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In the past two decades, psychological science has experienced an unprecedented
replicability crisis, which has uncovered several issues. Among others, the use and
misuse of statistical inference plays a key role in this crisis. Indeed, statistical inference
is too often viewed as an isolated procedure limited to the analysis of data that
have already been collected. Instead, statistical reasoning is necessary both at the
planning stage and when interpreting the results of a research project. Based on these
considerations, we build on and further develop an idea proposed by Gelman and Carlin
(2014) termed “prospective and retrospective design analysis.” Rather than focusing
only on the statistical significance of a result and on the classical control of type | and
type Il errors, a comprehensive design analysis involves reasoning about what can be
considered a plausible effect size. Furthermore, it introduces two relevant inferential risks:
the exaggeration ratio or Type M error (i.e., the predictable average overestimation of
an effect that emerges as statistically significant) and the sign error or Type S error
(i.e., the risk that a statistically significant effect is estimated in the wrong direction).
Another important aspect of design analysis is that it can be usefully carried out both
in the planning phase of a study and for the evaluation of studies that have already
been conducted, thus increasing researchers’ awareness during all phases of a research
project. To illustrate the benefits of a design analysis to the widest possible audience,
we use a familiar example in psychology where the researcher is interested in analyzing
the differences between two independent groups considering Cohen’s d as an effect
size measure. We examine the case in which the plausible effect size is formalized as a
single value, and we propose a method in which uncertainty concerning the magnitude
of the effect is formalized via probability distributions. Through several examples and an
application to a real case study, we show that, even though a design analysis requires
significant effort, it has the potential to contribute to planning more robust and replicable
studies. Finally, future developments in the Bayesian framework are discussed.

Keywords: prospective and retrospective design analysis, Type M and Type S errors, effect size, power,
psychological research, statistical inference, statistical reasoning, R functions
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“If statisticians agree on one thing, it is that scientific inference
should not be made mechanically.”
Gigerenzer and Marewski (2015, p. 422)

“Accept uncertainty. Be thoughtful, open, and modest. Remember
ATOM’”>
Wasserstein et al. (2019, p. 2)

1. INTRODUCTION

In the past two decades, psychological science has experienced
an unprecedented replicability crisis (Ioannidis, 2005; Pashler
and Wagenmakers, 2012; Open Science Collaboration, 2015)
that has uncovered a number of problematic issues, including
the adoption of Questionable Research Practices (John et al.,
2012) and Questionable Measurement Practices (Flake and
Fried, 2019), the reliance on excessively small samples (Button
et al, 2013), the misuse of statistical techniques (Pastore
et al,, 2019), and the consequent misleading interpretation and
communication of research findings (Wasserstein et al., 2019).

Whereas some important reasons for the crisis are intrinsically
related to psychology as a science (Chambers, 2019), leading to a
renewed recommendation to rely on strong and well-formalized
theories when planning a study, the use of statistical inference
undoubtedly plays a key role. Specifically, the inferential
approach most widely used in psychological research, namely
Null Hypothesis Significance Testing (NHST), has been strongly
criticized (Gigerenzer et al., 2004; Gelman, 2018; McShane et al.,
2019). As a consequence, several alternative approaches have
received increasing attention, such as the use of Bayes Factors for
hypothesis testing and the use of both Frequentist and Bayesian
methods to estimate the magnitude of the effect of interest with
uncertainty (see Kruschke and Liddell, 2018, for a comprehensive
historical review).

In the current paper, we focus on an upstream—but still
neglected—issue that is unrelated to the approach chosen by
the researcher, namely the need for statistical reasoning, i.e.,
“to reason about data, variation and chance” (Moore, 1998,
p. 1253), during all phases of an empirical study. Our work
was inspired by the famous statistician Ronald Fisher (1890-
1962), who stated that, “To consult the statistician after an
experiment is finished is often merely to ask him to conduct
a post-mortem examination. He can perhaps say what the
experiment died of” (Fisher, 1938, p.17). Indeed, we argue that
statistical inference is too often seen as an isolated procedure
that is limited to the analysis of data that have already
been collected. In particular, we emphasize the non-trivial
importance of making statistical considerations at the onset of
a research project. Furthermore, we stress that, although Fisher
has ironically defined them as a “post-mortem examination,”
appropriate evaluations of published results can provide a
relevant contribution to the progress of (psychological) science.
The ultimate goal of this paper is to increase researchers’
awareness by promoting active engagement when designing
their research.

To achieve this goal, we build on and further develop an
idea proposed by Gelman and Carlin (2014) called “prospective

and retrospective design analysis,” which is virtually absent in
current research practice. Specifically, to illustrate the benefits
of design analysis to the widest possible audience, we use
a familiar example in psychology where the researcher is
interested in analyzing the differences between two independent
groups considering Cohen’s d (Cohen, 1988) as an effect
size measure.

In brief, the term design analysis has been proposed by Gelman
and Carlin (2014) as a broader definition of power analysis—
a concept that in the statistical literature traditionally indicates
the determination of an appropriate sample size, at prespecified
levels of Type I and Type II errors and a “plausible effects size”
(Gigerenzer etal., 2004). Indeed, a comprehensive design analysis
should also explicitly consider other two inferential risks: Type
M error and Type S error. Type M error (where M stands for
magnitude) is also known as exaggeration ratio and indicates how
much a statistically significant effect is, on average, overestimated
in comparison to a “plausible effect size.” Type S error (where
S stands for sign) indicates the risk that a statistically significant
effect is estimated in the wrong direction. These two errors will
be further discussed in the subsequent paragraphs with several
examples. Notably, the estimation of these errors will require an
effort from psychologists to introduce their expert knowledge
and hypothesize what could be considered a “plausible effect
size.” As we will see later, a key aspect of design analysis is that
it can be usefully carried out both in the planning phase of a
study (i.e., prospective design analysis) and for the evaluation
of studies that have already been conducted (i.e., retrospective
design analysis).

Although the idea of a design analysis could be developed
within different inferential statistical approaches (e.g.,
Frequentist and Bayesian), in this paper we will rely on the
Neyman-Pearson (N-P) approach (Pearson and Neyman,
1928) as opposed to the widely used NHST. The rationale
for this choice is that, in addition to other strengths,
the N-P approach includes formalization of the Null
Hypothesis (i.e., the absence of an effect) like NHST, but
it also includes an explicit formalization of the Alternative
Hypothesis (i.e., the magnitude of the expected effect).
For a more comprehensive description of the difference
between N-P and NHST approaches, we refer the reader to
Gigerenzer et al. (2004).

In the next paragraphs, we will briefly review the main
consequences of underpowered studies, discuss two relevant
misconceptions concerning the interpretation of statistically
significant results, and present a theoretical framework for
design analysis, including some clarifications regarding the
concept of “plausible effect size.” In section 2, through
familiar examples within psychological research, the benefits
of prospective and retrospective design analysis will be
highlighted. In section 3, we will propose a specific method
that, by explicitly taking uncertainty issues into account,
could further assist researchers in evaluating scientific
findings. Subsequently, in section 4, a real case study will
be presented and analyzed. Finally, in section 5, we will
summarize the potentials, further developments, and limitations
of our proposal.
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To increase readability and ensure transparency of our work,
we also include two Appendices as Supplementary Material:

e Appendix A. A detailed description concerning the
computation and the interpretation of Cohen’s d.

e Appendix B. A brief explanation of the ad-hoc R (R Core
Team, 2018) functions used in the paper. Details on how to
reproduce the presented examples and on how to use our R
functions for other purposes are also provided. Furthermore,
the source code of our functions, PRDA. R, is freely available
at the Open Science Framework (OSF) at the link https://osf.
io/j8gst/files/.

1.1. The Consequences of Underpowered
Studies in Psychology

In 1962, Cohen called attention to a problem affecting
psychological research that is still very much alive today (Cohen,
1962). Researchers seemed to ignore the statistical power of
their studies—which is not considered in NHST (Gigerenzer
et al., 2004)—with severe consequences for the robustness of
their research findings. In the N-P approach, the power of a
statistical test is defined as the probability that the test has to
reject the Null Hypothesis (Hp) when the Alternative Hypothesis
(Hj) is true. One of the problems with underpowered studies
is that the probability of finding an effect, if it actually exists,
is low. More importantly, if a statistically significant result
(i.e., “in general” when the observed p-value is <0.05 and
consequently Hy is rejected; see Wasserstein et al., 2019) is
obtained in an underpowered study, the effect size associated
with the observed p-value might be “too big to be true”
(Button et al., 2013; Gelman and Carlin, 2014).

This inflation of the effect sizes can be seen when examining
results of replication projects, which are usually planned to
have higher power than the original studies. For example,
the Open Science Collaboration (2015, pp. 4-5) reported that
“Overall, original study effect sizes (M = 0403, SD =
0.188) were reliably larger than replication effect sizes (M =
0.197, SD = 0.257), and in the Social Science Replication
Project (Camerer et al., 2018, p. 637), “the effect size of the
replication was on average about 50% of the original effect
size.” These considerations contributed to the introduction in
the literature of the term “decline effect,” defined as “the notion
that science routinely observes effect sizes decrease over repeated
replications for reasons that are still not well-understood”
(Schooler, 2014, p. 579).

Given that underpowered studies are widespread in
psychology (Cohen, 1962; Sedlmeier and Gigerenzer, 1989;
Maxwell, 2004), the shrinkage of effect sizes in replications
could be partially explained by the fallacy of “what does not kill
statistical significance makes it stronger” (Loken and Gelman,
2017) and by the trap of the “winner’s curse” (Button et al., 2013).

1.2. The “What Does Not Kill Statistical
Significance Makes It Stronger” Fallacy

and the “Winner’s Curse” Trap
When a statistically significant result is obtained in an
underpowered study (e.g., power = 40%), in spite of the

low probability of this event happening, the result might be
seen as even more remarkable. In fact, the researcher might
think, “If obtaining a statistically significant result is such a
rare event, and in my experiment I obtained a statistically
significant result, it must be a strong one.” This is called the
“what does not kill statistical significance makes it stronger”
fallacy (Loken and Gelman, 2017). The reason why this is a
fallacy lies in the fact that it is possible to obtain statistical
significance due to the presence of many other factors that
are different from the presence of a real effect. The researcher
degrees of freedom, large measurement errors, and small sample
sizes all contribute to the creation of noise in the data,
thus inflating the perhaps true but small underlying effect.
Then, if the procedure used to analyze those data is only
focused on a threshold (like in NHST, with a conventional
significance level of 0.05), the noise in the data allows it to pass
this threshold.

In these situations, the apparent win in terms of obtaining
a statistically significant result is actually a loss; “the lucky”
scientist who makes a discovery is cursed by finding an inflated
estimate of that effect (Button et al, 2013). This is called
the “Winner’s curse,” and Figure 1 shows an example of this.
In this hypothetical situation, the researcher is interested in
studying an effect that can plausibly be of small dimensions, e.g.,
Cohen’s d of 0.20 (see Appendix A, for a detailed description
of the calculation and interpretation of Cohen’s d). If they
decide to compare two groups on the outcome variable of
interest, using 33 participants per group (and performing a
two-tailed test), they will never be able to simultaneously reject
Hp and find an effect close to what it is plausible in that
research field (i.e., 0.20). In fact, in this underpowered study
(i.e., based on a d of 0.20, the actual power is only 13%) all
the effects falling in the “rejection regions” are higher than
0.49 or smaller than —0.49, and 0.20 falls in the region where
the decision rules state that you cannot reject Hy under the
NHST approach, and that you can accept Hy under the N-
P approach.

Hypotheses

10 08 0.6 04 -02 00 02 04 06 08 10 12

Cohen’s d

FIGURE 1 | The Winner’s Curse. Hypothetical study where the plausible true
effect size is small (Cohen’s d = 0.20) and a two-tailed independent samples
t-test is performed with 33 people per group. In order to reject Hy, the
researcher has to overestimate the underlying true effect, which is indicated by
the dashed vertical line. Note: the rejection regions of Hp, given a significance
level of 0.05, lie outside the vertical black lines.
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1.3. Beyond Power: The Design Analysis

As we saw in the previous example, relying solely on the statistical
significance of a result can lead to completely misleading
conclusions. Indeed, researchers should take into account other
relevant information, such as the hypothesized “plausible effect
size” and the consequent power of the study. Furthermore, to
assist researchers with evaluating the results of a study in a
more comprehensive way, Gelman and Carlin (2014) suggested
that two other relevant types of errors should be considered in
addition to the traditional Type I and Type II errors, namely
Type M and Type S errors (see also Gelman and Tuerlinckx,
2000; Lu et al., 2019). Specifically, a Type M [magnitude] error
or exageration ratio can be viewed as the expected average
overestimation of an effect that emerges as statistically significant,
whereas a Type S [sign] error can be viewed as the probability
of obtaining a statistically significant result in the opposite
direction with respect to the sign of the hypothesized plausible
effect size.

Based on this consideration, Gelman and Carlin (2014)
proposed the term “design analysis” to broadly identify the
analysis of the properties of different studies, such as their
statistical power as well as Type M and Type S errors.
Moreover, as is shown in the next paragraph, in design
analysis particular emphasis is given to the elicitation and
formalization of what can be considered a plausible effect
size (see also paragraph 1.4) for the study of interest. In
this regard, it is important to make a clarification. Although
Gelman and Carlin (2014) developed a design analysis relying
on an unstandardized effect size measure (i.e., the difference
between two means), we have, in this paper, adapted their
method to deal with Cohen’s d, a standardized measure of
effect size that is more commonly used in psychology (see
Appendix A for more details on the reasons that motivated
this choice).

Given these premises, the steps to perform design analysis
using Cohen’s d as a measure of effect size can be summarized
in three steps:

1. A plausible effect size for the study of interest needs to
be identified. Rather than focusing on data at hand or on
noisy estimates of a single pilot study, the formalization of a
plausible effect size should be based on an extensive theoretical
literature review and/or on meta-analyses. Moreover, specific
tools (see for example Zondervan-Zwijnenburg et al., 2017;
O’Hagan, 2019; Zandonella Callegher et al., 2019) that allow
for the incorporation of expert knowledge can also be
considered to increase the validity of the plausible effect size
elicitation process'.

2. Based on the experimental design of the study of interest (in
our case, a comparison between two independent groups), a
large number of simulations (i.e., 100,000) will be performed
according to the identified plausible effect size. This procedure

To obtain a more comprehensive picture of the inferential risks associated with
their study, we suggest that researchers inspect different scenarios according to
different plausible effect sizes and perform more than one design analysis (see for
example our application to a real case study in section 4).

serves to provide information about what to expect if the
experiment is replicated an infinite number of times and
assuming that the pre-identified plausible effect is true.

3. Given a fixed level of Type I error (e.g., 0.05), power as well
as type M and type S errors will be calculated. Specifically,
power will be estimated as the ratio between the number of
significant results obtained and the number of replicates (i.e.,
the higher the power, the higher the probability of detecting
the plausible effect). A Type M error will be estimated as
the ratio between the mean of the absolute values of the
statistically significant replicated effect sizes and the plausible
effect size. In this case, larger values indicate an expected large
overestimation of the plausible effect size. Type S error will
be the ratio between the number of significant results with
opposite signs with regard to the plausible effect size and the
total number of significant results. Put in other terms, a type S
error estimates the probability of obtaining a significant result
in the wrong direction.

Although the procedure may seem complex to implement,
we have here https://osf.io/j8gsf/files/ (see also Appendix B)
made available some easy-to-use R functions that allow others
to perform different types of design analysis, even for less
experienced users. The same functions will also be used in the
examples and application presented in this paper.

To get a first idea of the benefits of design analysis, let us re-
analyze the hypothetical study presented in Figure 1. Specifically,
given a plausible effect size equal to d = 0.20 and a sample size
of 33 participants per group, a design analysis will highlight the
following information: power = 13%, Type M error = 3.11, and
Type S error = 2%. Despite the low power, which shows that
the study has only a 13% probability of detecting the plausible
effect size, a type M error explicitly indicates that the expected
overestimate of a result that will emerge as statistically significant
is around three times the plausible effect. Furthermore, given a
Type S error of 2%, there is also a non-negligible probability of
obtaining a significant result in the wrong direction. Overall, the
results of design analysis clearly tell the researcher that the study
of interest could provide very poor support to both the existence
and non-existence of a plausible effect size.

Another advantage of design analysis, which will be better
explored in the following sections, is that it can be effectively used
in the planning phase of a study, i.e., prospective design analysis,
as well as in the evaluation of already obtained study results, i.e.,
retrospective design analysis. For example, in prospective design
analysis, considerations concerning power as well as Type M and
Type S errors could assist researchers in deciding the appropriate
sample size for detecting the effect of interest (if it actually
exists). In a retrospective design analysis, power as well as Type
M and Type S errors (always calculated using the theoretically
plausible effect size) can be used to obtain information about
the extent to which the results of the study could be exaggerated
and/or in the wrong direction. Most importantly, we believe that,
engaging in a retrospective design analysis helps researchers to
recognize the role of uncertainty and to make more reasonable
statistical claims, especially in those cases at risk of falling in the
aformentioned “Winner’s Curse” trap.
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In conclusion, it is important to note that whatever the type
of design analysis chosen (prospective or retrospective), the
relationships between power, type M error, and type S error
are the same. For illustrative purposes, these relationships are
graphically displayed as a function of sample size in Figure 2. A
medium-to-small effect of d = 0.35 (i.e., a reasonable average
effect size for a psychological study in the absence of other
relevant information, see also section 4) was considered as a
plausible effect size, and Type I error was set at 0.05.

As expected, power increases as sample size increases.
Moreover, type M and type S errors decrease as the size
of the sample increases, with the latter showing a much
steeper decrease.

From an applied perspective, issues with type M and S errors
emerge with underpowered studies, which are very common in
psychological research. Indeed, as can be seen in Figure 2, for
a power of 40% (obtained with 48 participants per group), the
type M error reaches the worrisome value of 1.58; for a power
around 10% (i.e., with 10 participants per group), even a type S
error becomes relevant (around 3%).

1.4. What Does “Plausible Effect Size”
Mean?

“Thinking hard about effect sizes is important for any school of
statistical inference [i.e., Frequentist or Bayesian], but sadly a
process often neglected.”

Dienes (2008, p. 92)

The main and most difficult point rests on deciding what could
be considered a “plausible effect size.” Although this might seem
complex, studies are usually not developed in a void. Hypotheses
are derived from theories that, if appropriately formalized in
statistical terms, will increase the validity of the inferential
process. Furthermore, researchers are commonly interested in
knowing the size and direction of effects; as shown above, this
corresponds to control for a Type M [magnitude] error and a type
S [sign] error.

From an epistemological perspective, Kruschke (2013)
suggests an interesting distinction between strong theories and
weak theories. Strong theories are those that try to make precise
predictions and could be, in principle, more easily disconfirmed.
For example, a strong theory could hypothesize a medium-sized
positive correlation between two variables. In contrast, weak
theories make broader predictions, such as the hypothesis that
two variables are correlated without specifying the strength and
direction of the correlation (Dienes, 2008). The former type
allows many more research findings to disconfirm the hypothesis,
whereas the latter type allows only the result of no correlation to
disconfirm it. Specifically, following Karl Popper (1902-1994), it
could be argued that theories explaining virtually everything and
that are hard to disconfirm risk being out of the realm of science.
Thus, scientific theories should provide at least a hint regarding
the effect that is expected to be observed.

A challenging point is to establish the dimension of this effect.
It might seem paradoxical that the researcher must provide an
estimate of the effect size before running the experiment given

that they will conduct the study with the precise aim of finding
what that estimate is. However, strong theories should allow to
make such predictions, and the way in which science accumulates
should provide increasing precision to these predictions.

In practice, it might be undesirable to simply take the estimate
found in a pilot study or from a single previous study published
in the literature as the “plausible effect size.” In fact, the plausible
effect size refers to what could be approximately the true value of
the parameter in the population, whereas the results of pilots or
single studies (especially if underpowered) are noisy estimates of
that parameter.

In line with Gelman and Carlin (2014), we suggest the use of
information outside the data at hand, such as literature reviews
and/or meta-analyses taking into account issues concerning
publication bias (Borenstein et al., 2009). Moreover, as stated
in the previous paragraph, promising procedures to elicit and
formalize expert knowledge should also be considered. It is
important to note that, whatever the procedures, all assumptions
that will lead to the identification of a plausible effect size must
be communicated in a transparent manner, thus increasing the
information provided by a study and ensuring more reasonable
statistical claims related to the obtained results, regardless of
whether they are significant or not.

As we have seen, the identification of a plausible effect size
(or a series of plausible effect sizes to explore different scenarios)
requires significant effort from the researcher. Indeed, we believe
that this kind of reasoning can make a substantial contribution
to the planning of robust and replicable studies as well as to the
efficient evaluation of obtained research findings.

To conclude, we leave the reader with a question: “All other
conditions being equal, if you had to evaluate two studies of
the same phenomenon, the first based on a formalization of
the expected plausible effect sizes of interest that is as accurate
as possible, and the second one in which the size of the
effects of interest was not taken into account, the findings of
which study would you believe the most?” (R. van de Schoot,
personal communication).

2. PROSPECTIVE AND RETROSPECTIVE
DESIGN ANALYSIS

To highlight the benefits of design analysis and to make familiar
the concepts of Type M and Type S errors, we will start with a
simple example that is well-known in psychological research, i.e.,
the comparison between the means of two independent groups?.

In particular, the goal of our hypothetical case study was
to evaluate the differences between two treatments that aim to
improve a cognitive ability called Y. Both treatments have the
same cost, but the first is innovative, whereas the second is
traditional. To this end, the researchers recruited a sample of
participants who were homogeneous with respect to pre-specified

2We remind the reader that Appendix B provides a brief explanation of the ad-hoc
R functions used in the paper as well as details on how to reproduce the presented
examples and on how to use our R functions for other purposes. The source code of
our functions, f unct i ons_PRDA. R, is available at the link https://osf.io/j8gsf/
files/.
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relevant study variables (i.e., age, IQ, etc.). Next, they randomly
assigned each participant to one of the two conditions (i.e.,
innovative vs. traditional treatment). After the treatment phase
was completed, the means of the two groups were compared.

2.1. Prospective Design Analysis

Before collecting data, the researchers planned the appropriate
sample size to test their hypotheses, namely that there was a
difference between the means of G1 (the group to which the
innovative treatment was administered) and G2 (the group to
which the traditional treatment was administered) vs. there was
no difference.

After an extensive literature review concerning studies
theoretically comparable to their own, the researchers decided
that a first reasonable effect size for the difference between the
innovative and the traditional treatment could be considered
equal to a Cohen’s d of 0.30 (see Appendix A for a detailed
description of the calculation and interpretation of Cohen’s d).
Due to the possible presence of publication bias (Borenstein
et al., 2009), which could lead to an overestimation of the
effects of published studies, the researchers decided to be more
conservative about the estimate of their plausible effect size. Thus,
they decided to consider a Cohen’s d of 0.25. Eventually, all
researchers agreed that a Cohen’s d of 0.25 could also represent
a clinically relevant effect in order to support the greater efficacy
of the innovative treatment.

Based on the above considerations, the researchers started to
plan the sample size for their study. First, they fixed the Type
I error at 0.05 and—based on commonly accepted suggestions
from the psychological literature—fixed the power at 0.80.
Furthermore, to explicitly evaluate the inferential risks connected

to their choices, they calculated the associated Type M and Type
S errors.

Using our R function desi gn_anal ysi s, they obtained
the following results:

> design_anal ysis (d=0.25, power=0.80)

Based on the results, to achieve a power of 0.80, a sample size of
252 for each group was needed (i.e., total sample size = 504). With
this sample size, the risk of obtaining a statistically significant
result in the wrong direction (Type S error) was practically 0,
and the expected exaggeration ratio (Type M error) was 1.13. In
other words, the expected overestimation related to effects that
would emerge as statistically significant would be around 13% of
the hypothesized plausible effect size.

Although satisfied in terms of expected type S and type
M risks, the researchers were concerned about the economic
feasibility of recruiting such a “large” number of subjects. After
a long discussion, they decided to explore which inferential risks

would result for a lower level of power, namely 60%>.
Using the function desi gn_anal ysi s

> design_anal ysis (d=0.25, power=0.60)
d power n typeS typeM
0.25 0.60 158.00 0.00 1.30

they discovered that: (1) the overall required sample size was
considerably smaller (from 504 to 316 = 158 x 2), thus
increasing the economic feasibility of the study; (2) the Type S
error remained negligible (0%); and (3) the exaggeration ratio
considerably increased (from 1.13 to 1.30); thus, an effect that will
emerge as statistically significant will be on average 130% of the
hypothesized plausible effect size.

The researchers had to make a decision. From a merely
statistical point of view, the optimal choice would be to consider
a power of 80% that is associated with a Type M error of 1.13
(i.e., mean overestimation of ~10%) and a negligible Type S
error close to zero. However, it is important to highlight that
these values cannot be considered universal benchmarks. Indeed,
other relevant aspects must be considered, such as the practical
implications of an expected overestimation of the plausible
effect size, the phase of the study (i.e., preliminary/exploratory,
intermediate, or final/confirmatory), and feasibility constraints.

3Specifically, we agree with Gelman (2019) that an 80% level of power should
not be used as an automatic routine, and that requirements of 80% power could
encourage researchers to exaggerate their effect sizes when planning sample size.

d power n typeS typeM
0. 25 0.80 252.00 0.00 1.13
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Whatever the decision, the researchers must be aware of
the inferential risks related to their choice. Moreover, when
presenting the results, they must be transparent and clear in
communicating such risks, thus highlighting the uncertainty
associated with their conclusions.

2.2. Retrospective Design Analysis

To illustrate the usefulness of retrospective design analysis,
we refer to the example presented in the previous paragraph.
However, we introduce three new scenarios that can be
considered as representative of what commonly occurs during
the research process:

e Scenario 1 (S1): Evaluating sample size based on a single
published study*
Imagine that the researchers decide to plan their sample size
based on a single published study in the phase of formalizing
a plausible effect size, either because the published study
presents relevant similarities with their own study or because
there are no other published studies available.
Question: What type of inferential risks can be associated with
this decision?
Issues: Using a single study as a reference point without
considering other sources (e.g., theoretical framework, expert
opinion, or a meta-analysis), especially when the study has
a low sample size and/or the effect of interest is small, can
lead to use an excessively optimistic estimate of the effect
size when planning an appropriate sample size (Gelman and
Carlin, 2014).

e Scenario 2 (S2): Difficulty in recruiting the planned number
of research participants
Imagine that, due to unforeseen difficulties (e.g., insufficient
funding), the researchers are not able to recruit the
pre-planned number of participants as defined based on
prospective design analysis.
Question: How do you evaluate the inferential risks associated
with the new reduced sample size? How do you communicate
the obtained results?
Issues: Researchers are often tempted to evaluate the results
of their study based on the observed effect size. This
procedure, known as “post-hoc power analysis,” has been
strongly criticized, and many statistical papers explicity advise
against its use (see for example, Goodman and Berlin, 1994;
Gelman, 2019). Indeed, to evaluate the information provided
by the obtained results, researchers should use the a priori
plausible effect size, i.e., the one formalized before collecting
their data.

e Scenario 3 (S3): No prospective design analysis because the
number of participants is constrained
Imagine the number of participants involved in the study
have specific characteristics that make it impossible to yield a
large sample size, or that the type of treatment is particularly
expensive and cannot therefore be tested on a large sample. In

4Even though, in this paper, we strongly recommend that one does not plan
the sample size based on a single study, we propose this example to further
emphasize the inferential risks associated with the information provided by a single
underpowered study.

this case, the only possibility is to recruit the largest possible
number of participants.

Question: What level of scientific quality can be provided by
the results?

Issues: Although study results can provide a useful
contribution to the field, there are several associated
inferential risks that the researchers need to communicate in a
transparent and constructive way.

As we will see below, retrospective design analysis can be a useful
tool to deal with the questions and the issues raised across all
three scenarios.

For the sake of simplicity and without loss of generalizability,
suppose that in each of the three scenarios the researchers
obtained the same results (see Table 1).

At a first glance, the results indicated a statistically significant
difference in favor of the innovative treatment (see Table 1), with
a large effect size (i.e., d = 0.90). However, the 95% confidence
interval for Cohen’s d was extremely wide, suggesting that both
medium-small (i.e., d = 0.38) and very large (i.e., d = 1.43)
effects were consistent with the observed data.

A closer look indicated that the estimated effect size seemed
too large when compared with the initial guess of the researchers
(i.e., d = 0.25). Furthermore, an estimated d of 0.90
seemed, in general, implausibly large for a difference between
two cognitive treatments (see also Appendix A). The latter
interpretation seemed to be also supported by the fact that
the hypothesized plausible effect size was not even included in
the estimated confidence interval. Overall, in order to prevent
the aforementioned “Winner’s Curse” and “What Does Not
Kill Statistical Significance Makes It Stronger” heuristics, results
had to be evaluated and eventually communicated with caution
and skepticism.

To obtain a clearer picture of the inferential risks associated
with the observed results, we performed a retrospective design
analysis using d = 0.25 as plausible effect size and 31 participants
per group as sample size:

> design_anal ysis (n=31,
power typeS typeM
0.16 0.01 2.59

d=0. 25)

As can be seen, the power was markedly low (i.e., only 16%)
and the Type M error even suggested an expected overestimation
around two and a half times the plausible effect size. Lastly, the
Type S error, although small, indicated a 1% risk of obtaining
a significant result in the wrong direction (i.e., the traditional
treatment is better than the innovative treatment). Let’s see
how this information could be helpful to deal with the three
presented scenarios.

TABLE 1 | Comparison of the cognitive skill Y between the two groups.

Group n M SD t (df) P Cohen’s d (95% CI)

Innovative treatment 31 114 16 3.496 (60)

Traditional treatment 31 100 15

0.001  0.90 (0.38-1.43)
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In S1, the researchers took a single noisy estimate as the
plausible effect size from a study that found a “big” effect
size (e.g., 0.90). The retrospective design analysis showed what
happens if the plausible effect size is, in reality, much smaller
(i.e, 0.25). Specifically, given the low power and the high
level of Type M error, researchers should abandon the idea of
planning their sample size based on a single published study.
Furthermore, issues regarding the presence of Questionable
Research Practices (John et al, 2012; Arrison, 2014) and
Questionable Measurement Practices (Flake and Fried, 2019)
in the considered published study must at least be explored.
From an applied perspective, researchers should continue with
a more comprehensive literature review and/or consider the
opportunity of using an effect size elicitation procedure that is
based on expert knowledge (Zondervan-Zwijnenburg et al., 2017;
O’Hagan, 2019).

In S2, to check the robustness of their results, researchers
might initially be tempted to conduct a power analysis based on
their observed effect size (d = 0.90). Acting in this way, they
would obtain a completely misleading post-hoc power of 94%. In
contrast, the results of the retrospective design analysis based on
the a-priori plausible effect size (d = 0.25) highlight the high
level of inferential risks related to the observed results. From an
applied perspective, researchers should be very skeptical about
their observed results. A first option could be to replicate the
study on an independent sample, perhaps asking for help from
other colleagues in the field. In this case, the effort to recruit a
larger sample could be well-justified based on the retrospective
design analysis.

In S3, given the low power and the high level of Type
M error, results should be presented as merely descriptive
by clearly explaining the uncertainty that characterizes
them. Researchers should first reflect on the possibility of
introducing improvements to the study protocol (i.e., improving
the reliability of the study variables). As a last option, if
improvements are not considered feasible, the researchers might
consider not continuing their study.

Despite its advantages, we need to emphasize that design
analysis should not be used as an automatic problem solver
machine: “Let’s pull out an effect size ...let me see the correct
sample size for my experiment.” In other words, to obtain
reliable scientific conclusions there is no “free lunch.” Rather,
psychologists and statisticians have to work together, case by
case, to obtain a reasonable effect size formalization and to
evaluate the associated inferential risks. Furthermore, researchers
are encouraged to explore different scenarios via a sensitivity
analysis (see section 4) to better justify and optimize their choices.

3. INCORPORATING UNCERTAINTY
CONCERNING EFFECT SIZE
FORMALIZATION IN RETROSPECTIVE
DESIGN ANALYSIS

As shown in the previous examples, a key point both in
planning (i.e., prospective design analysis) and in evaluating (i.e.,
retrospective design analysis) a study is the formalization of a

plausible effect size. Using a single value to summarize all external
information and previous knowledge with respect to the study of
interest can be considered an excessive simplification. Indeed, all
uncertainty concerning the magnitude of the plausible effect size
is not explicitly taken into consideration. In particular, the level
of heterogeneity emerging from the examination of published
results and/or from different opinions of the consulted experts,
which can be poorly formalized. The aim of this paragraph is to
propose a method that can assist researchers with dealing with
these relevant issues. Specifically, we will focus on the evaluation
of the results of a study (i.e., retroprospective design analysis).

Our method can be summarized in the three steps: (1) defining
alower and an upper bound within which the plausible effect size
can reasonably vary; (2) formalizing an appropriate probability
distribution that reflects how the effect size is expected to vary;
and (3) conducting the associated analysis of power, Type M
error, and Type S error.

To illustrate the procedure, we use the study presented in
Table 1 as a reference. Let us now hypothesize that, after a
thorough evaluation of external sources, the researchers conclude
that a plausible effect size could reasonably vary between 0.20 and
0.60 (instead of specifying a too simplistic single-point value).
It should be noted that, from a methodological perspective,
the specification of a “plausible interval” can be considered an
efficient and informative starting point to elicit the researchers’
beliefs (O'Hagan, 2019).

At this point, a first option could be to assume that,
within the specified interval, all effect size values have the
same probability of being true. This assumption can be easily
formalized using a Uniform distribution, such as the one shown
in Figure 3 (left panel).

However, from an applied point of view it is rare for the
researcher to expect that all values within the specified interval
have the same plausibility. Indeed, in general conditions, it is
more reasonable to believe that values around the center of
the interval (i.e., 0.40 in our case) are more plausible, and
that their plausibility gradually decreases as they move away
from the center. This expectation can be directly formalized in
statistical terms using the so-called “doubly truncated Normal
distribution.” On an intuitive level (for a more complete
description see Burkardt, 2014), the doubly truncated Normal
distribution can be seen as a Normal distribution whose values
are forced to vary within a specific closed interval. In case of the
formalization of the plausible effect size, we propose the use of
doubly truncated Normal distribution with several parameters:
a lower and an upper bound according to the pre-specified
plausible interval, a mean fixed at the center of the interval, and
a standard deviation that reflects the hypothesized uncertainty
around the center. A standard deviation of 1—10 the length of the
chosen interval will produce a substantially Normal distribution.
Higher values, like é the length of the interval (see right panel
of Figure 3) will lead to normal-like distributions with increased
probability on the tails, thus reflecting greater uncertainty around
the center.

Coming back to our example, suppose that the researchers
want to evaluate the study of interest assuming a plausible
interval for Cohen’s d as the one represented in Figure 3.
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the length of the interval (.e., 2995220 = 0.067) is used.

FIGURE 3 | Different ways to formalize a plausible interval for the effect size d. In the left panel, a Uniform distribution with lower bound = 0.20 and upper bound =
0.60 is used. In the right panel, a doubly truncated Normal distribution with lower bound = 0.20, upper bound = 0.60, mean = 0.40, and standard deviation equal to %

Using the ad-hoc function desi gn_est > they will obtain this
information :

> design_est(nl=31, n2=31, target_d_limts=
c(0.20,0.60), distribution="normal")
power typeS typeM

0.35 0.00 1.73

To summarize, this information suggests that the results of the
study of interest (see Table 1) should be taken very cautiously.
Indeed, the expected power was low (35%), and the expected
overestimation of the most plausible effect size (i.e., d = 0.40)
was around 73%. Furthermore, it is important to note that the
observed effect size of 0.90 fell abundantly outside the pre-
specified plausible interval of 0.20-0.60, thus supporting the
idea that the study of interest clearly overestimated the actual
magnitude of the effect.

In general, when the observed effect size falls outside
the pre-specified plausible interval, we can conclude that
the observed study is not coherent with our theoretical
expectations. On the other hand, we could also consider that our
plausible interval may be unrealistic and/or poorly formalized.
In these situations, researchers should be transparent and
propose possible explanations that could be very helpful to
the understanding of the phenomenon under study. Although
this way of reasoning requires a notable effort, the information
provided will lead to a more comprehensive inference than the
one deriving from a simplistic dichotomous decision (i.e., “reject
/ do not reject”) typical of the NHST approach. Indeed, in this

°The idea behind this function is simple. First, we sample a large number (e.g.,
100,000) of effect sizes d from the probability distribution associated with the
plausible interval. Then, for each d we calculate power, type M error, and type
S error based on the sample size of the two groups involved in the comparison,
and we consider the center of the plausible interval as the most plausible effect
size. In this way, a distribution for each of the three indices is finally obtained.
In the output of the function, the means of the three distributions are presented
as a summary value. For additional details, see Appendix B, which also shows (in
section “design_est”) how to obtain the expected distribution of power as well as
Type M and Type S errors, given the plausible interval for d.

approach the hypotheses are poorly formalized, and power, Type
M error, and Type S error are not even considered.

4. AN ILLUSTRATIVE APPLICATION TO A
CASE STUDY

To illustrate how design analysis could enhance inference
in psychological research, we have considered a real case
study. Specifically, we focused on Study 2 of the published
paper “A functional basis for structure-seeking: Exposure to
structure promotes willingness to engage in motivated action”
(Kay et al., 2014).

The paper presented five studies arising from findings
showing that human beings have a natural tendency to perceive
structure in the surrounding world. Various social psychology
theories propose plausible explanations that share a similar
assumption that had never been tested before: that perceiving
a structured world could increase people’s willingness to make
efforts and sacrifices toward their own goals. In Study 2, the
authors decided to test this hypothesis by randomly assigning
participants to two different conditions differing in the type
of text they had to read. In the “random” condition, the text
conveyed the idea that natural phenomena are unpredictable and
random, whereas in the “structure” condition the phenomena
were described as predictable and systematic. The outcome
measure was the willingness to work toward a goal that each
participant chose as their “most important.” The expected result
was that participants in the “structure” condition would report a
higher score in the measure of goal-directed behavior than those
in the “random” condition.

4.1. Prospective Design Analysis

As we saw in the previous paragraphs, before collecting data it is
fundamental to plan an appropriate sample size via prospective
design analysis. In this case, given the relative novelty of Study
2, was hard to identify a single plausible value for the size of the
effect of interest. Rather, it seemed more reasonable to explore
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TABLE 2 | Sample size, Type M and Type S error by power and plausible effect
size. Type | error is fixed at 0.05.

Power Cohen’sd n (per sample) Totaln Type M error Type S error
0.20 392 784
0.80 0.35 130 260 118 0.00
0.50 64 128
0.20 244 488
0.60 0.35 82 164 1.30 0.00
0.50 40 80

different scenarios according to different plausible effect sizes
and power levels. We started with a minimum d of 0.20, so
that the study was planned to detect at least a “small” effect
size. If the final results did not reach statistical significance, the
researchers could conclude that it was unlikely that the true effect
was equal to or >0.20, and they could eventually decide whether
it would be worth it to replicate the study, perhaps by modifying
their protocol.

As the most plausible effect size, we considered d = 0.35,
which could be considered—at least in our opinion—a typical
average level with which to test a hypothesis in psychological
research in the absence of informative external sources (see for
example the results reported in Open Science Collaboration,
2015)°. As extrema ratio, we included also a d of 0.5, which,
in the words of Jacob Cohen, can be referred to as “differences
that are large enough to be visible to the naked eye” (see Cohen
1988, p. 26 and Appendix A), and that, given the experiment
under investigation, could be viewed as an extremely optimistic
guess. Finally, to take issues concerning the feasibility of the study
into account, we also considered two levels of power, namely 80
and 60%.

Overall, our “sensitivity” prospective design analysis (see
Table 2) suggested that the sample size chosen by the authors
(n = 67) was inadequate. Indeed, even in the least reasonable
scenario (d = 0.50, power = 0.60), a minimum of 80 participants
is required. Furthermore, is should be noted, that the associated
Type M error was considerably high, i.e., 130%, signaling a high
risk of overestimating the plausible effect.

A good compromise could be to consider the second scenario
(d = 0.35, power = 0.80), which requires a total sample size of
260, guaranteeing optimal control of the Type M error. After
conducting the study with this sample size, a significant result
would lead to the acceptance of the researcher’s hypothesis,
while a non-significant result would indicate that, if an effect

®In the Open Science Collaboration (2015), the authors conducted replications of
100 experimental and correlational studies published in three psychology journals
using high-powered designs and original materials when possible. They found an
average effect size of r = 0.197, i.e, d = 0.41. Given the heterogeneity of the
100 studies, we propose the use of a more conservative value to represent a typical
average effect in psychology. Overall, it should be noted that all the pre-specified
values of d, albeit plausible, are not based on a thorough theoretical revision and/or
on the formalized knowledge of experts in the field. Indeed, an appropriate use of
the latter two external sources would undoubtedly contribute to producing more
reliable results, but a discussion of these strategies is beyond the scope of this paper.

exists, the effect would presumably be <0.35. Whatever the
result, the researchers could eventually present their findings in
a transparent and informative way. In any case, the results could
be used to improve scientific progress. As an example, other
researchers could fruitfully use the observed results as a starting
point for a replication study.

4.2. Retrospective Design Analysis

Let us now evaluate Study 2 from a retrospective point of view.
Based on their results [Mgyucture = 5.26, SDstructure = 0.88,
Mirandom 4.72, SDrandom 1.32, ngotal 67; t(65)
2.00, p 0.05, Cohen’sd = 0.50]’, the authors concluded
that “participants in the structure condition reported higher
willingness to expend effort and make sacrifices to pursue their
goal compared to participants in the random condition.” Kay
etal. (2014, p. 487), thus supporting their initial hypothesis.

To evaluate the inferential risks associated with this
conclusion, we ran a sensitivity retrospective design analysis on
the pre-identified plausible effect sizes (i.e., d = 0.20, d = 0.35,
d = 0.50).

In line with the results that emerged from the prospective
analysis, the retrospective design analysis indicated that the
sample size used in Study 2 exhibited high inferential risks. In
fact, both for a plausible effect of d = 0.20 (power = 0.13, type
M = 3.06, type S = 2%) and for a plausible effect of d = 0.35
(power = 0.29, type M = 1.86, type S = 0%), the power was
very low, and the Type M error reached worrying levels. For a
d of 0.50 (chosen on the basis of plausible effects and not based
on the results observed in Study 2), the Type M error was 1.40,
indicating an expected overestimate of 40%. Furthermore, the
power was 0.52, suggesting that if we replicated the study on a
new sample with the same number of participants, the probability
of obtaining a significant result would be around the chance level.

We also evaluated the results of Study 2 by performing a
retrospective design analysis using the method presented in
section 3. Specifically, we used a doubly truncated normal
distribution centered at 0.35 (i.e., the most plausible effect size)
with a plausible interval of 0.20-0.50. As could be expected,
the results (i.e., power = 0.29, type M = 1.86, type S
0%) substantially confirmed what emerged from the sensitivity
retrospective design analysis.

In summary, our retrospective design analysis indicated that,
although statistically significant, the results of Study 2 were
inadequate to support the authors’ conclusions.

As mentioned at the beginning of this paragraph, Study 2
by Kay et al. (2014) was selected for illustrative purposes in a
constructive perspective. For a more comprehensive picture, we
invite interested readers to consult the “Many Labs 2 project”
(Klein et al., 2018), which showed that with a large sample
size (n = 6506) the original conclusion of Study 2 cannot be
supported (i.e., 1(6498.63) —0.94, p 0.35,d = —0.02,

7The authors reported only the total sample size (n = 67). Since participants were
randomly assigned to each of the two experimental conditions, in the following we
assumed, without loss of generalizability, that 34 participants were assigned to the
“structure” condition and 33 to the “random” condition.
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95%CI = [—0.07,0.03], and neither can the subsequent response
of the original authors (Laurin et al., 2018).

5. DISCUSSION AND CONCLUSIONS

In psychological research, statistical inference is often viewed as
an isolated procedure that limits itself to the analysis of data that
have already been collected. In this paper, we argue that statistical
reasoning is necessary both at the planning stage and when
interpreting the results of a research project. To illustrate this
concept, we built on and further developed Gelman and Carlin’s
(2014) idea of “prospective and retrospective design analysis.”

In line with recent recommendations (Cumming, 2014),
design analysis involves in-depth reasoning on what could be
considered as a plausible effect size within the study of interest.
Specifically, rather than focusing on a single pilot or published
study, we underlined the importance of using information
outside the data at hand, such as extensive literature reviews
and meta-analytic studies, taking issues related to publication
bias into account. Furthermore, we introduced the potentials
of elicitation of expert knowledge procedures (see for example
Zondervan-Zwijnenburg et al., 2017; O’Hagan, 2019). Even
though these procedures are still under-utilized in psychology,
they could provide a relevant contribution to the formalization
of research hypotheses.

Moving beyond the simplistic and often misleading
distinction between significant and non-significant results,
a design analysis allows researchers to quantify, consider, and
explicitly communicate two relevant risks associated with their
inference, namely exaggeration ratio (Type M error) and sign
error (Type S error). As illustrated in the paper, the evaluation
of these risks is particularly relevant in studies that investigate
small effect sizes in the presence of high levels of intra- and inter-
individual variability, with a limited sample size—a situation that
is quite common in psychological research.

Another important aspect of design analysis is that it can
be usefully carried out both in the planning phase of a study
(i.e., prospective design analysis) and to evaluate studies that
have already been conducted (i.e., retrospective design analysis),
reminding researchers that the process of statistical inference
should start before data collection and does not end when the
results are obtained. In addition, design analysis contributes
to have a more comprehensive and informative picture of the
research findings through the exploration of different scenarios
and according to different plausible formalizations of the effect
of interests.

To familiarize the reader with the concept of design analysis,
we included several examples as well as an application to
a real case study. Furthermore, in addition to the classic
formalization of the effect size with a single value, we
proposed an innovative method to formalize uncertainty and
previous knowledge concerning the magnitude of the effect
via probability distributions within a Frequentist framework.
Although not directly presented in the paper, it is important
to note that this method could also be efficiently used to
explore different scenarios according to different plausible
probability distributions.

Finally, to allow researchers to use all the illustrated methods
with their own data, we also provided two easy-to-use Rfunctions
(see also Appendix B), which are available at the Open Science
Framework (OSF) at the link https://osf.io/j8gsf/files/.

For the sake of simplicity, in this paper we limited our
consideration to Cohen’s d as an effect size measure within a
Frequentist approach. However, the concept of design analysis
could be extended to more complex cases and to other statistical
approaches. For example, our R functions could be directly
adapted to other effect size measures, such as Hedges g,
Odds Ratio, n?, and R?. Moreover, concerning the proposed
method to formalize uncertainty and prior knowledge, other
probability distributions beyond those proposed in this paper
(i.e., the uniform and the doubly truncated normal) could
be easily added. This was one of the main reasons behind
the choice to use resampling methods to estimate power as
well as Type M and Type S errors instead of using an
analytical approach.

Also, it is important to note that our considerations regarding
design analysis could be fruitfully extended to the increasingly
used Bayesian methods. Indeed, our proposed method to
formalize uncertainty via probability distributions finds its
natural extension in the concept of Bayesian prior. Specifically,
design analysis could be useful to evaluate the properties and
highlight the inferential risks (such as Type M and Type S errors)
associated with the use of Bayes Factors and parameter estimation
with credible Bayesian intervals.

In summary, even though a design analysis requires
significant effort, we believe that it has the potential to
contribute to planning more robust studies and promoting
better interpretation of research findings. More generally,
design analysis and its associated way of reasoning helps
researchers to keep in mind the inspiring quote presented at the
beginning of this paper regarding the use of statistical inference:
“Remember ATOM.”
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