoverished early experiences (i.e., not being exposed to
the different patterns of observations that would facilitate
emotion concept learning).

2. Having early experiences that reinforce maladaptive
cognitive habits (e.g., selective attention biases), which
can hinder adaptive inference (if the concepts have been

acquired) and learning (if the concepts have not yet
been acquired).

We chose to examine both of these possibilities below.

Non-representative Early Emotional Experiences
To examine the first mechanism (involving the maladaptive
influence of “unrepresentative” early experiences), we used
the same learning procedure and parameters described in the
previous sections. In this case, however, we exposed the agent
to 200 outcomes generated by a generative process where one
emotion was experienced 50 times more often than others.
Specifically, we examined the cases of a childhood filled with
either chronic fear/threat or chronic sadness, as a potential
means of simulating the effects of continual childhood abuse or
neglect (the sadness simulations might also be relevant to chronic
depression over several years). We then examined the model’s
ability to learn to infer new emotions in a subsequent 200 trials.

In general, we observed that primarily experiencing fear or
sadness during childhood (which could also be thought of as
undifferentiated in the sense that they could not be contrasted
with other emotions) led the agent to have notable difficulties
in learning new emotions later in life. These results were
variable upon repeated simulations with different emotions (e.g.,
verbal reporting continually fluctuated between high and low
levels of accuracy for some emotions, while accuracy remained
near 0% for others, while yet others were well acquired). For
example, in one representative simulation, in which the agent
primarily experienced fear during childhood, reporting accuracy
continually varied for HAPPY (45% accuracy in the final 20
trials), remained at 0% for ANGRY, remained at 100% for
AFRAID, and was stable at 100% for SAD). Whereas primarily
experiencing sadness in childhood during a representative
simulation led to 0% accuracy for HAPPY, continually varying
accuracy for ANGRY and AFRAID (55% accuracy in the final 20
trials for each), and stable high accuracy for SAD (95% accuracy
in final 20 trials). Similar patterns of (highly variable) results
were observed when performing the same simulations with the
other two emotions.

Unlike the results shown in Figure 8B – in which
likelihood mappings were fairly well acquired (and precise prior
expectations for specific emotions hindered correct inference) –
poor performance was here explained primarily by poorly
acquired likelihood mappings (i.e., the content of the other
emotions concepts was often not learned). Figure 9 illustrates
this by presenting the “A” matrices learned by the agent after
childhoods dominated by either fear or sadness. As can be seen
there, the likelihood mappings do not strongly resemble the true
mappings within the generative process. These results in general
support the notion that having unrepresentative or insufficiently
diverse early emotional experiences could hinder later learning.

Maladaptive Attention Biases
To examine the second mechanism proposed by the three-
process model (involving maladaptive patterns in habitual
attention allocation), we equipped the model’s “E” matrix with
high prior expectations over specific policies, which meant that
it was 50 times more likely to attend to some information and
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FIGURE 9 | Illustrates poorly learned emotion concepts (likelihood mappings or “A” matrices) in adulthood due to a childhood primarily characterized by either fear or
sadness. This could be thought of as simulating early adversity involving continual abuse or neglect, or perhaps cases of chronic depression. See text for more
details.

not to other information. This included: (i) an “external attention
bias,” where the agent had a strong habit of focusing on external
stimuli (context) and its beliefs about self- and other-blame; (ii)
an “internal attention bias,” where the agent had a strong habit
of only attending to valence and arousal; and (iii) a “somatic
attention bias,” where the agent had a strong habit to attend only
to its arousal level and the approach vs. avoid modality.

Figure 10 shows how these different attentional biases
promote false inference. On the left, the true state is AFRAID, and
the externally focused agent first attends to the stimulus/context
(social rejection) and then to her beliefs (other-blame); however,
without paying attention to her motivated action (avoid),
she falsely reports feeling ANGRY instead of AFRAID (note
that, following feedback, there is a retrospective inference that
afraid was more probable; similar retrospective inferences after
feedback are also shown in the other two examples in Figure 10).
In the middle, the true state is ANGRY, and the internally focused
agent first attends to valence (unpleasant) and then to arousal
(high); however, without paying attention to her action tendency
(approach), she falsely reports feeling AFRAID. On the right,

the true state is SAD, and the somatically focused agent attends
to her motivated action (avoid) and to arousal (high); however,
without attending to beliefs (self-blame) she falsely reports feeling
AFRAID instead of SAD.

Importantly, these false reports occur in an agent that has
already acquired very precise emotion concepts. Thus, this does
not represent a failure to learn about emotions, but simply the
effect of having learned poor habits for mental action.

The results of these examples were confirmed in simulations
of 40 interleaved emotion trials (10 per emotion) in an agent
who had already acquired precise emotion concepts (temperature
parameter = 2 for both “A” and “B” matrices; no learning).
In these simulations, we observed that the externally focused
agent had 100% accuracy for SAD, 10% accuracy for AFRAID,
100% accuracy for ANGRY, and 60% accuracy for HAPPY.
The internally focused agent had 100% accuracy for SAD,
50% accuracy for AFRAID, 60% accuracy for ANGRY, and
100% accuracy for HAPPY. The somatically focused agent had
10% accuracy for SAD, 100% accuracy for AFRAID, 100%
accuracy for ANGRY, and 0% accuracy for HAPPY. Thus,
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FIGURE 10 | This figure illustrates single trial effects of different attentional biases, each promoting false inference in a model that has already acquired precise
emotion concepts (i.e., temperature parameter = 2 for both “A” and “B” matrices). External attention bias was implemented by giving the agent high prior
expectations (“E” matrix values) that she would attend to the context and to her beliefs. Internal attention bias was implemented by giving the agent high prior
expectations that she would attend to valence and arousal. Somatic attention bias was implemented by giving the agent high prior expectations that she would
attend to arousal and action motivation. See the main text for a detailed description of the false inferences displayed for each bias. Note: the bottom panels
indicate posterior beliefs, illustrating the agent’s retrospective beliefs at the end of the trial about her emotional state throughout the trial. Also note that the agent’s
actions in the upper left and upper right after reporting should be ignored (i.e., they are simply an artifact of the trial continuing after the agent’s report, when there
is no goal and therefore no confidence in what to do).

without adaptive attentional habits, the agent was prone to
misrepresent her emotions.

In our final simulations, we examined how learning these
kinds of attentional biases in childhood could hinder emotion
concept learning. To do so, we used the same learning procedure
described in the previous section “Can Emotion Concepts Be
Learned in Childhood?”. However, in this case we simply
equipped the model with the three different attentional biases
(“E” matrix prior distributions over policies) and assessed its
ability to learn emotion concepts over the 200 trials. The results
of these simulations are provided in Figure 11. A somatic
attention bias primarily allowed the agent to learn two emotion
concepts, which corresponded to ANGER and FEAR. However,
it is worth highlighting that the low accuracy for the other
emotions means that their respective patterns were subsumed
under the first two. Thus, it is more accurate to say that the

agent learned two affective concepts, which largely predicted only
approach vs. avoidance. In contrast, the internally biased agent
easily acquired the distinction between pleasant (HAPPY) and
unpleasant emotions (all lumped into ANGER) and began to
learn a third concept that distinguished between low vs. high
arousal (i.e., SAD vs. ANGRY). However, it did not conceptualize
the distinction between approach and avoidance (i.e., ANGRY
vs. AFRAID). Lastly, the externally focused agent was somewhat
labile in concept acquisition; by the end, she could not predict
approach vs. avoidance, but she possessed externally focused
concepts with content along the lines of “the state I am in
when I’m socially rejected and think it’s my fault vs. someone
else’s fault” (SAD vs. ANGRY) and “the state I am in when
at a crowded event” (HAPPY). These results provide strong
support for the potential role of attentional biases in subverting
emotional awareness.
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FIGURE 11 | Illustration of the simulated effects of each of the three attention biases (described in the legend for Figure 10) on emotion concept learning over 200
trials (initialized with a model that possessed a completely flat “A” matrix likelihood distribution). Each bias induces aberrant learning in a different way, often leading
to the acquisition of two more coarse-grained emotion concepts as opposed to the four fine-grained concepts distinguished in the generative process. See the main
text for a detailed description and interpretation.

DISCUSSION

The active inference formulation of emotional processing we
have presented represents a first step toward the goal of building
quantitative computational models of the ability to learn,
recognize, and understand (be “aware” of) one’s own emotions.
Although this is clearly a toy model, it does appear to offer some
insights, conceptual advances, and possible predictions.

First, in simulating differences in the precision (specificity)
of emotion concepts, some intuitive but interesting phenomena
emerged. As would be expected, differences in the specificity
of the content of emotion concepts – here captured by the
precision of the likelihood mapping from states to outcomes
(i.e., the precision of what pattern of outcomes each emotion
concept predicted) – led to differences in inferential accuracy.
This suggests that, as would be expected, those with more precise
emotion concepts would show greater understanding of their
own affective responses. Perhaps less intuitively, beliefs about the
stability of emotion concepts – here captured by the precision of
expected state transitions – also influenced inferential accuracy.
This predicts that a belief that emotional states are more stable
(less labile) over time would also facilitate one’s ability to
correctly infer what they are feeling. This appears consistent with

the low levels of emotional awareness or granularity observed
in borderline personality disorder, which is characterized by
emotional instability (Levine et al., 1997; Suvak et al., 2011).

Next, in simulating emotion concept learning, a few
interesting insights emerged. Our simulations first confirmed
that emotion concepts could successfully be learned, even when
their content was cast (as done here) as complex, probabilistic,
and highly overlapping response patterns across interoceptive,
proprioceptive, exteroceptive, and cognitive domains. This
was true when all emotion concepts needed to be learned
simultaneously (as in childhood; see Widen and Russell, 2008;
Hietanen et al., 2016), and was also true when a single new
emotion concept was learned after others had already been
acquired (as in adulthood during psycho-educational therapeutic
interventions; e.g., see Hayes and Smith, 2005; Barlow et al., 2016;
Burger et al., 2016; Lumley et al., 2017).

These results depended on whether the observed outcomes
during learning were sufficiently precise and consistent. One
finding worth highlighting was that emotion concept learning
was hindered when the precision of transitions among emotional
states was too low. This result may be relevant to previous
empirical results in populations known to show reduced
understanding of emotional states, such as those with autism
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(Silani et al., 2008; Erbas et al., 2013) and those who grow up
in socially impoverished or otherwise adverse (unpredictable)
environments (Colvert et al., 2008; Lane et al., 2018). In autism,
it has been suggested that overly imprecise beliefs about state
transitions may hinder mental state learning, because such
states require tracking abstract behavioral patterns over long
timescales (Lawson et al., 2014, 2017; Haker et al., 2016). Children
who grow up in impoverished environments may not have the
opportunity to interact with others to observe stable patterns
in other’s affective responses; or receive feedback about their
own (Pears and Fisher, 2005; Lane et al., 2018; Smith et al.,
2018b). Our results successfully reproduce these phenomena –
which represent important examples of mental state learning that
may depend on consistently observed outcome patterns that are
relatively stable over time.

As emotion concepts are known to differ in different cultures
(Russell, 1991), our model and results may also relate to the
learning mechanisms allowing for this type of culture-specific
emotion categorization learning. Specifically, the “correct” and
“incorrect” social feedback in our model could be understood
as linguistic feedback from others in one’s culture (e.g., a
parent labeling emotional reactions for a child using culture-
specific categories). If this feedback is sufficiently precise, then
emotion concept learning could proceed effectively – even if
the probabilistic mapping from emotion categories to other
perceptual outcomes is fairly imprecise (i.e., which appears to be
the case empirically; Barrett, 2006, 2017).

Another insight worth highlighting was that learning was
more difficult when the agent had already acquired previous
concepts but entertained the possible existence of new emotions
she had not already learned. An interesting observation was that,
in some cases (e.g., learning SAD), new learning temporarily
interfered with old learning before being fully integrated into
the agent’s cognitive repertoire (an effect – termed retroactive
interference – that has been extensively studied empirically
within learning and memory research; Martínez et al., 2014;
Darby and Sloutsky, 2015). In the case of learning HAPPY, we
found that more extensive learning in the model’s “childhood”
was necessary to prevent this type of interference with
respect to previous acquisition of the concept SAD. A second
interesting observation was that AFRAID was very difficult
to learn after the other concepts were fully acquired. This
appeared to be because the agent had already learned to be
highly confident about the explanatory power of her current
conceptual repertoire (combined with the fact that AFRAID
had considerable outcome overlap with SAD and ANGRY).
It was necessary to provide the model with a persistent
“flooding” of observations consistent with the new emotion
to reduce its confidence sufficiently to acquire a new concept.
It is not clear that this type of flooding is realistic, but
perhaps resembles the extended periods of fear that occur
during exposure-based behavioral therapies (Cooper et al., 2017).
We should also emphasize that, due to the oversimplified
nature of the mappings between emotion concepts and affective
response features in our simulations, the difficulties observed
in learning these specific emotions should not be taken too
seriously. However, these overall results do predict that (and

illustrate why) emotion concept learning in general should be
more difficult in adulthood, and that emotion learning may
have a kind of “sensitive period” in childhood (as supported
by previous empirical findings; e.g., Pears and Fisher, 2005;
Colvert et al., 2008).

The manner in which concept learning was implemented
in these simulations may also have more general implications
(for considerations of this approach to concept learning more
generally, see Smith et al., 2019d). Typically, in Active Inference
simulations the state space structure of a model is specified in
advance (e.g., Schwartenbeck et al., 2015; Mirza et al., 2016;
Parr and Friston, 2017a). Our model was instead equipped
with “blank” hidden states devoid of content (i.e., these states
started out predicting all outcomes with equal probability in the
simulated learning). Over multiple exposures to the observed
outcomes, these blank hidden states came to acquire conceptual
content that captured distinct statistical patterns in the lower-
level affective response components of the model. In some
current neural process theories (Bastos et al., 2012; Friston
et al., 2017a, 2018; Parr and Friston, 2018), distinct cortical
columns are suggested to represent distinct hidden states.
Under such theories, our learning model would suggest that
the brain might contain “reserve” cortical columns available
to capture new patterns of lower-level covariance if/when
they begin to be observed in interaction with the world. To
our knowledge, no direct evidence of such “reserve neurons”
has been observed, although the generation of new neurons
(with new synaptic connections) is known to occur in the
hippocampus (Chancey et al., 2013). There is also the well-
known phenomenon of “silent synapses” in the brain, which
can persist into adulthood and become activated when new
learning becomes necessary (e.g., see Kerchner and Nicoll, 2008;
Chancey et al., 2013; Funahashi et al., 2013). Another interesting
consideration is that, during sleep, it appears that many (but not
all) synaptic strength increases acquired in the previous day are
attenuated (Tononi and Cirelli, 2014). This has been suggested
to correspond to a process of Bayesian model reduction, in
which redundant model parameters are identified and removed
to prevent model over-fitting and promote selection of the
most parsimonious model that can successfully account for
previous observations (Hobson and Friston, 2012). This also
suggests that increases in “reserve” representational resources
available for state space expansion (as in concept learning)
could perhaps occur after sleep. In short, the acquisition of
new concepts, emotion-related or otherwise, speaks to important
issues in structure learning. The approach used here offers one
solution to the question of how to expand a model, which
could complement work on strategies for reducing a model
(Friston et al., 2017b).

Although the neural process theory associated with active
inference is cast at the level of canonical microcircuits and
message passing, and therefore does not make a priori predictions
about the brain regions that implement the emotion-related
processes in our model, it nonetheless can afford empirical
testing of macro-anatomical correlates. That is, this process
theory can be used to generate predicted neural response time
courses during emotional state inference and emotion concept
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learning in our model, and the macro-anatomical correlates of
these time courses can then be established using neuroimaging
methods. At present, the three-process model (Smith et al.,
2018b), and supporting evidence (McRae et al., 2008; Smith
et al., 2015, 2017b,c, 2018c,d,e, 2019a,b), has identified a
number of large-scale networks that plausibly implement the
processes we have simulated – and could therefore provide
a priori hypotheses for future studies along these lines (Yeo
et al., 2011; Barrett and Satpute, 2013). For example, “limbic
network” regions (including orbitofrontal cortex and amygdala,
among others), “salience network” regions (including the
anterior insula and dorsal anterior cingulate, among others) and
somatomotor/posterior insula regions all appear to be involved
in generating affective responses and representing either visceral,
somatic, or proprioceptive states at a perceptual level. Regions of
the paralimbic cortex (e.g., “default mode network,” with major
hubs in the medial prefrontal cortex and posterior cingulate)
are in turn most strongly implicated in conceptual inference
(Binder et al., 2009) – such as the emotion concept representation
processes simulated here. Thus, activity in a number of distinct
brain regions/networks would be expected to show associations
with distinct belief updating processes in our model.

A final insight offered by our model pertains to the
possibility that maladaptive emotional state inference could
be due to early experience. We demonstrated this in two
ways. First, we simulated exposure to a large number of
single emotion-provoking situations in childhood, promoting
precise and highly engrained prior expectations for being in
a single emotional state, as well as preferential learning of
the respective outcome patterns for that state over others.
We found that different kinds of “unrepresentative” (single-
emotion) outcome patterns in early experience (e.g., chronic
fear or sadness in childhood abuse/neglect or severe chronic
depression) prevented learning other emotion concepts in
somewhat inconsistent ways in repeated simulations. Overall,
however, these results supported the idea that later emotional
state inferences and emotion concept learning could be
compromised by this type of maladaptive early experience.
This could potentially relate to cognitive bias learning,
such as the negative interpretation biases characteristic of
mood and anxiety disorders (which have been interpreted
within computational frameworks; Mogg and Bradley, 2005;
Smith et al., 2017a).

Second, we examined the possibility that maladaptive
cognitive habits could hinder emotional awareness. Here, we
demonstrated that such habits can promote false emotional state
inference and can hinder emotion concept learning. Specifically,
we found that different types of external, internal, and somatic
biases led to the acquisition of coarser-grained emotion concepts
that failed to distinguish between various elements of affective
responses. Aside from its relevance to cognitive biases more
generally, these results could also explain certain empirical
phenomena in emotional awareness research, such as the finding
that males tend to score lower on emotional awareness measures
than females (Wright et al., 2017). Specifically, while a genetic
contribution to such findings is possible, it is also known that
many cultures reinforce emotion avoidance in boys more than

in girls in childhood (Fivush et al., 2000; Diener and Lucas,
2004; Chaplin et al., 2005), and can promote beliefs that paying
attention to emotions is a sign of weakness or that emotional
information simply carries little practical value. This type of
learning could plausibly reinforce biased patterns of attention
similar to those simulated here. Thus, our simulations suggest
an interesting, testable mechanism by which such (potentially
socialization-based) differences may arise.

In closing, it is important to note that this model is
deliberately simple and is meant only to represent a proof of
principle that emotion inference and learning can be modeled
within a neurocomputational framework from first principles.
We chose a particular pattern of state-outcome mappings to
simulate the content of emotion concepts, but this is unlikely
to represent a fully accurate depiction of human emotion
concepts or the outcomes they predict. Human emotion concepts
likely draw on much higher-dimensional patterns of somatic
and visceral sensations, behavioral motivations, and cognitive
appraisal patterns. There are also “secondary” emotion concepts
like jealousy or embarrassment, which may require including
more specific context and appraisal observations in a model
(e.g., observing a lover with a competing suitor, observing
oneself committing actions that break social norms, etc.).
Further, human agents (or at least some of them) are likely to
have a much richer space of both emotion and non-emotion
concepts available for explaining their patterns of internal
experience in conjunction with other beliefs and exteroceptive
evidence (e.g., a pattern of low arousal, unpleasant valence,
and avoidance in many contexts could also be explained by
the concept of sickness rather than sadness; see Smith et al.,
2019b). A more complete model would take into account many
different possible conceptual interpretations of this sort. In
addition, our simulations only attempted to capture the second
process within the three-process model (i.e., affective response
representation; Smith et al., 2018b). Incorporating the other two
processes (affective response generation and conscious access)
would undoubtedly induce additional dynamics (including
explicit brain-body interactions) that could alter or nuance the
simulation results we have provided. Modeling these additional
processes will be an important goal of future work (see
Smith et al., 2019b).

A final more general limitation with this type of modeling is
that, in its current form, there are limited means of evaluating
how well it represents the true form of emotional state inference
and emotion concept learning implemented in the human brain.
Here, we have focused on reproducing and validating a minimal
model that evinces emotional state inference and learning within
the active inference framework. Crucially, this model has – by
construction – a construct validity with the three-process model
and associated empirical evidence. As noted above, external
validation of the model’s ability to capture human brain processes
will be an important next step, and can be done, for example,
by examining whether the simulated neural responses we have
presented are observable within particular brain regions during
future neuroimaging studies of attending to – and reporting –
one’s own emotions (e.g., Lane et al., 1997; Gusnard et al., 2001;
Smith et al., 2014, 2018c,d).
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With these limitations in mind, however, this approach to
computationally modeling emotion-related processes appears
promising with respect to the initial insights it can offer. It
can illustrate selective information integration in the service
of conceptual inference, it can successfully simulate concept
learning and some of its known vulnerabilities, and it can
highlight maladaptive interactions between cognitive habits,
early experience, and the ability to understand and be aware
of one’s own emotions later in life, all of which may play
important roles in the development of emotional pathology.
Finally, it highlights the potential for future empirical work in
which tasks could be adapted to the broad structure of such
models, which would allow investigation of individual differences
in emotion processing as well as its neural basis. In other
words, once we have a validated model of these emotion-related
processes – at the subjective and neuronal level – we can,
in principle, fit the model to observed responses and thereby
phenotype subjects in terms of their emotion-related beliefs states
(Schwartenbeck and Friston, 2016).

Software Note
Although the generative model – specified by the various matrices
described in this paper – changes from application to application,
the belief updates are generic and can be implemented using
standard routines (here spm_MDP_VB_X.m). These routines are
available as Matlab code in the latest version of SPM academic

software1. The simulations in this paper can be reproduced (and
customized) via running the Matlab code included here in the
Supplementary Material (Emotion_learning_model.m).
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