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The alignment of habits with model-free reinforcement learning (MF RL) is a success story

for computational models of decision making, and MF RL has been applied to explain

phasic dopamine responses (Schultz et al., 1997), working memory gating (O’Reilly and

Frank, 2006), drug addiction (Redish, 2004), moral intuitions (Crockett, 2013; Cushman,

2013), and more. Yet, the role of MF RL has recently been challenged by an alternate

model—model-based selection of chained action sequences—that produces similar

behavioral and neural patterns. Here, we present two experiments that dissociate MF

RL from this prominent alternative, and present unconfounded empirical support for the

role of MF RL in human decision making. Our results also demonstrate that people are

simultaneously using model-based selection of action sequences, thus demonstrating

two distinct mechanisms of habitual control in a common experimental paradigm. These

findings clarify the nature of habits and help solidify MF RL’s central position in models of

human behavior.

Keywords: reinforcement learning, action sequences, model-free control, habit, decision-making

1. INTRODUCTION

Sometimes people make decisions by carefully considering the likely outcomes of their various
options, but often they just stick with whatever worked in the past. For instance, people sometimes
flexibly plan a new route to work when their old route is under construction, but sometimes they
follow the old route anyway. This fundamental distinction—often cast as "planned" vs. "habitual"
behavior—animates a century of decision-making research and organizes a wide array of human
and non-human behaviors (Dolan and Dayan, 2013).

This distinction is commonly formalized within the “reinforcement learning” (RL) framework
(Sutton and Barto, 1998; Dolan and Dayan, 2013). In this framework, planning is a form of explicit
expected value maximization, or “model-based” reinforcement learning (Daw et al., 2011; Doll
et al., 2015). But what is the appropriate formal description of habitual action?

Currently, two basic accounts compete (Figure 1). The first posits that habits arise from a
representation of historical value, averaging across similar past episodes—a form of model-free
reinforcement learning (MF RL) (Schultz et al., 1997; Glascher et al., 2010; Dolan and Dayan, 2013).
In other words, people repeat actions when they have been rewarded often in the past. For instance,
a person might habitually pull their smart-phone out of their pocket when standing in line because
they have often enjoyed using their phone in similar past circumstances.

In contrast, the second posits that habits arise from the “chunking” of actions into sequences that
often co-occur (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014). For instance, the sequence
of actions that a person uses when tying their shoes co-occurs commonly, and so this sequence has
been “chunked.” Although the chunk itself may be assigned value and controlled by an instrumental
system, the elements within the chunk are not assigned value; a person executing a chunked action
sequence is simply on auto-pilot.
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These models are regarded as competitors because they offer
divergent accounts for many of the same empirical phenomena.
Most pointedly, a recent influential critique from Dezfouli and
Balleine (DB) (Dezfouli and Balleine, 2012, 2013; Dezfouli et al.,
2014) seeks to explain current behavioral and neural evidence for
model-free RL instead in terms of action sequences selected by a

superordinate planning process. In other words, they posit that

model-free RL is not employed by humans; value representations
are employed exclusively during model-based planning, and
habitual action exclusively reflects chunked action sequences.

In theory, however, these proposed mechanisms are not
incompatible—they could operate side-by-side within a single
cognitive architecture. Here, we show that both model-free RL

and chunked action sequences simultaneously contribute to
human decisions. To do this, we modify a popular set of “two-

step” behavioral tasks to isolate unique behavioral signatures

of each. Using the modified tasks, we demonstrate both (a)
model-based control of action sequences (consistent with DB),

but (b) model-free control of single, non-sequenced actions
(inconsistent with DB). Thus, our results indicate two important
and distinct forms of behavioral organization that contribute to
“habitual” (i.e., non-planned) action.

We first review the reinforcement learning framework, and
then present the standard two-step task designed to distinguish
between MF and MB influence on choice. Then, following DB,

we show how (for a particular representation of the task’s reward

structure) model-based selection of chunked action sequences
can produce seemingly MF-like behavior on this standard task.

Finally, we demonstrate that an alternate variant of the task
predicts separate behavioral signatures for model-free control

and action sequences, and we present two experiments in which
people simultaneously exhibit both signatures.

2. TWO MODELS OF HABITUAL ACTION

Reinforcement learning offers a powerful mathematical
framework for characterizing different types of decision
algorithms, and allows us to conceptually and empirically
distinguish between two forms of habitual action: (1) model-free

FIGURE 1 | Relationship between various models. Human behavior in sequential decision making tasks is often modeled as the red squares: a mixture of

model-based and model-free control of single-step actions. Dezfouli and Balleine (2012, 2013) argue that previous empirical results can be explained by the blue

outline: model-based control of single-step actions and action sequences. We report evidence that people simultaneously use both model-based control of action

sequences and model-free control of single-step actions.

RL, and (2) model-based RL with action sequences. In this
section, we first introduce the classic distinction between model-
based and model-free control, and describe an experimental
paradigm, the “two-step task,” which was purported to provide
evidence for model-free control in humans. We then introduce
DB’s “action sequences” critique, and show how a model-based
algorithm with action sequences could produce the patterns of
habitual behavior in the original two-step task.

Before continuing, there are two theoretical issues worth
clarifying. First, throughout this paper, we assume that the
behavior produced by a model-free RL controller maps onto our
intuitive notion of “habitual” behavior. This assumption, though
common (Glascher et al., 2010; Dolan and Dayan, 2013), has
been disputed (Miller et al., 2019). We do not engage with this
important debate here. Our experiments dissociate model-free
RL frommodel-based action sequences, and test whether humans
actually employ model-free RL. If it turns out that model-free RL
is not the right description of true habits, but instead represents a
different type of unplanned behavior, then our results should be
reinterpreted in that light.

Second, throughout this paper, we take “model-free” to
mean a type of decision controller that does not store or use
information about its environment’s “transition function”—i.e.,
what the consequences in the environment will be of taking
an action from a particular state. It is sometimes difficult
to draw a sharp line between model-free and model-based
algorithms; there may be a spectrum between them (Miller
et al., 2019). Nonetheless, there is a clear distinction between
the two ends of the spectrum, with model-free algorithms
relying primarily on caching from experience with minimal
prospection at decision time, andmodel-based algorithms relying
primarily on forward planning over a model of the environment’s
transition function. For our simulations and model-fitting, we
will rely on algorithms considered canonical examples of each
type (Sutton and Barto, 1998).

2.1. Model-Based and Model-Free
Reinforcement Learning
In the RL framework, an agent is in an environment characterized
by the tuple (S,A,T,R), where S is the set of states that the agent
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can be in, A is the set of actions available at each state, T is a
function describing the new state to which an action transitions,
and R is a function describing the reward attained after each
transition (Sutton and Barto, 1998). (For simplicity, we assume
there is no discounting). The agent’s goal is to find a policy—
a function that describes the probability of taking each action
in each state—that maximizes the agent’s long-term reward. To
accomplish this, the agent estimates the sum of expected future
rewards following each action, called the action’s "value," and
then simply chooses actions with high values. We will denote the
value of an action a in state s as Q(s, a).

In model-based RL, the agent learns a representation of the
transition function T′ and reward function R′1. For instance, the
agent might represent that taking action 1 in state 3 has a 40%
chance of leading to state 4—or formally, T′(a = 1, s = 3, s′ =
4) = 0.4. (This is analogous to representing the consequences
of one’s actions—i.e., “turning left at this intersection will lead to
Cedar Street”). Then, the agent might represent that transitioning
to state 4 gives a reward of +10. (This is analogous to
representing the desirability of those consequences—i.e., “Cedar
Street is the fastest way to work”). Before making a choice, a
model-based agent can recursively integrate over the decision
tree implied by these two representations to compute the precise
value of each available action:

QMB(s, a) =
∑

s′

T′(s, a, s′) ∗ (R′(s, a, s′)+max
a′∈A

QMB(s
′, a′)) (1)

where s is the agent’s current state, a is the action under
consideration, and s′ are the possible subsequent states.

In contrast, model-free agents do not represent the transition
or reward functions—i.e., they don’t prospect about the
consequences of their actions. Instead, model-free agents
estimate action values directly from experience, and cache these
value representations so they can be accessed quickly at decision
time. (In other words, instead of learning that “turning left at
this intersection will lead to Cedar street”, a model-free agent
will have simply learned that “turning left at this intersection
is good”). In the popular model-free algorithm Q-learning
(Watkins and Dayan, 1992), for instance, action values are
updated after each choice according to the following formula:

QMF(s, a)← QMF(s, a)+α∗(r+max
a′∈A

QMF(s
′, a′)−QMF(s, a)) (2)

where s is the agent’s current state, a is the chosen action, s′ is
the subsequent state, r is the reward received, and α is a free
parameter controlling the learning rate. By incorporating both
the immediate reward and the next state’s action values into the
update rule, theQ(s, a) value estimates converge to the long-term
expected reward following each action, and Q-learning agents
learn to maximize long-term reward accumulation without
explicitly representing the consequences of their choices.

1In many cases, the reward function is static and given to the RL agent ahead of

time. But, in our experiments (and many others; e.g., Glascher et al., 2010; Kool

et al., 2017), the reward function is constantly changing, and so the agent must

continually learn it.

[Note that, although canonically considered a model-free
algorithm (Sutton and Barto, 1998), Q-learning involves some
minimal type of prospection: It uses value estimates of the actions
a′ in the subsequent state s′ to update its value estimate for
selecting a in s2. As discussed above, the line between model-
free and model-based is not always sharp (Miller et al., 2019).
Nonetheless, like standard model-free algorithms, Q-learning
does not use an explicit model of the transition function T.
Moreover, its lack of forward planning at decision time means
that it produces the standard signature of model-free control
in the task used here, which we describe below. Hence, it is an
appropriate formalization of model-free RL for our purposes].

Model-free RL is a particularly powerful model of habitual
behavior. It captures human and animal behavior in a variety
of paradigms (Glascher et al., 2010; Daw et al., 2011; Dolan
and Dayan, 2013), as well as behavioral deficits in obsessive-
compulsive disorder (Voon et al., 2015), Parkinson’s (Frank et al.,
2004), and drug addiction (Redish, 2004). It elegantly explains
phasic dopamine responses in primate midbrain neurons
(Schultz et al., 1997) and BOLD signal changes in the human
striatum (Glascher et al., 2010). Finally, it forms the basis of
models of other cognitive processes, such as moral judgment
(Crockett, 2013; Cushman, 2013), working memory gating
(O’Reilly and Frank, 2006), goal selection (Cushman and Morris,
2015), and norm compliance (Morris and Cushman, 2018).

2.2. The Two-Step Task
The difference between model-based and model-free control can
be illustrated in a popular sequential decision paradigm called
the "two-step task" (Daw et al., 2011). In the two-step task,
participants go through a series of trials and make choices that
sometimes lead to reward. On each trial, they make two choices
(Figure 2A). The first choice (“Stage 1”) presents two options
(“Left” and “Right”) that we label L1 and R1. These actions
bias probabilistic transitions to two subsequent states (“Stage 2”
states) which are yellow and green, and which are not rewarded.
For instance, L1 might typically lead to a green screen, and R1
to a yellow screen. After transitioning to one of the Stage 2
states, people then make a second choice between two further
options, L2 and R2. These each probabilistically transition to one
of two terminal states: a state with reward, or a state without
reward. These transition probabilities drift over the course of
the experiment. Thus, to maximize earnings, participants must
continually infer which Stage 2 state-action pair has the highest
probability of reward, and make choices in both stages to attain
that outcome.

The two-step task was initially designed to distinguish
betweenmodel-based andmodel-free control of single-step, non-
sequenced actions. The key logic of this experimental design
depends on the probabilistic transitions between Stage 1 and
Stage 2 (Figure 2A). 80% of the time, L1 leads to green and
R1 to yellow. But, 20% of the time, the transitions are reversed.
Participants’ choices following rare transition trials reveal the
distinction between model-free and model-based RL. Imagine
an agent chooses L1, gets a rare transition to yellow, chooses

2We thank a reviewer for raising this point.
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FIGURE 2 | (A,B) The original two-step task, which uses binary reward outcomes. This task is often represented with the structure in (A), in which terminal states are

defined by their reward values (e.g., State 4 gives a reward of 1, State 5 gives a reward of 0), and drifting reward probabilities are encoded as transition probabilities to

those terminal states. However, the task can also be represented with the structure in (B), in which each Stage 2 choice leads to a unique terminal state (choosing L2

in State 2 leads to State 4, and so on). In this alternate representation, drifting reward values are encoded as the value of those “path-based” terminal states. We show

that action sequences can only mimic model-free choice patterns in the reward-based terminal state representation. (C,D) Our modified task, which uses graded

reward outcomes (i.e., –5 through 5). Using graded reward outcomes precludes the reward-based terminal state representation, which would require eleven terminal

states and forty-four transition probabilities (shown in C). Instead, this modified task induces the alternate, path-based terminal state representation (shown in D),

allowing us to deconfound action sequences and model-free control.

R2, and receives a reward. How will that reward affect behavior
on the next trial? A model-based agent will, using its internal
model of the task, increase its value estimate of the Stage 1 action
that typically leads to yellow: R1. [Formally, in Equation 1, the
value of Q(State3,R2) will get applied primarily to Q(State1,R1),
not Q(State1, L1), because the former has a higher probability

of transitioning to State 3]. In contrast, a model-free agent,
who has not represented the transition structure, will increase
its value estimate of the Stage 1 action it chose: L1. In other
words, a model-based agent’s response to reward or no reward
will depend on whether the preceding transition was rare or
common; but a model-free agent will respond by becoming
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more or less likely to repeat its last choice, no matter the
transition type.

This logic leads to clear behavioral predictions. If an agent is
model-based, the probability of repeating a choice will depend on
the interaction between the reward type (reward vs. no reward)
and the transition type (common vs. rare). In contrast, if an agent
is model-free, the probability of repeating a choice will depend
on the reward type only. When humans play the two-step task,
they consistently show a mixture of both approaches (Glascher
et al., 2010; Daw et al., 2011). They show both an interaction
between reward and transition type (signature of MB RL), and
a main effect of reward (signature of MF RL). The interpretation
is that people are sometimes planners (captured by MB RL) and
sometimes habitual (captured by MF RL). This finding is a pillar
of support for the case that humans employ model-free RL in
decision making.

2.3. The Action Sequences Critique
However, as DB show, the behavioral pattern in the original
two-step task can be explained without invoking model-free RL.
Instead, DB argue, people are employing model-based selection
of chained action sequences (Dezfouli and Balleine, 2013). An
action sequence is a series of actions that are precompiled into
a single representation. For instance, a person tying her shoelaces
does not consider each step in the sequence separately; rather,
she simply chooses the abstract option "tie my shoes," and
then executes the sequence of lower-level actions automatically.
Similarly, a person driving to work may not consider each turn
to be a new decision. Rather, she made only one decision, in
which she chose the option "drive to work"; and the sequence of
lower-level actions (e.g., start the car, turn left onto Cedar Street)
followed automatically. Crucially, the action sequence model
posits that the internal structure of the option is not guided by
a value function; this is the key point of divergence with standard
MF RL methods.

It is uncontroversial that people employ action sequences in
some form (Dezfouli and Balleine, 2012, 2013; Dezfouli et al.,
2014). We do not detail all the evidence DB marshal for the
existence of action sequences. Rather, we focus on one key
hypothesis: that action sequences can fully explain away any
apparent role of MF RL in human behavior. Specifically, we focus
on the claim that action sequences can produce the standard
signature of MF RL in the two-step task.

2.3.1. Action Sequences in the Two-Step Task
On the action sequences model, when people make a Stage
1 choice, they employ model-based RL to choose between six
possible options: the two single-step actions L1 and R1, and four
action sequences L1-L2, L1-R2, R2-L1, and R2-L2 (Figure 3A).
If a person chooses a single-step action like L1, she transitions
to either the green screen or yellow screen and then uses that
information to make her Stage 2 choice. But if a person chooses
an action sequence like L1-L2, she selects L1 and then L2,
no matter what screen she transitions to. In other words, she
employs a form of “open-loop control” that is insensitive to
information obtained during execution of the action sequence
(Dezfouli and Balleine, 2012).

To see how the introduction of action sequences could explain
seemingly model-free behavior in the two-step task, imagine
that a participant chooses L1-L2, passes through yellow (rare
transition), and receives a reward. Importantly, “receiving a
reward” in the original paradigm is indicated by transitioning to
a screen with a picture of money on it. This “rewarded” terminal
state is not in any way specific to the path the person took to
it—every unique sequence of actions terminates in one of two
identical states: one that is rewarded, and another that is not.
Thus, an agent who was insensitive to information obtained
during the action sequence could learn from the reinforcement
experience without ever referencing whether it had transitioned
to the yellow or green state. All she would learn is that she
had chosen the sequence L1-L2, and ended up at the screen
with reward. (In figurative terms, when exiting “autopilot,”
she would know if she got money, but not where she had
been). If rewarded, then, on the next trial, when consulting her
internal model of the environment, she would become more
likely to stay with L1-L2, not switch to R1-L2 (left-hand-side
of Figure 3B). In this way, a purely model-based agent could
mimic the signature of MF algorithms, and human behavior on
the original two-step task can be explained without reference
to MF RL.

In this paper, we demonstrate that action sequences can only
produce MF-like behavior for this particular reward structure
with binary outcomes. Then, in two experiments, we modify the
two-step task to induce an alternate reward structure in which
action sequences cannot produce MF-like behavior, and show
that people still exhibit the behavioral signatures ofMF RL. At the
same time, our paradigm also produces unambiguous evidence
that people do employ model-based control of action sequences.
We conclude that people’s habit-like behavior can be produced by
both model-free RL and action sequences.

3. SIMULATIONS: ACTION SEQUENCES
CAN ONLY MIMIC MF-LIKE BEHAVIOR
FOR A PARTICULAR REWARD
STRUCTURE

Although not previously emphasized, the action sequencesmodel
can only produce MF-like behavior in the original two-step
task because the task has a peculiar property: The terminal
reward conditions can plausibly be represented as two unified
reward states (one for a reward, one for no reward), subject to
drifting transition probabilities from each Stage 2 state-action
pair (e.g., green-L2, yellow-R2). In other words, for any given
action sequence that is selected at the beginning of the task,
“reward probability” and “state transition probability” coincide
perfectly—the relevant states are simply defined in terms of
reward. For example, suppose an agent selects and executes the
action sequence L1-L2, and that she then receives a reward.
The result is encoded as an increased probability of L1-L2
transitioning to the “reward” state (i.e., State 4 in Figure 3A).
Or, if she instead chooses R1-L2 and receives a reward, the
result is again encoded as an increased probability of R1-L2
transitioning to the “reward” state. This representational scheme
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FIGURE 3 | Experiment 1 predictions. (A) How an agent using action sequences would represent the two task variants. In the original task with binary outcomes, they

are represented as actions which lead directly, with drifting probabilities, to one of two reward states. In the modified task, they are represented as actions which lead,

with fixed probabilities, to different terminal states with drifting values. (B) Example trials in which an agent chooses the action sequence R1-L2, receives a reward,

and updates its beliefs. In the original task representation, both MF and MB controllers have the same response, allowing the model-based action sequences model

to produce MF-like behavior; in the alternate representation, the MF and MB responses diverge. (C) Simulated probability of Stage 1 choice in the two

representations, as a function of last trial’s reward and transition type. We compared a traditional, flat model with partial MF control (“MF model”) to an action

sequences model with only MB control (“MB AS model”). The action sequence model produces MF-like behavior in the original representation, but not the alternate

one. (Asterisks and “n.s.” refer to the significance of the main effect of reward in each simulation. Error bars are ±1 SEM).

has an important consequence: Model-based selection of action
sequences is insensitive to the distinction between common and
rare transitions.

Consider, however, an alternative representation of the reward
structure (Figure 3B). Here, the current expected reward from
each Stage 2 state-action pair is incorporated into the value of a
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separate terminal state. For example, if the participant chooses
R1-L2, passes through green, and receives a reward, she increases
the value of the terminal state associated with green-L2 (State 4).
Crucially, under this alternate task representation, model-based
selection of action sequences cannot produce MF-like behavior.
The critical test is: After choosing a sequence like R1-L2, passing
through green, and receiving a reward, will she increase the
probability of choosing R1-L2 (the MF-like option) or L1-L2 (the
MB-like option)? Under the alternate representational scheme,
a model-based planner will recognize that L1-L2 is more likely
than R1-L2 to lead to the high-reward terminal state green-L2
(right-hand-side of Figure 3C). Thus, a model-based planner will
not show the signature of model-free control, and cannot explain
MF-like behavior in this version of the two-step task.

Put differently, in order for model-free and model-based
controllers to make different behavioral predictions after a rare
transition, the model-based controller needs to incorporate the
fact that it was a rare transition into its post-trial update. When it
chooses an action sequence, remains on autopilot through Stage
2, and arrives at an undifferentiated terminal state (the original
task representation), the fact that it experienced a rare transition
is not represented (explicitly or implicitly). But in the alternate
task representation, the fact of the rare transition is encoded into
the terminal state itself and, thus, it is naturally encoded in the
MB controller’s post-trial update.

In sum: The two-step task was designed to produce divergent
behavior for model-free and model-based controllers after a rare
transition. DB showed that, in the original task, a model-based
controller with action sequences predicts the MF-like behavioral
response (repeating the same Stage 1 choice after a rewarded
rare transition). We show that this is only true for a “reward-
based terminal state” representation of the task; in a “path-
based terminal state” representation of the task, a MB controller
with action sequences returns to predicting the MB-like, not
MF-like, response3. We now report simulations confirming this
theoretical analysis.

3.1. Methods
We simulated two algorithms: one that employed a weighted
mixture of model-based and model-free control (the “MF

3How does a path-based terminal state representation relate to the “Markov”

assumption in reinforcement learning? Informally, the Markov assumption is that,

after conditioning on the current state, the future is independent of the path taken

to reach the current state. It is a key assumption in RL (Sutton and Barto, 1998).

Path-based representations will still have the Markov property; if necessary, they

can just build the path taken to reach a state into the representation of the state

itself (e.g., if I sprint to my friend’s house, the resulting state representation might

include, not just “at my friend’s house,” but also “exhausted from the sprint”). This

kind of augmented state representation is often necessary for complex applications

of reinforcement learning (Sutton and Barto, 1998). However, in the tasks we use to

induce the path-based representation, that kind of augmented state representation

is actually not needed, because the different terminal states (States 4–7, Figure 2)

are clearly differentiated from each other. Hence, the representation for State 4

does not need to explicitly include the information “I chose L1 and L2 to get here,”

because State 4 already clearly differs from the other terminal states. (Keeping with

our analogy, the terminal states are more akin to different friends’ houses). We still

refer to this as a “path-based” terminal state representation only to emphasize that,

unlike in the reward-based representation, the terminal states resulting from each

Stage 2 choice path are different.

model”), and one that employed only model-based control
but included action sequences (the “MB AS model”). In
both algorithms, model-based and model-free Q-values were
computed as described in section II; model-based Q-values4 were
computed by recursively applying Equation (1), while model-free
Q-values were computed via Q-learning (Equation 2). For the
model-free Q-values, we included eligibility traces, with decay
parameter λ. This means that, after participants chose an action
in Stage 2, the reward prediction error was immediately “passed
back” to update the Stage 1 action (discounted by λ; see Sutton
and Barto, 1998). (The presence of eligibility traces are critical
for the analysis of the two-step task described above. Without
eligibility traces, a reward on trial t would not immediately
influence Stage 1 choice on trial t + 1; see Daw et al., 2011).

3.1.1. MF Model
In the MF model, agents estimate both model-based and model-
free Q-values for single-step actions; these estimates must be
integrated to ultimately produce a choice. How RL agents should,
and how people do, arbitrate between model-based and model-
free systems is a complex and important topic (Daw et al., 2005;
Kool et al., 2017; Miller et al., 2019). Here, following past work
(e.g., Daw et al., 2011; Cushman and Morris, 2015), we sidestep
this question and assume that the model-based and model-free
Q-values are ultimately combined with a mixture weight ω:

Qcombined(s, a) = ω ∗ QMB(s, a)+ (1− ω) ∗ QMF(s, a)

ω = 1 leads to pure model-based control, and ω = 0 leads to
pure model-free control. This formalization is agnostic between
different interpretations of the actual integration process, such as
agents alternating between model-based and model-free systems
on different trials, or agents estimating both types of Q-values
on each trial and weighting them together. For a discussion of
the distribution of ω values observed in our experiments, see the
trial-level model fitting sections below. (For an in-depth analysis
of the arbitration problem, see Kool et al., 2017).

After combining the model-based and model-free Q-values,
agents chose actions with probability proportional to the
exponent of the combined Q-values (plus a “stay bonus”
capturing the tendency to repeat previous actions5). Formally,
the probability of choosing action a in state s was given by a
softmax function with inverse temperature parameter β , with a
stay bonus ν:

Prob(s, a) =
eβ∗Qcombined(s,a)+ν∗1a=aprev

∑
a′∈A e

β∗Qcombined(s,a
′)+ν∗1a′=aprev

4To compute the model-based Q-values, agents need an estimate of the transition

function. Since participants in the experiments were explicitly told the transition

probabilities and given practice with them, we assumed that participants would

begin the task with an accurate estimate of the transition function. Thus, we gave

agents an accurate model of T. The results do not change if we model agents as

learning the transition probabilities dynamically.
5Note that, although we don’t give it much attention here, some recent work

theorizes that the stay bonus is actually a formalization of habits that is closer to

our intuitive notion of what it means to be “habitual” (Miller et al., 2019).
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We used separate inverse temperature parameters for Stage 1 and
Stage 2 choices. The MF model did not include action sequences.

3.1.2. MB AS Model
The MB AS model differed from the MF model in two ways.
First, it employed only model-based Q-values to select actions
(i.e., ω = 1). Second, it included action sequences. In the MB
AS model, in addition to being able to choose the two single-
step actions in Stage 1, agents could also choose four additional
action sequences: L1-L2, L1-R2, R1-L2, and R1-R2. Agents chose
between all these options via a softmax function over the model-
based Q-values (with a stay bonus). If the agent chose an action
sequence in Stage 1, it executed the Stage 2 action automatically;
if it chose a single-step action, then, at Stage 2, it made a second
choice between the two single-step actions L2 and R2.

When using action sequences, there is a question of when
to update their value estimates: Should an agent update its
value estimate of an action sequence only after having selected
it as an action sequence, or additionally after having chosen
the single-step actions that happen to correspond to the
sequence? Concretely, after choosing the single-step actions
L1 and R2 (without invoking action-sequence control), should
the agent then update the value representation associated
with the action sequence L1-R2? Following Dezfouli and
Balleine (2013), we present results assuming that the agent
does update sequences after choosing their component actions;
this assumption probably better captures how sequences are
“crystallized” in real life (Dezfouli and Balleine, 2012; Dezfouli
et al., 2014). However, all our results are similar if we assume the
agent does not.

3.1.3. Parameter Values
Both models had a learning rate, two inverse temperatures, and a
stay bonus.We used the same parameter distributions as Dezfouli
and Balleine (2013). For each agent, the learning rate was
randomly sampled from Beta(1.1, 1.1); the inverse temperatures
from Gamma(1.2, 5); and the stay bonus from Normal(0, 1). The
MF model had two additional parameters: the mixture weight ω,
which was sampled from Uniform(0, 1), and the eligibility trace
decay parameter λ, which was also sampled from Uniform(0, 1).

We simulated 1,000 agents of each type playing each task
variant (one with a reward-based terminal state representation,
and one with a path-based terminal state representation). All
agents performed 125 trials.

3.1.4. Analysis
Following the logic in section 2, we tested whether each model
produced the signature of model-free control by estimating a
logistic mixed effects models, regressing a dummy variable of
whether they repeated their Stage 1 choice on (a) the last trial’s
transition type (common vs. rare), (b) the last trial’s reward,
and (c) their interaction. The classic signature of model-free
control in this setting is a main effect of last trial’s reward on
Stage 1 choice.

3.2. Results
In the original task representation, both algorithms showed
a main effect of reward on Stage 1 choice (left-hand-side of
Figure 3C; for MF model, p < 0.0001; for MB AS model, p <

0.0001). But in the alternate representation, only the algorithm
with model-free control showed a main effect of reward (right-
hand-side of Figure 3C; for MF model, p < 0.0001; for MB AS
model, p = 0.57).

3.3. Discussion
We simulated two algorithms—one that included model-free
RL, and one that was purely model-based but included action
sequences—and found the result predicted by our analysis. In the
original task with a reward-based terminal state representation,
model-based control of action sequences canmimic the signature
of model-free control; but with a path-based terminal state
representation, model-based control of action sequences cannot
mimic model-free control. Thus, if people continue to show
MF-like behavior in a version of the two-step task that induces
the alternative representation, it would demonstrate that action
sequences cannot account for all MF-like behavior.

In this simulation, we only reported the patterns of Stage 1
choices. Following past work (Daw et al., 2011; Cushman and
Morris, 2015; Gillan et al., 2016), Stage 1 choice is the key
variable we use to test for an effect of model-free control, and
hence was the focus of this simulation. However, testing for an
effect of model-free control is not our only goal; we also hope
to show that people are simultaneously using action sequences
(in Experiment 1), and to test whether those action sequences
are themselves under model-free or model-based control (in
Experiment 2). For those purposes, we will end up relying on two
other outcome variables: Stage 2 choices, and the reaction times
of Stage 2 choices. If people are employing action sequences, then
their Stage 2 choices and reaction times will exhibit a unique
pattern noted by Dezfouli and Balleine (2013) and described
below in Experiment 1. Hence, Stage 2 choice and RT will
be used in Experiment 1 to test for the presence of action
sequences. Moreover, in the simulations for Experiment 2, we
will show that Stage 2 choice and reaction time can also be used
to distinguish between model-free and model-based control of
action sequences. This logic will be described in section 5.

4. EXPERIMENT 1: DISAMBIGUATING
CONTROL WITH A GRADED REWARD
STRUCTURE

In our first experiment, we adopt a modified version of the
two-step task that induces the “path-based terminal state”
representation. In the original version, the amount of reward
present in each terminal state was constant (e.g., 1 bonus point),
and what drifted throughout the task was each Stage 2 state-
action pair’s probability of transitioning to the reward state vs.
the non-rewarded state. For example, green-L2 might initially
have a 75% chance of giving 1 bonus point, but later it might
only have a 25% chance. This configuration supported the
representation in Figures 2A, 3A, where drifting rewards are
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FIGURE 4 | Experiment 1 results. (For graphical convenience, we bin “last reward” into two categories: positive (“+$”) and negative (“–$”); we do not mean to imply

that people actually represent the rewards this way. All statistical analyses are computed with unbinned reward). (A) Stage 1 choices as a function of last trial’s reward

and transition type. People showed MF-like behavior (main effect of reward), even under the alternate task representation. (B) Histogram of best-fit mixture weights ω

across subjects. People showed substantial model-free control. (C) Stage 2 choices as a function of last trial’s reward and this trial’s Stage 1 choice (on trials with a

rare transition, following trials with a common transition). People’s decisions to repeat their Stage 2 choices were more correlated with their decisions to repeat their

Stage 1 choices following a reward—a unique behavioral signature of action sequences (Dezfouli and Balleine, 2013). (D) Stage 2 reaction times. People are faster to

repeat their Stage 2 action, and this effect is strongest for trials following a reward where they repeated their Stage 1 action. This pattern is another signature of action

sequences. (E) Probability of repeating Stage 1 choice as a function of last trial’s unbinned reward. People are sensitive to the graded nature of the rewards,

suggesting that they are not binning them into “positive”/“negative” categories. (This result is important for ensuring that people are employing a path-based, not

reward-based, representation of the terminal states). All error bars are ±1 SEM; asterisks indicate the significance of the main effect of last trial’s reward (in A), or the

interaction between last trial’s reward and this trial’s Stage 1 choice (in C,D).

encoded as transitions probabilities to terminal states associated
with “reward” or “no reward.”

In our version, rewards could take on a range of point values,
and what drifted was the number of points associated with
each Stage 2 state-action pair (Kool et al., 2016). For example,
green-L2 might initially be worth 3 points, but later it might

be worth -4 points. (Point values were restricted to [–5, 5] and
drifted via a reflecting normal random walk with µ = 0, σ =
1.75). This configuration induces the “path-based terminal state”
representation in Figure 2D. To see why, imagine a person trying
to use the original “reward-based terminal state” representation
in our modified task. The person would have to represent eleven
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separate terminal states (one for each possible point value),
and forty-four terminal transition probabilities (Figure 2C). This
would be a very inefficient representation and so we consider
it unlikely. We further encouraged the path-based terminal
state representation by reformatting the reward screen to clearly
indicate which Stage 2 state-action pair had been chosen.

Thus, in this modified task, we assume that participants
represent the task with path-based terminal states, and thus this
task deconfounds the signatures of action sequences and model-
free control. If, in this task, people still exhibit the behavioral
signature of model-free control—a main effect of reward on
subsequent Stage 1 choice—then it cannot be explained by
model-based selection of action sequences.

Of course, graded rewards are not a new innovation, and have
been used in several past studies (Cushman and Morris, 2015;
Kool et al., 2016). Our contribution is to leverage graded rewards
to deconfound the behavioral signatures of action sequences and
MF RL.We collected new data, rather than reanalyze past studies,
to ensure that the details of the task design were appropriate for
the present question.

4.1. Methods
One hundred and one participants were recruited on Amazon
Mechanical Turk. (We blocked duplicate IP addresses, only
allowed IP addresses from the United States, and only used
workers who had done over 100 previous studies on Turk with
an overall approval rating of at least 95%). All participants gave
informed consent, and the study was approved by Harvard’s
Committee on the Use of Human Subjects.

We used the version of the two-step task described in Kool
et al. (2017), which has a cover story about spaceships to make
the task more understandable. We explained the task in detail
to participants, including explicitly telling them the transition
structure. After being explained the task, participants completed
25 untimed practice trials which did not count toward their
bonus payment. After the practice trials, participants were given a
review of the task. Finally, they completed 125 real trials, in which
each choice had a 2 s time limit.

Following Dezfouli and Balleine (2013), we did not
counterbalance which side of the screen the actions appeared
on; L1 was always on the left, R1 on the right, and so on. This
feature maximizes the potential for participants to employ
action sequences.

Participants were excluded if they completed the instructions
in less than 1 min (suggesting that they did not read carefully);
although the experiment was not pre-registered, this exclusion
criterion was chosen in advance. Five participants were excluded,
leaving 96 for the analyses.

We analyzed people’s Stage 1 choices using logistic mixed
effects models, regressing a dummy variable of whether they
repeated their Stage 1 choice on (a) the last trial’s transition
type (common vs. rare), (b) the last trial’s reward, and (c)
their interaction. We included all random intercepts and
slopes, and computed p-values with Wald z-tests. We estimated
correlations between random effects, except in models with
three-way interaction terms (where we disallowed random
effect correlations to support model convergence). We report

unstandardized regression coefficients as b. (We analyzed
people’s Stage 2 choices similarly).

4.2. Results
4.2.1. Signature of Model-Free RL
The results of Experiment 1 are shown in Figure 4. People
continue to show the signature pattern of MF-like behavior
(Figure 4A). For Stage 1 choice, in addition to the interaction
between last reward and transition type (signature of MB RL;
b = 0.29, z = 12.4, p < 0.0001), there was a main effect of last
reward (signature of MF RL; b = 0.16, z = 8.4, p < 0.0001).
This result provides an example of MF-like behavior that cannot
be explained by action sequences, and is the key finding of
Experiment 1.

4.2.2. Concurrent Evidence for Action Sequences
Although action sequences cannot explain MF-like behavior
in our task, we did find concurrent evidence that people are
employing action sequences in this paradigm. This evidence is
important, because it suggests that our task alteration did not
discourage people from using action sequences; rather, people
seem to employ MF RL and action sequences simultaneously.
(We will also exploit these behavioral signatures in Experiment
2 in order to test for model-based vs. model-free control of
action sequences).

The first piece of evidence for action sequences derives from
logic originally presented by DB (Dezfouli and Balleine, 2013).
Consider a trial in which a person chooses an action sequence,
experiences a common transition, and receives a reward or
punishment. She should be more likely to repeat the sequence
on the following trial if she receives a reward, as opposed to a
punishment6. Moreover, a consequence of her tendency to repeat
the action sequence is that her decisions to repeat Stage 1 and
Stage 2 actions will be correlated: If she repeats the same Stage 1
action, she will be more likely to repeat the same Stage 2 action.
Putting these ideas together, a signature of action sequences is
that repetition of Stage 1 and repetition of Stage 2 actions will be
more correlated following a reward than following a punishment
(simulations in Figure 4C).

This signature, however, is insufficient. There is an alternate
explanation for it: Following a reward, a person using single-step
actions should be more likely to repeat the same actions on the
next trial. Thus, any factors which make her more likely to repeat
her Stage 1 action—e.g., she was paying more attention on that
trial—would make her more likely to repeat her Stage 2 action
also, inducing a correlation.

To remedy this issue, we follow DB and restrict our analysis
to trials in which the current Stage 2 state is different from
the previous Stage 2 state (Dezfouli and Balleine, 2013). For
instance, on the last trial, a person may have chosen R1-L2 and
gone through the yellow state to State 6; but on this trial, the
person may have chosen R1-L2 and, due to a rare transition,
gone through the green state to State 4. If the correlation between

6This analysis is restricted to trials following a common transition, to avoid

questions about model-based vs. model-free control of action sequences; that

question is addressed in Experiment 2. Here, the goal is to demonstrate that people

are using action sequences in some form.
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Stage 1 and Stage 2 actions is due to action sequences, this
restriction won’t matter; people executing an action sequence
are on “autopilot,” and won’t alter their behavior based on the
Stage 2 state. But if the correlation is due to confounding factors
like attention, then this restriction should eliminate the effect: A
reward on the last trial would not influence a single-step agent’s
choice in a different Stage 2 state7.

As in prior work (Dezfouli and Balleine, 2013), people in
our task showed precisely this pattern (interaction b = 0.11,
z = 7.4, p < 0.0001), suggesting that they are indeed using
action sequences (Figure 4C). However, the results in section
4.2.1 indicate that they are not relying on pure model-based
control; there is a model-free influence on their choice. Hence,
it appears that people are using both types of unplanned choice
mechanisms: model-free control and action sequences. (For a
discussion of how often people use each mechanism, see the
section on trial-level model fitting below).

An additional signature of action sequences appears in
participant’s Stage 2 reaction times. While executing a sequence,
people don’t have to make any further decisions (e.g., to compare
the values of alternative actions), and hence should be faster
at selecting actions. This fact, combined with the effect above,
leads to the following prediction. As described above, people
tend to repeat the same sequence on consecutive trials following
a reward. This implies that, on trials where they repeat their
Stage 1 action, people should be faster to select a response in
Stage 2 if they are repeating the same Stage 2 choice—i.e., if they
are following the prescription of the action sequence. (We again
restrict this analysis to trials following a common transition, with
a different Stage 2 state than the previous trial). To test this
prediction, we computed the difference in reaction times between
trials when people repeated their Stage 2 action and trials when
they didn’t, conditioning on (a) whether they received a reward
or punishment last trial, and (b) whether they repeated their
Stage 1 choice. Replicating Dezfouli and Balleine (2013), we find
the predicted interaction: People are faster when repeating their
Stage 2 action, and this effect is strongest on trials following a
reward where people chose the same Stage 1 action (b = 14.9,
t = 5.2, p < 0.0001)8. The interaction is key: The fact that the
boost in reaction time is stronger when participants chose the
same Stage 1 action, and when they received a reward on the
last trial, suggests that the effect is not due to an inherent time
cost of switching Stage 2 actions (which would produce a main
effect where people are always faster to choose the same Stage 2
action). The interaction is a unique signature of action sequences
(Dezfouli and Balleine, 2013). (The raw reaction time data are
presented in Figure A1 in Appendix).

7Moreover, if people are generalizing across Stage 2 states (i.e., blending together

their value estimates for L2 in State 2 and in State 3), then they should exhibit a

main effect of reward on Stage 2 choice—not the predicted interaction between

reward and Stage 1 choice. See Dezfouli and Balleine (2013) for a more thorough

justification for this test.
8For simplicity, we graph these results as a two-way interaction on the difference in

reaction time. But, for the analysis, we properly test for a three-way interaction on

the raw reaction times between last trial’s reward, this trial’s Stage 1 choice, and this

trial’s Stage 2 choice. Following DB, we did not apply a log transformation to RTs.

4.2.3. Are People Representing the Rewards as

Graded?
As discussed above, the logic of Experiment 1 depends on
people using the path-based, not reward-based, terminal state
representation (Figure 2D, not Figure 2C). The reward-based
terminal state approach is an implausible representation of a task
with graded rewards. However, it is possible that, even though
the task has graded rewards, people are not representing it that
way; they could be representing the rewards as binary (e.g.,
either positive or negative). This possibility is problematic for
our analysis, because it means that people could still be using the
reward-based terminal state representation.

To demonstrate that people are treating the rewards as graded,
we examined Stage 1 choices after rewards of each point value.
(In this analysis, we focus exclusively on trials following common
transitions). The results are shown in Figure 4E. People are
clearly representing the full range of rewards, and not just
binning them into positive or negative—every increase in point
value is associated with an increase in stay probability. We tested
this statistically by comparing two logistic mixed effects models:
one that predicted Stage 1 choice from last trial’s graded reward
(i.e., the actual point value), and one that predicted choice from
last trial’s binned reward (i.e., either positive or negative). The
former was heavily preferred (AIC of the former model was over
458 less than the AIC of the latter). Thus, the reward-based
terminal state approach remains an implausible representation of
our task9.

4.3. Trial-Level Model Fitting
As an additional analysis, we fit several variants of the model-
free and action sequence models to participant choices at a trial
level, and used Bayesian model selection to adjudicate between
them. We fit five models: one model that did not use sequences,
and four models that used sequences and employed different
elements of MF and MB control (Table 1). For each model, we
first estimated each subject’s maximum a posteriori parameters,
using the same priors as in the simulations and the fmincon
function in MATLAB. To get each subject’s best-fit parameters,
we reran the optimization procedure ten times with randomly
chosen parameter start values and selected the overall best-fitting
values. We then used the Laplace approximation to compute
the marginal likelihood for each subject for each model (Daw,
2011), and used the random-effects procedure of Rigoux et al.
(2014) to estimate protected exceedance probabilities (PXPs)—
i.e., the probability that each model is the most prevalent in
the population.

The results are shown in Table 1. The preferred model used
a mixture of model-free and model-based values to select both
single-step actions and action sequences (PXP = 0.60), although
it was closely followed by the model that did not use action
sequences (but still used a mixture of MF and MB values to
select single-step actions; PXP = 0.40). Analyzing the subject-
level mixture weight ω, we find that subjects’ behavior showed

9Of course, when graphing our results, we treat the rewards as binary (positive or

negative). But this approach is just for graphical convenience, and does not imply

that people are representing the rewards that way.
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TABLE 1 | Models used in model comparison, and comparison results.

Model Uses

sequences

Control of

single-step

actions

Control of

action

sequences

PXP in

Expt. 1

PXP in

Expt. 2

No

sequences

No Mixture of MF

and MB

N/A 0.40 0

Pure MB Yes MB MB 0 0

Mixture-

actions/

MB-

sequences

Yes Mixture of MF

and MB

MB 0 1

MB-actions/

Mixture-

sequences

Yes MB Mixture of MF

and MB

0 0

Mixture-

actions/

Mixture-

sequences

Yes Mixture of MF

and MB

Mixture of MF

and MB

0.60 0

PXP stands for protected exceedance probabilities (Rigoux et al., 2014).

In Experiment 1, the preferred model used a mixture of model-free and model-based

methods to evaluate both single-step actions and action sequences (although it was

closely followed by a model that omitted action sequences entirely). In Experiment 2, the

preferred model used a mixture of model-free and model-based methods to evaluate

single-step actions, but only model-based methods to evaluate action sequences –

consistent with the behavioral results of Experiment 2.

substantial model-free influence (Figure 4B); the mean weight
was 0.44, and the distribution was peaked near 0 (pure model-
free), with only 16% of subjects showing a weight greater than 0.9.

These results are consistent with our central claim that people
are employing model-free control in this task. On the other
hand, these results are mixed about whether people are using
action sequences. Given the strong behavioral evidence in favor
of action sequences, both in our experiments and past work
(Dezfouli and Balleine, 2013), we think it likely that most subjects
were using them; this inconsistency in the model-fitting suggests
that the behavioral results may provide more reliable tests of our
hypotheses (see Palminteri et al., 2017 for an in-depth argument
in favor of this approach). Nonetheless, we include the model-
fitting results here for completeness. We consider inconsistencies
between the model-fitting and behavioral results in the section 6.

One question that model-fitting can help answer is how
often people employ each choice mechanism. The mean mixture
weight was 0.44. This number could mean different things
depending on the interpretation of action selection. If people are
employing model-free methods on some trials and model-based
methods on others, then a mean ω of 0.44 indicates that people
would on average be employing model-free RL on 56% of trials. If
people are instead averaging model-free and model-based values
together on each trial, then ameanω of 0.44 indicates thatmodel-
free value makes up 56% of the final value estimate. We remain
agnostic between these interpretations (Kool et al., 2017). Either
way, there was substantial between-subject variation in mixture
weights (Figure 4B).

A more difficult question to answer is on what percentage of
trials people are using action sequences. We do not know when
a person used an action sequence, nor it is a parameter explicitly

estimated in the model-fitting procedure (Dezfouli and Balleine,
2013). We leave this question to future research.

4.4. Discussion
We modified the two-step task to induce an alternate reward
representation in which model-based selection of action
sequences could not produce MF-like behavior. In this modified
task, people still showed the same behavioral pattern, including
the signature main effect of reward on Stage 1 choice. This
analysis suggests that people are employing MF RL in some
capacity—even in a task where they are also using action
sequences. Here, action sequences and MF RL seem to be
complements, not competitors.

One potential concern with this experiment is that people
are using a different representation of the task than the one we
assume (Figure 2D). We believe it is implausible that people are
using the reward-based terminal state representation assumed
by Dezfouli and Balleine (2013) (Figure 2C); however, there
is another representation that could be problematic for our
analysis. Specifically, people might be collapsing States 4–7 into
one undifferentiated terminal state, with the rewards encoded
into the preceding actions—e.g., the reward in State 4 might
actually be encoded as the reward from choosing L2 in State
2, with the terminal state ignored. This representation would
be problematic for our analysis because a model-based action
sequence controller could plausibly, after exiting the action
sequence, be aware of the reward it received without being aware
of the path it took to get that reward. Hence, amodel-based action
sequence controller could ignore the transition type, and mimic
model-free behavior10.

A similar worry goes as follows. Even if people are using our
assumed path-based terminal state representation (Figure 2D),
a MB controller could still in principle select some type of
“extended” action sequence that ignores the identity of the
terminal state. For instance, imagine a MB controller chooses L1-
L2, gets a rare transition in the middle of the sequence, receives
a reward, and ignores the associated terminal state (e.g., State
6) because it is still on “autopilot.” This model-based controller
would credit the reward to the sequence L1-L2 itself, and not
to the and would thus appear model-free. This concern makes it
seem as if a model-based controller can still mimic a model-free
one in our task.

A priori, there is some reason to doubt these concerns. We
clearly differentiated the four terminal states with unique visual
features, which included an image of the last action taken to
reach that terminal state. Moreover, people could not quickly
pass through the screen indicating the terminal state; they were
required to remain on that screen for several seconds. If an
action sequence controller is ignoring all this easily-accessible
information about the transition structure and instead crediting
the reward directly to the action sequence itself, then it is not
obvious that the controller is still model-based. It is showing no
sensitivity to the task’s transition structure, and instead caching
value directly to actions themselves—the definition of a model-
free controller.

10We thank a reviewer for raising this point.
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Nonetheless, we seek direct evidence against this possibility.
Experiment 1 tested for the presence of model-free control, but it
was not designed to test which type of controller was being used
to select action sequences specifically. In the next experiment, we
modify the design to produce a unique behavioral signature of
model-free and model-based control of action sequences. This
design allows us to address the aforementioned concern in the
following way. If people are using an “unresponsive” model-
based controller to select action sequences in a way that ignores
the identity of the terminal state and mimics model-free control
(e.g., through an undifferentiated terminal state representation,
or an “extended” sequence), then we should find evidence of
apparent model-free control of action sequences. Conversely, if
we find no evidence of apparent model-free control of action
sequences, that result would suggest that people do not use an
“unresponsive” model-based controller for this family of tasks—
and hence that the MF-like behavior in Experiment 1 was not
produced by such a controller, and was genuinely model-free11.

To preview our results, we find that people are not exhibiting
apparent model-free control of action sequences; they instead
produce the behavioral signature of accurate model-based
control of action sequences (with knowledge of the differentiated
terminal states). Yet, they still exhibit a signature of some
type of model-free control. Together, this pattern suggests
that people are not exhibiting apparent model-free control
via an unresponsive model-based action sequence controller;
rather, they are exhibiting genuine model-free control of single-
step actions.

5. EXPERIMENT 2: TESTING FOR
MODEL-BASED VS. MODEL-FREE
CONTROL OF ACTION SEQUENCES

Experiment 2 was designed to answer the question:Which type of
controller is being used to select action sequences? In principle,
MB and MF control can be applied to both single-step actions
and action sequences (Figure 1). Models of choice in the two-step
task commonly assume that single-step actions are controlled
by a mixture of model-based and model-free control (green box
in Figure 1; Glascher et al., 2010; Daw et al., 2011; Kool et al.,
2017). But what about action sequences? DB posited that action
sequences would be chosen exclusively by MB control, but their
paradigm did not allow them to test this claim. By using graded
rewards in a modified task structure, we can test for unique
behavioral signatures of model-based and model-free control of
action sequences. We find strong evidence that, as DB predicted,
action sequences are under model-based control. In contrast,
although we find clear evidence that people are employing some
type of model-free control, we find no evidence that they are
using model-free RL to select action sequences. This result helps
address the concern from Experiment 1—that an unresponsive

11Though the model-fitting results in Experiment 1 suggested that people were

showing apparent model-free control of action sequences, Experiment 1 was not

designed to address this question, and we prefer to address the question with

clear behavioral predictions (Palminteri et al., 2017). We review and consider

inconsistencies in the model-fitting results in section 6.

model-based action sequence controller was mimicking model-
free control—by simultaneously demonstrating (a) model-free
control of some type, but (b) no apparent model-free control
of action sequences. More broadly, this result suggests that
two types of habitual mechanisms coexist in this paradigm:
(accurate)model-based selection of action sequences, andmodel-
free control of single-step actions.

5.1. Logic of Experiment 2
The second experiment differed from the first only in the
transition structure between Stages 1 and 2 (Figure 5). As before,
L1 and R1 had an 80% chance of transitioning to the green and
yellow states, respectively. But in Experiment 2, both actions have
a 20% chance of transitioning to a novel red state (State 4). Since
both Stage 1 actions have the same chance of transitioning to
the red state, the value of State 9 should not influence a model-
based controller’s choices in Stage 1; a model-based controller
will integrate out any experience it has in the red state, and be
unaffected by feedback from State 9. This fact, combined with
the effect of action sequences on Stage 2 choices and reaction
times described in Expt. 1, elicits unique behavioral predictions
for model-based and model-free selection of action sequences.

The key to Experiment 2 is that, following trials with
transitions to the red state, a person using model-free control
to select action sequences will show the Stage 2 action sequence
effects, while a person using model-based control to select
sequences will not (Figure 6A; right-hand-side of Figure 6B).
Recall from Experiment 1 that, if a person is using action
sequences, their Stage 2 choices will be predicted by a positive
two-way interaction between last trial’s reward and this trial’s
Stage 1 choice: They will be more likely to repeat their Stage
2 choice after being rewarded last trial and repeating their
Stage 1 choice this trial (Figure 4C). [As described above, this
interaction occurs because people will be most likely to be
repeating an action sequence, and hence to repeat their Stage 2
choice, following reward and repeated Stage 1 choice. The same
is true for their reaction times: They will be fastest to repeat
their Stage 2 choice after being rewarded last trial and repeating
their Stage 1 choice this trial. See Figure 4D. As in Experiment
1, we rule out confounds by restricting this analysis to trials in
which the Stage 2 state differs from the previous trial, which
does not matter for an action sequence controller because it is
insensitive to transitions while executing the sequence (Dezfouli
and Balleine, 2013)]. Experiment 2 combines this fact with a
design ensuring that only a model-free controller will be affected
by reinforcement after a rare transition; a model-based controller
will ignore the reinforcement (Figure 5). In Experiment 2, if
people are using model-free control of action sequences, they will
show the signature of action sequences (the two-way interaction
of last trial’s reward and this trial’s Stage 1 choice on Stage
2 choice/reaction time) after a rare transition; but if they are
using model-based control of action sequences, they won’t
show this signature. (Both controllers will show the signature
after common transitions; left-hand-side of Figure 6B). Hence,
if people exhibit this two-way interaction after both common
and rare transitions, we can infer that their action sequences
are under some degree of model-free control. In contrast, if
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FIGURE 5 | Design of Experiment 2. Rare transitions now lead to a common red state with a single reward outcome. This prevents experience in the red state from

affecting a MB controller’s decisions, allowing us to isolate MF behavior.

people exhibit this two-way interaction in common but not rare
transitions, we can infer that their action sequences are under
model-based control. (And if people exhibit the interaction after
neither type of trial, we would infer that they are not using action
sequences at all). These effects are summarized in Table 2.

Note that, if people are using model-based control of action
sequences, we can go one step further in our analysis. As
just discussed, we predict that in this case people would show
the two-way interaction after common transitions but not rare
transitions. Statistically, this means that they would show a
significant two-way interaction after common transitions, a null
effect for the interaction after rare transitions—and, critically,
a significant three-way interaction when including common vs.
rare transition as an additional regressor. In other words, they
will show a significantly stronger interaction after common
transitions than after rare transitions. This result would provide
positive evidence for model-based control of action sequences
that goes beyond a null effect after rare transitions.

To preview our results, we find precisely the patterns predicted
by model-based control of action sequences: People show the
signature two-way interaction (in both Stage 2 choices and
reaction times) after common transitions but not rare transitions,
and show a three-way interaction when including transition
type as a regressor. This is strong evidence that, at the higher
level of the action hierarchy (i.e., action sequences), people in
this paradigm employ model-based control. At the same time,
we find concurrent evidence that people are employing model-
free control at some point in their decision making. Hence,
our results again suggest that model-free control and action
sequences coexist in people’s decisionmaking process, and that, at

least in this paradigm, model-free control may be more strongly
applied at lower levels of the action hierarchy.

5.2. Simulations
We confirm this analysis by simulating agents performing
the task in Experiment 2 (Figure 6C). We used the same
methods as in the prior simulations, with one change. The
two algorithms now both used a mixture of model-free
and model-based Q-values to assign value to single-
step actions (e.g., L1, R1), and both employed action
sequences (e.g., L2-R2); they differed only in the type of
value assignment to action sequences. One algorithm used
model-free Q-values to assign value to action sequences
(“MF AS”), while the other algorithm used model-based
Q-values (“MB AS”).

The results confirmed our theoretical analysis. After trials with
a common transition, both MF AS and MB AS agents showed
the predicted two-way interaction: Their Stage 2 choices were
predicted by their Stage 1 choices times last trial’s reward (p′s <

0.0001; left-hand-side of Figure 6C). In contrast, after trials
with a rare transition, only MF AS agents showed the two-way
interaction (p < 0.0001); MB AS agents showed no interaction
(p = 0.71; Bayes factor in favor of null is 88; right-hand-side of
Figure 6C). Moreover, when including last trial’s transition type
as a regressor, MB AS agents showed the predicted three-way
interaction (p < 0.0001). These simulation results confirm the
theoretical analysis above, and demonstrate that this paradigm
can detect unique effects of model-free and model-based action
sequence control. Next, we test for these effects empirically.
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FIGURE 6 | Predictions in Experiment 2. (A) The representation of Experiment 2 by an agent using action sequences. All sequences have an 80% chance of leading

to their respective terminal states, and a 20% chance of leading to State 9. This design ensures that a model-based controller’s decisions will not be influenced

by the value of State 9. (B) Two types of critical trials. On the left, we analyze trials following common transitions. Here, both model-free andmodel-based action sequence

(Continued)
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FIGURE 6 | models (MF AS and MB AS) predict an interaction between Stage 1 choice and last trial’s reward on Stage 2 choice. On the right, we analyze trials

following rare transitions. Here, MF AS predicts the same interaction, but MB AS predicts that the interaction should disappear, because the value of State 9 will not

matter for sequence selection. (This analysis is restricted to instances in which Trial 2 has a different Stage 2 state than Trial 1; this restriction rules out confounds

described in Experiment 1). (C) Simulations to confirm the predictions in (B). All error bars are ±1 SEM; asterisks indicate significant interactions.

TABLE 2 | Key predictions in Experiment 2.

Sequence

controller

Predicted pattern after

common transitions

Predicted pattern after rare

transitions

Pure MF, or

mixture of

MF/MB

2-way interactions of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

2-way interaction of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

Pure MB 2-way interaction of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

No 2-way interactions

No

sequences

No 2-way interactions No 2-way interactions

S1 stands for Stage 1; S2 stands for Stage 2; S2 RT drop indicates the predicted

gain in speed (and hence drop in reaction time) from repeating a Stage 2 choice. If

a person is using model-free control of action sequences, they will show the action

sequences’ signature two-way interactions (Stage 2 choice/RT drop ∼ Stage

1 choice * Last trial’s reward) after both a common and rare transition. But if

a person is using model-based control of action sequences, they will show the interactions

after common but not rare transitions, and hence will show three-way interactions

of Stage 2 choice/RT drop ∼ Stage 1 choice * Last reward * Last

transition type.

5.3. Methods
Three hundred participants were recruited on Amazon
Mechanical Turk, using the same filtering criteria as in
Experiment 1. The task was identical to Experiment 1, except
for the change in the state/transition structure. We excluded 18
participants who finished the instructions in less than 1 min, and
1 participant for whom the study severely glitched.

In the instructions, we emphasized to people that the
transition probabilities to the rare state did not change over
the course of the experiment, and that when a rare transition
happened was completely random with no way to plan for it. To
ensure that participants believed this key part of the experimental
design, we added a question at the end of the experiment: “Did
you believe that, on any given round, the two Stage 1 choices
had the same probability of transitioning to the red state?” (We
also added a second question: “Did you believe that, on any
given round, the two actions in the red state always led to the
same amount of bonus money?” The significance of this belief
is discussed below). We excluded an additional 84 participants
who answered “No” to either of these questions, leaving 197
participants for analysis. Also, at the end of the instructions,
we included three comprehension check questions, asking, for
each Stage 2 state, which of the Stage 1 actions was most
likely to reach it (or whether both actions were equally likely).
Participants generally understood the transition structure: The
percentage of participants giving correct answers for the three
Stage 2 states were (in order): 87, 94, and 95%. If participants
got the comprehension check question wrong, they were told the

correct answer and reminded of the transition structure (but not
excluded). Again, although these results were not pre-registered,
all exclusion criteria were chosen in advance.

As can be seen in Figure 5, both actions in the red state lead
to the same outcome; participants were told this fact explicitly.
This design feature ensured that all action sequences had the
same probability of transitioning to State 9, and that a model-
based controller would not incorporate information from rare-
transition trials into its subsequent Stage 1 choice.

All statistical methods are similar to those in Experiment
1. Bayes factors were computed with a BIC approximation
(Wagenmakers, 2007).

5.4. Results
5.4.1. Evidence for Model-Free RL
First, we conceptually replicate the finding from Experiment
1 that model-free RL influences choice. In this paradigm, the
signature of MF RL is simple (Cushman and Morris, 2015). If
people are usingMF RL, their Stage 1 choice should be influenced
by the reward received on a rare transition; they should be more
likely to repeat their Stage 1 choice after a reward in State 9,
compared to a punishment. But if they are using only model-
based RL (with or without action sequences), their Stage 1 choice
should not be influenced by the value of State 9 (simulations in
Figure 7A).

Indeed, people show the signature of MF RL (Figure 7A).
They are more likely to repeat their Stage 1 choice following
a more positive reinforcement in State 9 (main effect of last
reward; b = 0.20, z = 7.0, p < 0.0001). This result demonstrates
that MF RL influences people’s choice in some way in
this paradigm.

5.4.2. Evidence for Model-Based Selection of Action

Sequences
Second, we turn to the main question of Experiment 2: Does
model-free RL influence people’s choices of action sequences, or
are action sequences controlled primarily by model-based RL?

In this paradigm, people seem to choose action-sequences
primarily through model-based RL (Figure 7B). As predicted
by MB RL, in trials following a rare transition, there is no
interaction on Stage 2 choice between Stage 1 choice and last
reward (interaction term, b = 0.022, z = 1.1, p = 0.27, BFnull =
41). This result suggests that people are not using model-free RL
to select action sequences.

Moreover, we find positive evidence for model-based control
of sequences. Regressing people’s Stage 2 choices on (a) their
Stage 1 choice, (b) last trial’s reward, and (c) last trial’s transition
type, we find the predicted three-way interaction: People show
the signature of action sequences [an interaction between (a) and
(b)] more in trials following a common transition, compared to
trials following a rare transition (Figure 7B; interaction term, b=
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FIGURE 7 | Results of Experiment 2. (A) Evidence for model-free control. After trials with a rare transition, people are more likely to repeat their Stage 1 choice if

rewarded; purely model-based agents (with or without action sequences) do not show this pattern. (B,C) Evidence for model-based control of action sequences.

People show the action sequence signature—a tendency to repeat their Stage 2 choice most often following a reward on the last trial and a repeat of their Stage 1

choice on this trial (i.e., the interaction Stage 2 choice ∼ Stage 1 choice * Last reward)—following a common transition, but not a rare transition. Their

reaction times show a similar pattern. These patterns are predicted by model-based, but not model-free, control of action sequences. All error bars are ±1 SEM;

asterisks indicate a significant main effect of last trial’s reward (in A) or significant interactions between last trial’s reward and this trial’s Stage 1 choice (in B,C).

0.44, z= 10.7, p < 0.0001). This is precisely the pattern predicted
by model-based control of action sequences.

A similar signature of model-based control of action
sequences comes from people’s reaction times in Stage 2. As
described above, if people are using model-based control of
action sequences, then their gain in speed from repeating their
Stage 2 choice should be predicted by the two-way interaction of
their Stage 1 choice and last trial’s reward—but only following
common, not rare, transitions. And indeed, people exhibit
precisely this pattern (Figure 7C): They showed the predicted
interaction after common transitions (b = 48.7, t = 10.8, p <

0.0001), no interaction after rare transitions (b=−7.1, t =−1.1,
p= 0.26—although the Bayes factor was weak, BFnull = 2.5), and
a significant interaction between those two effects when including
transition type as a regressor (b= 55.2, t = 6.8, p < 0.0001)12.

12As in Experiment 1, for readability, we describe and graph the RT

effects with “Stage 2 RT drop from repeating Stage 2 choice” as the

5.5. Trial-Level Model-Fitting
As an additional analysis, we fit the same models from
Experiment 1 to trial-level choices in Experiment 2 (using
identical procedures as before). The preferred model used a
mixture of model-free and model-based methods to evaluate
single-step actions, but only model-based methods to evaluate
action sequences (PXP = 0.999). This result is consistent with
the behavioral results in Experiment 2. (On the other hand, it is

dependent variable. But in our actual analysis, we test the effects with

raw Stage 2 RT as the dependent variable, and Stage 2 choice as an

additional regressor interacting with the others. Hence, if people are using

model-based control of action sequences, they will properly show a three-

way interaction of Stage 2 RT ∼ Stage 1 choice * Last reward

* Stage 2 choice after common but not rare transitions, and hence a four-

way interaction of Stage 2 RT ∼ Stage 1 choice * Last reward

* Stage 2 choice * Last transition type. These interactions are
what we report here.
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inconsistent with the model-fitting result in Experiment 1. We
return to this issue in section 6).

5.6. Discussion
We replicated the finding from Experiment 1 that people are
employing model-free control of some sort. Moreover, we found
evidence that people’s choice of action sequences was under
model-based, and not model-free, control. People’s patterns of
Stage 2 choice qualitatively matched the simulated behavior
of agents using model-based control of action sequences.
Additionally, the best-fitting model used a mixture of model-free
and model-based control to select single-step actions, but only
model-based control to select action sequences.

These results validate the hypothesis of Dezfouli and Balleine
(2013) that action sequences would be under model-based
control. On the other hand, they further reinforce our primary
claim that model-free RL is part of people’s decision making
repertoire, and not explained away by model-based control of
action sequences. In particular, they provided evidence against
the concern raised at the end of Experiment 1: that people
could be using an unresponsive model-based action sequence
controller which mimics model-free control. If that were the
case, we would have seen evidence of apparent model-free
control of action sequences in Experiment 2. Instead, we find
that people select action sequences using an accurate model-
based method, but select single-step actions with some degree of
model-free control.

We do not make the strong claim that people never exhibit
unresponsive model-based control of action sequences, or
genuine model-free control of action sequences. It is difficult to
draw strong conclusions from a null result. Nonetheless, in our
paradigm, model-free control appears to be applied primarily to
lower levels of the action hierarchy. We return to this question
in section 6.

One worry with this experiment is that it depends on people
believing that the two Stage 1 actions had the same probability
of transitioning to the rare state on each trial. If people were
committing a “hot hands” fallacy and believing that a Stage 1
action that produced a rare transition last trial was more likely
to produce one this trial, that mistaken belief could potentially
produce apparent model-free behavior (Gilovich et al., 1985).
We mitigated this risk by repeatedly emphasizing to people that
the transition probabilities did not change from trial to trial,
and that each rare transition was unpredictable and independent
of the others. Moreover, we excluded participants who reported
not believing this fact. Nonetheless, it is possible that this belief
persisted in polluting our data. Future work should rule out this
potential confound more thoroughly.

6. GENERAL DISCUSSION

Our work aligns with many prior studies arguing that some
form of model-free RL is implemented by humans. Model-
free RL has proved a successful model of human and animal
behavior in sequential decision tasks (Dolan and Dayan, 2013),
phasic dopamine responses in primate basal ganglia (Schultz
et al., 1997), fMRI patterns during decision making (Glascher

et al., 2010), and more. We defend this model against a recent
critique (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014)
by providing unconfounded evidence that, in a variant of the
popular two-step task, people do employ model-free RL, and not
just model-based control of chained action sequences.

At the same time, our work provides strong evidence that, in
addition to model-free RL, people indeed employ model-based
control over action sequences. This result suggests that the puzzle
of habits will not be solved by one model; “habits” likely comprise
multiple decision strategies, including both model-free RL and
action sequences.

6.1. Relationship Between Behavioral and
Model-Fitting Results
We presented two types of evidence: one-trial-back behavioral
effects (e.g., the effect of last trial’s reinforcement on this trial’s
choice), and model-fitting results. In general, these methods were
in agreement. In Experiment 1, both methods indicated that
people were employing model-free RL and (generally) action
sequences. In Experiment 2, both methods indicated that people
were usingmodel-free RL to evaluate single-step actions, but only
model-based RL to evaluate action sequences. This concordance
reinforces those claims.

There were, however, two points on which the model-fitting
results were inconsistent. First, in Experiment 1, the model-
fitting suggested that many of the participants were not actually
using action sequences. This is possible, but seems unlikely
in light of our clear behavioral results and the results of past
work (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014).
Second, the preferred model differed between Experiments 1
and 2. In Experiment 2, the preferred model used only model-
based RL to evaluate action sequences, but in Experiment 1 the
preferred model used both model-based and model-free RL to
evaluate them. It is possible that participants in Experiment 1
were actually using more model-free control of action sequences
than in Experiment 2. On the other hand, since it was Experiment
2 that was designed to test for the type of action sequence
controller, the preferred model in Experiment 2 is probably
more informative on this point. In any case, the inconsistency
casts doubt on the reliability of the model-fitting approach for
answering these questions. We believe that our clear patterns of
qualitative behavioral results are stronger evidence for our claims
than the model-fitting results; for a detailed discussion of this
point, see Palminteri et al. (2017).

6.2. Could MF-Like Behavior Be Produced
by Model-Based Algorithms With
Inaccurate Beliefs?
Wepresented evidence formodel-free control in human behavior
that is deconfounded from one potential alternative: model-
based control of action sequences. There are, however, other
model-based algorithms that could mimic model-free control
by having an inaccurate model of the task. For instance,
consider a person in Experiment 1 who believes that rare
transitions lead to unique Stage 2 states—e.g., that a rare
transition from L1 leads to a different state than a common
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transition from R1 (Figure A2A in the Appendix). A model-
based agent with this task model would produce MF-like
behavior because it would be more likely to repeat its Stage
1 choice following both common and rare transitions (since
a reward from a rare transition no longer suggests that the
agent should switch its Stage 1 choice; Figure A2B). Other
examples of inaccurate models that can produce MF-like
behavior are given by da Silva and Hare (2019). In the most
extreme case, MF-like behavior in this task an always be
mimicked by an algorithm that ignores the task instructions
and builds a transition model of the form “repeating behavior
after being rewarded leads to more money at the end of
the experiment.”

There is some reason to doubt that MF-like behavior can be
explained this way, as an “inaccurate model-based” controller.
A key feature of model-free RL is its computational simplicity
(relative to model-based RL). This feature helps makes sense of
why people would exhibit MF-like behavior relatively more when
under cognitive load (Otto et al., 2013), or when the financial
stakes are lower (Kool et al., 2017). These results are more
difficult to explain under an “inaccurate-model-based” account,
since it is not clear that using an inaccurate model of the task is
more computationally efficient. Moreover, there is strong neural
evidence for model-free RL that is difficult to explain under an
inaccurate-model-based account (Schultz et al., 1997; Dolan and
Dayan, 2013).

However, this is an active area of debate (da Silva and
Hare, 2019). Here, we do not rule out all the inaccurate-model-
based alternative accounts of our behavioral results, or provide
definitive evidence for model-free RL. We instead make the more
modest claim that the signature of model-free RL observed here
is not due to model-based control of action sequences.

6.3. At What Level of Abstraction Does
Model-Free RL Operate?
Our results contribute to an ongoing investigation into the scope
of model-free RL. Model-free RL—and habits in general—are
often characterized as applying to relatively concrete actions (e.g.,
a rat pulling a lever, or a human pushing a button). But some
research has suggested that MF RL can also apply to relatively
abstract “actions”, like goal selection (Cushman and Morris,
2015) or working memory gating (O’Reilly and Frank, 2006).

Here, we tackled the question of whether MF RL also applies
to the control of another type of abstract action: action sequences.
We found no evidence that people used model-free RL for action
sequences. Rather, in Experiment 2, we found strong evidence
that people used model-based RL to evaluate sequences. This
result aligns with the predictions of Dezfouli and Balleine (2013)
that action sequences would be under model-based control.

There are two reasons, however, not to draw strong
conclusions from this result. First, it is a null result; it is possible

that in other paradigms, or other experimental settings, people
would have shown evidence of model-free sequence selection.
Second, it is highly likely that some action sequences can be under
model-free control. After all, the actions “pull a lever” or “push a
button” actually comprise manymotor subroutines—so if MF RL
can apply to them, it must apply to sequences of some kind.

Nonetheless, our results raise important questions about when
and how MF RL operates at higher levels of abstraction in the
action hierarchy. This question is ripe for future research.

7. CONCLUSION

Humans exhibit many habit-like patterns of behavior. Our
studies demonstrate one such pattern that is best explained by
model-free RL, and another that is best explained bymodel-based
selection of action sequences. This suggests that action sequences
should be viewed as complements, not alternatives, to MF RL,
and that combining MF RL with other approaches will give us a
fuller understanding of habits.
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A. APPENDIX

FIGURE A1 | Distribution of Stage 2 reaction times, as a function of the previous trial’s transition and reinforcement and the current trial’s Stage 1 choice. All

distributions were roughly unimodal and right-skewed.
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FIGURE A2 | Simulations illustrating how a model-based algorithm with an inaccurate task model could mimic model-free control. (A) The example inaccurate task

model. The algorithm believes that rare transitions lead to unique Stage 2 states. (B) Simulation results for agents using a mixture of an accurate model-based

algorithm and the inaccurate model-based algorithm. These agents produce both an interaction between last trial’s reward and transition type (the classic signature of

model-based control), and a main effect of last trial’s reward (the classic signature of model-free control). Hence, these agents produce MF-like behavior without MF

control. We consider possibilities like these in section 6. (We thank David Melnikoff for suggesting this example).
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